
!

Computational Thinking:
Cut Hive Logic Puzzles

Paul Curzon
Queen Mary University of London

How do we solve logic puzzles? By solving Cut Hive puzzles, find out
about why logical thinking is a core part of computational thinking, but
how experts, from chess players to firefighters, as well as computer
scientists Discover how generalisation and pattern matching are the
secret skills of experts, both in computer science and other areas too,
from chess players to firefighters.

! 1
Version 1.0, 22 February 2016

!
Logic Puzzles
If you enjoy logic puzzles and are good at them you will probably enjoy computer
science. Above anything else, being able to think logically is important to computer
scientists. It runs through the whole subject but is especially important in writing
programs. Programs are founded on logic, and as we have already seen, thinking
clearly through all the possibilities is important for writing correct programs (and
magic tricks). They have to work under all circumstances, so when both writing them
and evaluating them, the programmer has to sweat the detail.
At one level when we talk about logical thinking we just about thinking clearly,
chasing down the small details. However, there is a deeper meaning of working with
mathematical logic, and if you can do that you will be much, much stronger at
arguing cast iron cases. It is all about applying rules precisely. Arguments founded on
logic have no holes in them: something that the Ancient Greek Philosophers realised
was an important skill. Being able to come up with solid arguments is useful
whatever you do, not just for computer scientists. Logic puzzles are really about
constructing an argument, but cut down to the pure logic. Thinking logically is just a
skill like any other that can be learnt. It just takes practice and doing puzzles is a fun
way to develop it. It is as much as anything about attention to detail.

Cut Up Hives
You’ve probably seen Sudoku: logic puzzles based on a grid of numbers. There are a
lot of different kinds of logic puzzles, and they all rely on the same ability to think
logically. Let’s explore logical thinking using a simple kind of logic puzzle, called ‘Cut
Hive’ puzzles. It is inspired by puzzles by Japanese puzzle inventor Naoki Inaba,
called ‘Cut Blocks’.
A Cut Hive puzzle consists of a block of hexagons, with different areas marked out
using thicker lines. There are two rules that must hold of a completed block.

1) Each area must contain the numbers from 1 up to the number of hexagons
in the area. For example, the topmost area in the puzzle below consists of 4
hexagons so those hexagons must be filled with the numbers: 1, 2, 3 and 4
with no repeated numbers. If the area has two hexagons, like the one bottom
left below, then it must be filled with the numbers 1 and 2.
2) No number can be next to the same number in any direction, along a
shared edge. So in the grid below, the fact that there is a 4 in the middle
means there cannot be a 4 in any of the 5 hexagons surrounding it.

Overleaf is a simple Cut Hive Puzzle for you to solve. Try to complete it before you
read on.

! 2
Version 1.0, 22 February 2016

!

Solving a Cut Hive
Here is the logical reasoning I used to complete the puzzle, based on the rules and
the numbers given. It is a cast iron argument that the filled out grid that I am claiming
is a solution, really is a solution.
At the bottom right of the grid is an area containing a single cell. That area has size
one so must contain the numbers from 1 up to … well 1. That means it must be 1 as
below. Let’s fill it in :

! 3
Version 1.0, 22 February 2016

2

4

2

2

4

2 1

!
Next at the bottom left we have an area of two hexagons. It must contain the
numbers 1 and 2. One hexagon already has a number 2 in it, so the only possibility
left for the other hexagon is 1.

The remaining two areas are made of 4 hexagons each. We now have to be a bit
cleverer than so far. Look at the 1 in the bottom corner. The fact that it is a 1 means
none of the three hexagons round it can be a 1. However that area has only four
hexagons in it and one of them must be a 1. That means the last hexagon in the area
that isn’t next to the 1 must be the 1 because there isn’t any where else for it to go.
We get the following hive.

! 4
Version 1.0, 22 February 2016

2

4
1
2 1

2

4
1
2

1

1

!
Next we can try and work out where the 2 goes in that same area. There is a 2 that
touches both the lower two hexagons, leaving the hexagon sandwiched between the
two 1s down the right side as the only possibility for the 2.

There is also a 4 above that area and the new 4 can’t be next to it. It must be at the
bottom. That determines which way round the 3 and 4 must be in the remaining two
hexagons:

! 5
Version 1.0, 22 February 2016

2

4
1
2

1
2
1

2

4
1
2

3

1
2
1

4

!

We are now left with the top area. We can fill it in using similar reasoning. The 1 in
the adjacent area means there is only one possible place for the last 1 to go in the
top left corner.

That means the final hexagon is a 3 as that area must have numbers 1 to 4 and only
the 3 is missing. The final solution is:

We have solved the puzzle. We did it by applying the two rules and our basic facts of
which numbers were already known. From them we repeatedly worked out new facts
about our puzzle. We have been using a particular kind of logical reasoning called
‘deduction’ where we work from known facts and the rules of the puzzle to give us
new facts. It is essentially the way Sherlock Holmes works his detective miracles. He

! 6
Version 1.0, 22 February 2016

1 2

4
1
2

3

1
2
1

4

1
3

2

4
1
2

3

1
2
1

4

!
notices things about people and deduces new facts as a consequence from them.
The more facts he learns the more he can then go on to deduce, ultimately allowing
him to solve crimes. Computer scientists and mathematicians use similar reasoning.
Good programmers use exactly this kind of reasoning to convince themselves that
their programs work, always.

Matching Patterns, Creating Rules
What we have just been doing is deducing facts directly from the two rules. As you
do more puzzles, and get more experience though you start to solve the puzzles in a
different way. You start to use some of your natural computational thinking skills:
pattern matching against situations you have seen before, for example. That will let
you solve puzzles faster with less thought. It will also allow you to do generalisation,
widening the situations you pattern match against. You will, with experience, start to
create some new quicker and very general rules to use. You can then do logical
reasoning at a higher level, based on these more powerful rules. This is possible
because of using logical thinking, not to solve a puzzle, but to create the new rules.
That way you are still sure that they are guaranteed to follow from the basic ones.
Let’s see how.

The Single Hexagon Rule
Going back to the way we solved the puzzle above, we worked out that when we
have an area consisting of a single hexagon, it must contain the number 1. Having
realised that, we don’t have to think it through again, we can just treat it as a new rule
that follows from the original.

3) IF an area has only one hexagon, THEN that hexagon holds the number 1.
We can draw a diagram to represent the rule, rather than just use words. We use an
arrow to show the change we make to the grid. On the left hand side we draw the
position we pattern match against and on the right hand side what we would change
that to.

Rules like this are called ‘production rules’ or ‘rewrite rules’. This diagrammatic rule
says that if we find an empty area of size one then we can transform it to a hexagon
with 1 in it.
We can now just apply this rule directly without ever thinking about why it holds. Our
logical thinking can now work at a higher level at least in this case

! 7
Version 1.0, 22 February 2016

1

!
The Two Hexagon Rule
We can create another new rule for areas consisting of two hexagons. We saw that if
we have an area of size two, with one hexagon filled with a 2 then the other hexagon
must be 1.

Notice we can treat this as a generalised rule from the actual example in our puzzle.
It doesn’t matter which hexagon holds the 2, the same logic applies. Our picture
applies upside down too! It also can be applied if the hexagons are linked diagonally
in any direction as well.
We can generalise the rule further though. By the same reasoning, if an area of size
2 has a 1 already placed then the other hexagon must be 2.

Combining these two facts gives us the full generalised rule:
4) IF a hexagon in an area of size two holds a 1 or a 2 THEN the other
hexagon holds the other number.

We can give it as a diagram if we use a letter x to represent any number (just as
mathematicians use x and y as variables in algebra). An x can stand for 1 one time
we use the rule, and as a 2 another time, as long as it doesn’t change in the middle
of any particular time we apply it. A diagram of the rule is given below. We use x ̅ in
the diagram to mean the other number that the x isn’t this time. So if x is 1 then x ̅is
2, and if x is 2 then x ̅is 1. This rule can match an area of size 2 rotated in any way
and so whichever way round the two numbers are. This diagram turns in to our

! 8
Version 1.0, 22 February 2016

1
2
1

2
1
2

!
original rules (and their diagrams) just by setting x to 1 or 2. We are starting to invent
a mathematical-like notation for the same reason mathematicians use symbols. It
gives us a precise way to talk about things, and as our rules become more
complicated that is important if we aren’t going to make mistakes.

Rather than deducing facts from given facts using the rules, we are now deducing
new rules that hold given the original rules. These are called ‘derived inference rules’.
Whenever we see a situation that matches the pattern of one of our new rules, we
don’t have to think any more, we can just apply the rule.

The Corner Rule
Let’s look at a final example of creating a bigger rule from our solution to the simple
cut hive puzzle that turns out to be quite useful. In the bottom right corner, we were
able to deduce where the next 1 in the area of four hexagons should go. It was
possible because there was already a 1 in the adjacent area, nestled into a corner as
below.

! 9
Version 1.0, 22 February 2016

x

x

x
‾

b

d

c

1
a

!
There must be a 1 in position a, b, c or d. However, there can’t be a 1 next to another
1. That rules out positions a, b and c. The 1 must be in position d as it is all that is
left. We can draw that step as a rewrite rule diagram.

Of course any of the hexagons shown as blank could already be filled with other
numbers and the rule will still apply: that is another way of generalising our new rule.
Also, as before, the number we are pattern matching against doesn’t have to be a 1.
It could be any number formed as part of a bigger area. If we use a letter x again to
represent any number then our rule becomes the generalised version below.

We can even generalise our rule in a further way too. The area we are filling doesn’t
have to be exactly that shape. The extra hexagon could be in any of positions round
the far edge of the bigger area: anywhere that is connected but doesn’t touch the
corner hexagon. In the version of the corner rule below we’ve used question marks to
act as variables that show the possible positions of the hexagon of interest.
Written in english we get a generalised rule:

5) IF a hexagon is surrounded by an area of size four, with only three of the
four hexagons touching it THEN the fourth hexagon holds the same number
as the surrounded hexagon.

! 10
Version 1.0, 22 February 2016

1

1

1

x

x

x

!

As before, the rule will apply upside down or on its side, rotated or reflected. Perhaps
you can think of even more ways to generalise the rule.
Equipped now with this very general rule, if you find any situation that you can
pattern match it against in a puzzle, then you can apply it. That means you can fill in
a missing number, as indicated by whatever matches the x.
Most people who do puzzles don’t bother to write down the rules they derive and
use. They just remember something that worked in the past and apply it when the
chance arises without much thought. Computer Scientists like to write things like that
down though. Why is it a good idea? Well, for one thing you can use them to teach
other people how to do the puzzles without them having to work it all out for
themselves (as I just did for you). They can even be used to teach computers how to
do the puzzles. It also makes things precise. It is easy to have a false recollection of
a rule that worked in the past, or for someone who has learnt it to misunderstand the
detail. In either case it could lead to the rule being applied incorrectly or applied it to
a new situation that it doesn’t actually quite match. Writing a precise version down
helps avoid this kind of faulty reasoning.
We are stretching the limits of what we can do with pictures now, though. In reality
computer scientists tend to use mathematical notation (formal logics) to express
rules. These languages for expressing logic are a bit like programming languages
though very flexible and have the big advantage that they can easily be processed by
computers and so be the basis of computers doing this kind of reasoning. The logic
becomes the basis for computer programs that can solve the puzzles.
Many Artificial Intelligence systems are based on this idea of programming using this
kind of production rule. Instead of drawing diagrams we write rules of the form IF
<some situation> THEN <action to do>. A list of such rules makes up a program. If a
rule applies then the computer can do the action. This is done over and over again.
We aren’t just using logical thinking as we become better and better at doing the
puzzles. We pattern match the rules against the current situation to know which to
apply. A production rule program is doing the same kind of pattern matching. It is
doing some simple computational thinking. In writing the rules down to create that

! 11
Version 1.0, 22 February 2016

?

x

?
?

?

?

?
?

x

x

?
?

?

?

?
?

!
program, generalisation goes hand in hand with abstraction: we are hiding detail
about other parts of the puzzle to make things easier to think about and to make the
rules as general as possible. In the diagram for the rule, we have used several
abstractions to describe what we can pattern match against. For example, the
variable x is an abstraction. It abstracts away from (i.e., hides the detail of) the actual
number involved - we can apply it whatever the number. Similarly we have
abstracted away from the details of the area of the shape that already has a number
and we are using question marks as another kind of variable to abstract away from
the position of the fourth hexagon in our representation of the rule. We have also
abstracted away from the orientation in the way we write the rule: the diagram can be
rotated or reflected in any way to match a puzzle state.

More	
 Puzzles	

Another simple puzzle
Here is another puzzle to try. See if you can use any of our rules above to solve it. As
you fill in numbers you will find that new rules apply. If none of our derived rules apply
you might have to go back to the original puzzle rules. Remember that rule 2 says
that a number can’t be next to itself. The answer is at the end.

! 12
Version 1.0, 22 February 2016

3
2

!
A harder puzzle
Here is another, much bigger, harder puzzle. As you solve it, look out for other rules
you might devise, either that are immediately useful again in solving this puzzle or
that might be useful for future puzzles.

HINT: In looking for a new rule, think about what happens when you have lines of
areas of size 3 next to one another. 

! 13
Version 1.0, 22 February 2016

1
4
3

2

4

!

Logical Thinking and Expertise
Logical Thinking Matters
Why does logical thinking matter to a computer scientist? Because it is at the heart of
computer science. Computers work using logic so to be able to program them: to
give them instructions you have to think logically as well if you aren’t to make
mistakes. It is a key part of computational thinking that runs through all aspects of it,
whether creating algorithms or evaluating them. Logical thinking especially matters to
programmers. They need to use it when developing a new program, when looking for
bugs in their programs as well as when evaluating them in other ways, and when
modifying an existing program to do something new.
Logics themselves are very simple and precise mathematical languages. Like our
puzzles logics comes with a set of rules, called their axioms. Our initial two rules of
the puzzle are axioms of the puzzle. From axioms mathematicians can derive higher
level rules, just as we did. Such logics form the foundation of programming
languages, defining what each construct in the language means, so those designing
programming languages have to think logically too! Having logic as the basis of
programming languages means we can use logical thinking to reason about what our
programs do. We can even prove programs are correct. To make that possible
Computer Scientists also write descriptions of what a program should do directly in
logic. Then the logical reasoning is used to show that the program’s logical effect is
equivalent to that of the program.
A final twist is that computer scientists have even invented ways that logical rules can
be treated directly as programs themselves. In this style of programming, called
Logic Programming, writing a program involves coming up with rules that when
applied do some computation. Our rules for the puzzle, written in a logic
programming language would become a program for solving the puzzles. Whatever
kind of language you program in, though you have to apply logical thinking, one way
or another.

Experts at work
The more experience we have doing the puzzles, the more rules we mentally
accumulate and the faster, more easily we can do them. This is the way that chess
grand masters play chess too. They recognise positions of the game as being similar
to situations they have seen before. They then use rules that their experience
suggests will be a good move. By thinking that way they avoid having to think
through multiple moves ahead, which is slow and error-prone for a human.
Computers on the other hand do play like that, playing out lots of alternative moves
and the consequences. Human chess players are geniuses at the game because
they are using both logical thinking and pattern matching and have built up a
wealth of informal rules about the game.
It isn’t just expert chess players that think like that though, pretty well all experts work
the same way, whatever skill they are an expert at. Fire fighters, for example, do the
same. When they have a hunch that a situation is bad and get out of a burning
building just before the roof collapses, it is similar pattern matching that is going on,
but sub-consciously. Intuition is just sub-conscious pattern matching against lots of
prior experience.
If you want to be an expert at anything, develop your pattern matching and
generalisation skills. For any skill, to be considered a genius at it and be stunningly

! 14
Version 1.0, 22 February 2016

!
successful, there is a rule of thumb of how many hours of practice you must put in:
10,000 hours. Virtuoso violinists, for example have practiced playing the violin at
least that amount. Similarly, the most successful programmers, the ones who have
become billionaires, for example, practiced writing programs for around 10,000
hours. Even Tibetan monks who are renowned for their serenity, inner peace and
compassion will have practiced meditation to gain that inner peace for a similar
length of time.
If you want to be a great computer scientist, start practicing your computational
thinking skills now. Even if you don’t want to be a programmer, developing the skills
like logical thinking, generalisation and abstraction and pattern matching will make
you better at whatever career you follow, whatever you want to be an expert at.
Doing logic puzzles is a really good way to start to develop them, especially if you
think about how you are solving puzzles as you do them, and try to write down your
rules.

Answers

! 15
Version 1.0, 22 February 2016

1
4

2

3
2
1

4

1
2
13

!

More Puzzles
Why not create your own puzzles, or once you can program, write a program
to solve them (or invent new ones for you to do).

! 16
Version 1.0, 22 February 2016

1
2

3

4
3
2

3

1
2
41

3
1
2

2
4
3
1

2
3
1

3
1
2

2
33

1
4

2
1

!
Use of this booklet
This booklet was created by Paul Curzon of Queen Mary University of
London, cs4fn (Computer Science for Fun www.cs4fn.org) and Teaching
London Computing (teachinglondoncomputing.org).

We are grateful for support provided by Google to help us create resources
around puzzles.

See the Teaching London Computing activity sheets in the Resources for
Teachers Section of our website (http://teachinglondoncomputing.org/puzzles/) for
linked activities and resources based on this booklet.

! Attribution NonCommercial ShareAlike - "CC BY-NC-SA"

This license lets others remix, tweak, and build upon a work non-commercially, as long as they credit
the original author and license their new creations under the identical terms. Others can download and
redistribute this work just like the by-nc-nd license, but they can also translate, make remixes, and
produce new stories based on the work. All new work based on the original will carry the same license,
so any derivatives will also be non-commercial in nature.

With support from Google

! ! !

! 17
Version 1.0, 22 February 2016

http://www.cs4fn.org
http://teachinglondoncomputing.org
http://teachinglondoncomputing.org/puzzles/
http://creativecommons.org/licenses/by-nc-sa/3.0/

