

 IBM Sequel language developed as part of System R project at the IBM San
Jose Research Laboratory

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

 SQL-86

 SQL-89

 SQL-92

 SQL:1999 (language name became Y2K compliant!)

 SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus varying
feature sets from later standards and special proprietary features.

Data retrieval

Data manipulation language
(DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

SELECT

INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE

COMMIT
ROLLBACK
SAVEPOINT

GRANT
REVOKE

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

Data type Description Max size Storage

char(n) Fixed width character string 8,000 characters Defined width

varchar(n) Variable width character string 8,000 characters 2 bytes + number of chars

varchar(max) Variable width character string 1,073,741,824 characters 2 bytes + number of chars

text Variable width character string 2GB of text data 4 bytes + number of chars

nchar Fixed width Unicode string 4,000 characters Defined width x 2

nvarchar Variable width Unicode string 4,000 characters

nvarchar(max) Variable width Unicode string 536,870,912 characters

ntext Variable width Unicode string 2GB of text data

binary(n) Fixed width binary string 8,000 bytes

varbinary Variable width binary string 8,000 bytes

varbinary(max) Variable width binary string 2GB

image Variable width binary string 2GB

 The CREATE TABLE statement is used to create a new table in a database.

CREATE TABLE table_name (
column1 datatype,
column2 datatype,
column3 datatype,

....
);
Create Table Using Another Table
 A copy of an existing table can also be created using CREATE TABLE.
 The new table gets the same column definitions. All columns or specific

columns can be selected.
 If you create a new table using an existing table, the new table will be

filled with the existing values from the old table.

CREATE TABLE new_table_name AS
SELECT column1, column2,...
FROM existing_table_name
WHERE;

 The INSERT INTO statement is used to insert new records in a table.
INSERT INTO Syntax
 It is possible to write the INSERT INTO statement in two ways.

 The first way specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);

 If you are adding values for all the columns of the table, you do not need to

specify the column names in the SQL query. However, make sure the order

of the values is in the same order as the columns in the table. The INSERT

INTO syntax would be as follows:

INSERT INTO table_name
VALUES (value1, value2, value3, ...);

 The DROP TABLE statement is used to drop an existing table in a database.

Syntax

DROP TABLE table_name;

SQL TRUNCATE TABLE

The TRUNCATE TABLE statement is used to delete the data inside a table, but not the table itself.

TRUNCATE TABLE table_name;

 The ALTER TABLE statement is used to add, delete, or modify columns in an existing
table.

 The ALTER TABLE statement is also used to add and drop various constraints on an
existing table.

ALTER TABLE - ADD Column
 To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype;

ALTER TABLE - DROP COLUMN

To delete a column in a table

ALTER TABLE table_name
DROP COLUMN column_name;

 ALTER TABLE - ALTER/MODIFY COLUMN

ALTER TABLE table_name
ALTER COLUMN column_name
datatype;

 SQL constraints are used to specify rules for data in a table.

 Constraints can be specified when the table is created with the CREATE TABLE statement,

or after the table is created with the ALTER TABLE statement.

CREATE TABLE table_name (
column1 datatype constraint,
column2 datatype constraint,
column3 datatype constraint,
....

);
 SQL constraints are used to specify rules for the data in a table.

 Constraints are used to limit the type of data that can go into a table. This ensures the

accuracy and reliability of the data in the table. If there is any violation between the

constraint and the data action, the action is aborted.

 Constraints can be column level or table level. Column level constraints apply to a column,

and table level constraints apply to the whole table.

 NOT NULL - Ensures that a column cannot have a NULL value

 UNIQUE - Ensures that all values in a column are different

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely

identifies each row in a table

 FOREIGN KEY - Uniquely identifies a row/record in another table

 CHECK - Ensures that all values in a column satisfies a specific condition

 DEFAULT - Sets a default value for a column when no value is specified

 INDEX - Used to create and retrieve data from the database very quickly

 By default, a column can hold NULL values.

 The NOT NULL constraint enforces a column to NOT accept NULL values.

 This enforces a field to always contain a value, which means that you cannot insert a

new record, or update a record without adding a value to this field.
SQL NOT NULL on CREATE TABLE

 The following SQL ensures that the "ID", "LastName", and "FirstName" columns will

NOT accept NULL values when the "Persons" table is created:

 CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255) NOT NULL,

Age int

);

 To create a NOT NULL constraint on the "Age" column when the "Persons" table is
already created, use the following SQL:

ALTER TABLE Persons
MODIFY Age int NOT NULL;

 The UNIQUE constraint ensures that all values in a column are different.

 Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of

columns.

 A PRIMARY KEY constraint automatically has a UNIQUE constraint.

 However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.

SQL UNIQUE Constraint on CREATE TABLE

CREATE TABLE Persons (

ID int NOT NULL UNIQUE,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int

);

 The PRIMARY KEY constraint uniquely identifies each record in a table.

 Primary keys must contain UNIQUE values, and cannot contain NULL values.

 A table can have only ONE primary key; and in the table, this primary key can consist of single or multiple columns

(fields).

SQL PRIMARY KEY on CREATE TABLE

CREATE TABLE Persons (
ID int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on multiple columns, use the
following SQL syntax:

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)

);

 To create a PRIMARY KEY constraint on the "ID" column when the table is already created, use the following SQL:

ALTER TABLE Persons
ADD PRIMARY KEY (ID);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on multiple
columns, use the following SQL syntax:

ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);

Note : If you use the ALTER TABLE statement to add a primary key, the primary key
column(s) must already have been declared to not contain NULL values (when the
table was first created).

 DROP a PRIMARY KEY Constraint
 To drop a PRIMARY KEY constraint, use the following SQL:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

 A FOREIGN KEY is a key used to link two tables together.

 A FOREIGN KEY is a field (or collection of fields) in one table that refers to the PRIMARY KEY in another

table.

 The table containing the foreign key is called the child table, and the table containing the candidate key is

called the referenced or parent table.

 Notice that the "PersonID" column in the "Orders" table points to the "PersonID" column in the

"Persons" table.

 The "PersonID" column in the "Persons" table is the PRIMARY KEY in the "Persons" table.

 The "PersonID" column in the "Orders" table is a FOREIGN KEY in the "Orders" table.

 The FOREIGN KEY constraint is used to prevent actions that would destroy links between tables.

 The FOREIGN KEY constraint also prevents invalid data from being inserted into the foreign key

column, because it has to be one of the values contained in the table it points to.

PersonID LastName FirstName Age

1 Hansen Ola 30

2 Svendson Tove 23

3 Pettersen Kari 20

OrderID OrderNu
mber

PersonID

1 77895 3

2 44678 3

3 22456 2

4 24562 1

 SQL FOREIGN KEY on CREATE TABLE

 The following SQL creates a FOREIGN KEY on the "PersonID" column when the "Orders" table is created:

 CREATE TABLE Orders (

OrderID int NOT NULL,

OrderNumber int NOT NULL,

PersonID int,

PRIMARY KEY (OrderID),

FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

); CREATE TABLE Persons (
ID int NOT NULL PRIMARY KEY,
LastName

varchar(255) NOT NULL,
FirstName varchar(255),
Age int);

 The CHECK constraint is used to limit the value range that can be placed in a column.
 If you define a CHECK constraint on a single column it allows only certain values for this column.
 If you define a CHECK constraint on a table it can limit the values in certain columns based on values in other columns

in the row.

SQL CHECK on CREATE TABLE
 The following SQL creates a CHECK constraint on the "Age" column when the "Persons" table is created. The CHECK

constraint ensures that the age of a person must be 18, or older:
 CREATE TABLE Persons (

ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CHECK (Age>=18)

);
 To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following SQL

syntax:
 CREATE TABLE Persons (

ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255),
CONSTRAINT CHK_Person CHECK (Age>=18 AND City='Sandnes')

);

 To create a CHECK constraint on the "Age" column when the table is already created, use the following SQL:

ALTER TABLE Persons
ADD CHECK (Age>=18);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following
SQL syntax:
ALTER TABLE Persons
ADD CONSTRAINT CHK_PersonAge CHECK (Age>=18 AND City='Sandnes');

 ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

 The DEFAULT constraint is used to provide a default value for a column.
 The default value will be added to all new records IF no other value is specified.

 CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255) DEFAULT 'Sandnes'

);

SQL DEFAULT on ALTER TABLE
To create a DEFAULT constraint on the "City" column when the table is already created, use the
following SQL:

ALTER TABLE Persons
ALTER City SET DEFAULT 'Sandnes';

 The SELECT statement is used to select data from a database.

 The data returned is stored in a result table, called the result-set.

Syntax:
SELECT column1, column2, ...
FROM table_name;

To select all the fields available in the table, use the following syntax:

SELECT * FROM table_name;

 The SELECT DISTINCT statement is used to return only distinct (different)

values.

Syntax:
SELECT DISTINCT column1, column2, ...
FROM table_name;

 The WHERE clause is used to filter records.
 The WHERE clause is used to extract only those records that fulfill a

specified condition.

Syntax:
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Operator Description

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal. Note: In some versions of SQL this operator may be
written as !=

BETWEEN Between a certain range

LIKE Search for a pattern

IN To specify multiple possible values for a column

 The WHERE clause can be combined with AND, OR, and NOT operators.
 The AND and OR operators are used to filter records based on more than one

condition:
 The AND operator displays a record if all the conditions separated by

AND are TRUE.
 The OR operator displays a record if any of the conditions separated by

OR is TRUE.
 The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax
SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax
SELECT column1, column2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

NOT Syntax
SELECT column1, column2, ...
FROM table_name
WHERE NOT condition;

SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

SELECT * FROM Customers
WHERE City='Berlin' OR City='München';

SELECT * FROM Customers
WHERE NOT Country='Germany';

 The ORDER BY keyword is used to sort the result-set in ascending or descending order.

 The ORDER BY keyword sorts the records in ascending order by default. To sort the records in

descending order, use the DESC keyword.

ORDER BY Syntax
 SELECT column1, column2, ...

FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

SELECT * FROM Customers
ORDER BY Country;

SELECT * FROM Customers
ORDER BY Country DESC;

SELECT * FROM Customers
ORDER BY Country, CustomerName;

SELECT * FROM Customers
ORDER BY Country ASC,
CustomerName DESC;

 A field with a NULL value is a field with no value.
 If a field in a table is optional, it is possible to insert a new record or update

a record without adding a value to this field. Then, the field will be saved
with a NULL value.

IS NULL Syntax
 SELECT column_names

FROM table_name
WHERE column_name IS NULL;

IS NOT NULL Syntax
SELECT column_names
FROM table_name
WHERE column_name IS NOT NULL;

Note: A NULL value is different from a zero value or a field that contains spaces. A
field with a NULL value is one that has been left blank during record creation!

 The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax

 UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Note: The WHERE clause specifies which record(s) that should be updated. If you
omit the WHERE clause, all records in the table will be updated!

UPDATE Customers
SET ContactName = 'Alfred
Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

 The DELETE statement is used to delete existing records in a table.

DELETE Syntax

DELETE FROM table_name WHERE condition;

Delete All Records
It is possible to delete all rows in a table without deleting the table. This means that the table
structure, attributes, and indexes will be intact:

DELETE FROM table_name;

Note: The WHERE clause specifies which record(s) should be deleted. If you omit
the WHERE clause, all records in the table will be deleted!

DELETE FROM Customers WHERE
CustomerName='Alfreds Futterkiste';

The SQL MIN() and MAX() Functions

 The MIN() function returns the smallest value of the selected column.

 The MAX() function returns the largest value of the selected column.

MIN() Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

MAX() Syntax

SELECT MAX(column_name)

FROM table_name

WHERE condition;

SELECT MIN(Price) AS SmallestPrice
FROM Products;

SELECT MAX(Price) AS LargestPrice
FROM Products;

 The COUNT() function returns the number of rows that matches a specified
criterion.

 The AVG() function returns the average value of a numeric column.
 The SUM() function returns the total sum of a numeric column.

COUNT() Syntax

SELECT COUNT(column_name)
FROM table_name
WHERE condition;

AVG() Syntax

SELECT AVG(column_name)
FROM table_name
WHERE condition;

SUM() Syntax

SELECT SUM(column_name)
FROM table_name
WHERE condition;

SELECT COUNT(ProductID) FROM Products;

SELECT AVG(Price) FROM Products;

SELECT SUM(Price)FROM Products;

