
MIPS Instruction Reference
CONTENTS

1. Arithmetic Instructions

2. Logical

3. Data Transfer

4. Conditional Branch

5. Comparison

6. Unconditional Jump

7. System Calls

8. Assembler Directives

9. Registers

This is a **partial list** of the available MIPS32 instructions, system calls, and assembler directives. For
more MIPS instructions, refer to the Assembly Programming section on the class Resources page.
In all examples, $1, $2, $3 represent registers. For class, you should use the register names, not the
corresponding register numbers.

Arithmetic Instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1=$2+$3

subtract sub $1,$2,$3 $1=$2-$3

add immediate addi
$1,$2,100

$1=$2+100 "Immediate" means a constant
number

add unsigned addu
$1,$2,$3

$1=$2+$3 Values are treated as unsigned
integers,
not two's complement integers

subtract unsigned subu
$1,$2,$3

$1=$2-$3 Values are treated as unsigned
integers,
not two's complement integers

add immediate
unsigned

addiu
$1,$2,100

$1=$2+100 Values are treated as unsigned
integers,
not two's complement integers

Multiply (without
overflow)

mul $1,$2,$3 $1=$2*$3 Result is only 32 bits!

Multiply mult $2,$3 $hi,$low=$2*$3 Upper 32 bits stored in special
register hi
Lower 32 bits stored in special
register lo

Divide div $2,$3 $hi,$low=$2/$3 Remainder stored in special
register hi
Quotient stored in special
register lo

Unsigned Divide divu $2,$3 $hi,$low=$2/$3 $2 and $3 store unsigned
values.

Remainder stored in special
register hi
Quotient stored in special
register lo

Logical

Instruction Example Meaning Comments

and and $1,$2,$3 $1=$2&$3 Bitwise AND

or or $1,$2,$3 $1=$2|$3 Bitwise OR

and immediate andi $1,$2,100 $1=$2&100 Bitwise AND with immediate value

or immediate or $1,$2,100 $1=$2|100 Bitwise OR with immediate value

shift left logical sll $1,$2,10 $1=$2<<10 Shift left by constant number of bits

shift right logical srl $1,$2,10 $1=$2>>10 Shift right by constant number of bits

Data Transfer

Instruction Example Meaning Comments

load word lw
$1,100($2)

$1=Memory[$2+100] Copy from memory to register

store word sw
$1,100($2)

Memory[$2+100]=$1 Copy from register to memory

load upper
immediate

lui $1,100 $1=100x2^16 Load constant into upper 16 bits.
Lower 16 bits are set to zero.

load address la $1,label $1=Address of label Pseudo-instruction (provided by
assembler, not processor!)
Loads computed address of label
(not its contents) into register

load
immediate

li $1,100 $1=100 Pseudo-instruction (provided by
assembler, not processor!)
Loads immediate value into
register

move from hi mfhi $2 $2=hi Copy from special register hi to
general register

move from lo mflo $2 $2=lo Copy from special register lo to
general register

move move $1,$2 $1=$2 Pseudo-instruction (provided by
assembler, not processor!)
Copy from register to register.

Variations on load and store also exist for smaller data sizes:

 16-bit halfword: lh and sh

 8-bit byte: lb and sb

Conditional Branch
All conditional branch instructions compare the values in two registers together. If the comparison test is
true, the branch is taken (i.e. the processor jumps to the new location). Otherwise, the processor
continues on to the next instruction.

Instruction Example Meaning Comments

branch on equal beq
$1,$2,100

if($1==$2) go to
PC+4+100

Test if registers are
equal

branch on not equal bne
$1,$2,100

if($1!=$2) go to
PC+4+100

Test if registers are not
equal

branch on greater than bgt
$1,$2,100

if($1>$2) go to
PC+4+100

Pseduo-instruction

branch on greater than bge if($1>=$2) go to Pseduo-instruction

or equal $1,$2,100 PC+4+100

branch on less than blt
$1,$2,100

if($1<$2) go to
PC+4+100

Pseduo-instruction

branch on less than or
equal

ble
$1,$2,100

if($1<=$2) go to
PC+4+100

Pseduo-instruction

Note 1: It is much easier to use a label for the branch instructions instead of an absolute number. For
example: beq $t0, $t1, equal. The label "equal" should be defined somewhere else in the code.
Note 2: There are many variations of the above instructions that will simplify writing programs!
Consult the Resources for further instructions, particularly H&P Appendix A.

Comparison

Instruction Example Meaning Comments

set on less than slt $1,$2,$3 if($2<$3)$1=1;
else $1=0

Test if less than.
If true, set $1 to 1. Otherwise,
set $1 to 0.

set on less than
immediate

slti
$1,$2,100

if($2<100)$1=1;
else $1=0

Test if less than.
If true, set $1 to 1. Otherwise,
set $1 to 0.

Note: There are many variations of the above instructions that will simplify writing programs! Consult
the Resources for further instructions, particularly H&P Appendix A.

Unconditional Jump

Instruction Example Meaning Comments

jump j 1000 go to address 1000 Jump to target address

jump register jr $1 go to address stored in $1 For switch, procedure return

jump and
link

jal
1000

$ra=PC+4; go to address
1000

Use when making procedure call.
This saves the return address in
$ra

Note: It is much easier to use a label for the jump instructions instead of an absolute number. For
example: j loop. That label should be defined somewhere else in the code.

System Calls
The SPIM simulator provides a number of useful system calls. These are simulated, and do not
represent MIPS processor instructions. In a real computer, they would be implemented by the
operating system and/or standard library.

System calls are used for input and output, and to exit the program. They are initiated by
the syscall instruction. In order to use this instruction, you must first supply the appropriate arguments
in registers $v0, $a0-$a1, or $f12, depending on the specific call desired. (In other words, not all registers
are used by all system calls). The syscall will return the result value (if any) in register $v0 (integers) or
$f0 (floating-point).
Available syscall services in SPIM:

Service Operation Code
(in
$v0)

Arguments Results

print_int Print integer number (32 bit) 1 $a0 = integer to
be printed

None

print_float Print floating-point number (32 bit) 2 $f12 = float to be
printed

None

print_double Print floating-point number (64 bit) 3 $f12 = double to
be printed

None

print_string Print null-terminated character string 4 $a0 = address of
string in memory

None

read_int Read integer number from user 5 None Integer
returned in
$v0

read_float Read floating-point number from
user

6 None Float
returned in
$f0

read_double Read double floating-point number
from user

7 None Double
returned in
$f0

read_string Works the same as Standard C
Library fgets() function.

8 $a0 = memory
address of string
input buffer
$a1 = length of
string buffer (n)

None

sbrk Returns the address to a block of
memory containing n additional
bytes.
(Useful for dynamic memory
allocation)

9 $a0 = amount address in
$v0

exit Stop program from running 10 None None

print_char Print character 11 $a0 = character to
be printed

None

read_char Read character from user 12 None Char
returned in
$v0

exit2 Stops program from running and
returns an integer

17 $a0 = result
(integer number)

None

Notes:

 The print_string service expects the address to start a null-terminated character string. The

directive .asciiz creates a null-terminated character string.

 The read_int, read_float and read_double services read an entire line of input up to and

including the newline character.

 The read_string service has the same semantics as the C Standard Library routine fgets().

 The programmer must first allocate a buffer to receive the string

 The read_string service reads up to n-1 characters into a buffer and terminates the string

with a null character.

 If fewer than n-1 characters are in the current line, the service reads up to and including

the newline and terminates the string with a null character.

 There are a few additional system calls not shown above for file I/O:

 open, read, write, close (with codes 13-16)

Assembler Directives
An assembler directive allows you to request the assembler to do something when converting your
source code to binary code.

Directive Result

.word w1, ..., wn Store n 32-bit values in successive memory words

.half h1, ..., hn Store n 16-bit values in successive memory words

.byte b1, ..., bn Store n 8-bit values in successive memory words

.ascii str Store the ASCII string str in memory.
Strings are in double-quotes, i.e. "Computer Science"

.asciiz str Store the ASCII string str in memory and null-terminate it
Strings are in double-quotes, i.e. "Computer Science"

.space n Leave an empty n-byte region of memory for later use

.align n Align the next datum on a 2^n byte boundary.
For example, .align 2 aligns the next value on a word boundary

Registers
MIPS has 32 general-purpose registers that could, technically, be used in any manner the programmer
desires. However, by convention, registers have been divided into groups and used for different
purposes. Registers have both a number (used by the hardware) and a name (used by the assembly
programmer).
This table omits special-purpose registers that will not be used in ECPE 170.

Register
Number

Register
Name

Description

0 $zero The value 0

2-3 $v0 - $v1 (values) from expression evaluation and function results

4-7 $a0 - $a3 (arguments) First four parameters for subroutine

8-15, 24-25 $t0 - $t9 Temporary variables

16-23 $s0 - $s7 Saved values representing final computed results

31 $ra Return address

This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit
encodings. The syntax given for each instruction refers to the assembly language syntax
supported by the MIPS assembler. Hyphens in the encoding indicate "don't care" bits which are
not considered when an instruction is being decoded.

General purpose registers (GPRs) are indicated with a dollar sign ($). The words SWORD and
UWORD refer to 32-bit signed and 32-bit unsigned data types, respectively.

The manner in which the processor executes an instruction and advances its program counters is
as follows:

1. execute the instruction at PC
2. copy nPC to PC
3. add 4 or the branch offset to nPC

This behavior is indicated in the instruction specifications below. For brevity, the
function advance_pc (int) is used in many of the instruction descriptions. This function is defined
as follows:

void advance_pc (SWORD offset)
{
 PC = nPC;
 nPC += offset;
}

Note: ALL arithmetic immediate values are sign-extended. After that, they are handled as signed
or unsigned 32 bit numbers, depending upon the instruction. The only difference between signed
and unsigned instructions is that signed instructions can generate an overflow exception and
unsigned instructions can not.

The instruction descriptions are given below:

ADD – Add (with overflow)

Description: Adds two registers and stores the result in a register

Operation: $d = $s + $t; advance_pc (4);

Syntax: add $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0000

ADDI -- Add immediate (with overflow)

Description: Adds a register and a sign-extended immediate value and stores the result in a

register

Operation: $t = $s + imm; advance_pc (4);

Syntax: addi $t, $s, imm

Encoding: 0010 00ss ssst tttt iiii iiii iiii iiii

ADDIU -- Add immediate unsigned (no overflow)

Description:
Adds a register and a sign-extended immediate value and stores the result in a
register

Operation: $t = $s + imm; advance_pc (4);

Syntax: addiu $t, $s, imm

Encoding: 0010 01ss ssst tttt iiii iiii iiii iiii

ADDU -- Add unsigned (no overflow)

Description: Adds two registers and stores the result in a register

Operation: $d = $s + $t; advance_pc (4);

Syntax: addu $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0001

AND -- Bitwise and

Description: Bitwise ands two registers and stores the result in a register

Operation: $d = $s & $t; advance_pc (4);

Syntax: and $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0100

ANDI -- Bitwise and immediate

Description: Bitwise ands a register and an immediate value and stores the result in a register

Operation: $t = $s & imm; advance_pc (4);

Syntax: andi $t, $s, imm

Encoding: 0011 00ss ssst tttt iiii iiii iiii iiii

BEQ -- Branch on equal

Description: Branches if the two registers are equal

Operation: if $s == $t advance_pc (offset << 2)); else advance_pc (4);

Syntax: beq $s, $t, offset

Encoding: 0001 00ss ssst tttt iiii iiii iiii iiii

BGEZ -- Branch on greater than or equal to zero

Description: Branches if the register is greater than or equal to zero

Operation: if $s >= 0 advance_pc (offset << 2)); else advance_pc (4);

Syntax: bgez $s, offset

Encoding: 0000 01ss sss0 0001 iiii iiii iiii iiii

BGEZAL -- Branch on greater than or equal to zero and link

Description:
Branches if the register is greater than or equal to zero and saves the return address
in $31

Operation:
if $s >= 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset << 2));
else advance_pc (4);

Syntax: bgezal $s, offset

Encoding: 0000 01ss sss1 0001 iiii iiii iiii iiii

BGTZ -- Branch on greater than zero

Description: Branches if the register is greater than zero

Operation: if $s > 0 advance_pc (offset << 2)); else advance_pc (4);

Syntax: bgtz $s, offset

Encoding: 0001 11ss sss0 0000 iiii iiii iiii iiii

BLEZ -- Branch on less than or equal to zero

Description: Branches if the register is less than or equal to zero

Operation: if $s <= 0 advance_pc (offset << 2)); else advance_pc (4);

Syntax: blez $s, offset

Encoding: 0001 10ss sss0 0000 iiii iiii iiii iiii

BLTZ -- Branch on less than zero

Description: Branches if the register is less than zero

Operation: if $s < 0 advance_pc (offset << 2)); else advance_pc (4);

Syntax: bltz $s, offset

Encoding: 0000 01ss sss0 0000 iiii iiii iiii iiii

BLTZAL -- Branch on less than zero and link

Description: Branches if the register is less than zero and saves the return address in $31

Operation:
if $s < 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset << 2));
else advance_pc (4);

Syntax: bltzal $s, offset

Encoding: 0000 01ss sss1 0000 iiii iiii iiii iiii

BNE -- Branch on not equal

Description: Branches if the two registers are not equal

Operation: if $s != $t advance_pc (offset << 2)); else advance_pc (4);

Syntax: bne $s, $t, offset

Encoding: 0001 01ss ssst tttt iiii iiii iiii iiii

DIV -- Divide

Description: Divides $s by $t and stores the quotient in $LO and the remainder in $HI

Operation: $LO = $s / $t; $HI = $s % $t; advance_pc (4);

Syntax: div $s, $t

Encoding: 0000 00ss ssst tttt 0000 0000 0001 1010

DIVU -- Divide unsigned

Description: Divides $s by $t and stores the quotient in $LO and the remainder in $HI

Operation: $LO = $s / $t; $HI = $s % $t; advance_pc (4);

Syntax: divu $s, $t

Encoding: 0000 00ss ssst tttt 0000 0000 0001 1011

J -- Jump

Description: Jumps to the calculated address

Operation: PC = nPC; nPC = (PC & 0xf0000000) | (target << 2);

Syntax: j target

Encoding: 0000 10ii iiii iiii iiii iiii iiii iiii

JAL -- Jump and link

Description: Jumps to the calculated address and stores the return address in $31

Operation: $31 = PC + 8 (or nPC + 4); PC = nPC; nPC = (PC & 0xf0000000) | (target << 2);

Syntax: jal target

Encoding: 0000 11ii iiii iiii iiii iiii iiii iiii

JR -- Jump register

Description: Jump to the address contained in register $s

Operation: PC = nPC; nPC = $s;

Syntax: jr $s

Encoding: 0000 00ss sss0 0000 0000 0000 0000 1000

LB -- Load byte

Description: A byte is loaded into a register from the specified address.

Operation: $t = MEM[$s + offset]; advance_pc (4);

Syntax: lb $t, offset($s)

Encoding: 1000 00ss ssst tttt iiii iiii iiii iiii

LUI -- Load upper immediate

Description:
The immediate value is shifted left 16 bits and stored in the register. The lower 16
bits are zeroes.

Operation: $t = (imm << 16); advance_pc (4);

Syntax: lui $t, imm

Encoding: 0011 11-- ---t tttt iiii iiii iiii iiii

LW -- Load word

Description: A word is loaded into a register from the specified address.

Operation: $t = MEM[$s + offset]; advance_pc (4);

Syntax: lw $t, offset($s)

Encoding: 1000 11ss ssst tttt iiii iiii iiii iiii

MFHI -- Move from HI

Description: The contents of register HI are moved to the specified register.

Operation: $d = $HI; advance_pc (4);

Syntax: mfhi $d

Encoding: 0000 0000 0000 0000 dddd d000 0001 0000

MFLO -- Move from LO

Description: The contents of register LO are moved to the specified register.

Operation: $d = $LO; advance_pc (4);

Syntax: mflo $d

Encoding: 0000 0000 0000 0000 dddd d000 0001 0010

MULT -- Multiply

Description: Multiplies $s by $t and stores the result in $LO.

Operation: $LO = $s * $t; advance_pc (4);

Syntax: mult $s, $t

Encoding: 0000 00ss ssst tttt 0000 0000 0001 1000

MULTU -- Multiply unsigned

Description: Multiplies $s by $t and stores the result in $LO.

Operation: $LO = $s * $t; advance_pc (4);

Syntax: multu $s, $t

Encoding: 0000 00ss ssst tttt 0000 0000 0001 1001

NOOP -- no operation

Description: Performs no operation.

Operation: advance_pc (4);

Syntax: noop

Encoding: 0000 0000 0000 0000 0000 0000 0000 0000

Note: The encoding for a NOOP represents the instruction SLL $0, $0, 0 which has no side
effects. In fact, nearly every instruction that has $0 as its destination register will have no side
effect and can thus be considered a NOOP instruction.

OR -- Bitwise or

Description: Bitwise logical ors two registers and stores the result in a register

Operation: $d = $s | $t; advance_pc (4);

Syntax: or $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0101

ORI -- Bitwise or immediate

Description: Bitwise ors a register and an immediate value and stores the result in a register

Operation: $t = $s | imm; advance_pc (4);

Syntax: ori $t, $s, imm

Encoding: 0011 01ss ssst tttt iiii iiii iiii iiii

SB -- Store byte

Description: The least significant byte of $t is stored at the specified address.

Operation: MEM[$s + offset] = (0xff & $t); advance_pc (4);

Syntax: sb $t, offset($s)

Encoding: 1010 00ss ssst tttt iiii iiii iiii iiii

SLL -- Shift left logical

Description:
Shifts a register value left by the shift amount listed in the instruction and places the
result in a third register. Zeroes are shifted in.

Operation: $d = $t << h; advance_pc (4);

Syntax: sll $d, $t, h

Encoding: 0000 00ss ssst tttt dddd dhhh hh00 0000

SLLV -- Shift left logical variable

Description:
Shifts a register value left by the value in a second register and places the result in a
third register. Zeroes are shifted in.

Operation: $d = $t << $s; advance_pc (4);

Syntax: sllv $d, $t, $s

Encoding: 0000 00ss ssst tttt dddd d--- --00 0100

SLT -- Set on less than (signed)

Description: If $s is less than $t, $d is set to one. It gets zero otherwise.

Operation: if $s < $t $d = 1; advance_pc (4); else $d = 0; advance_pc (4);

Syntax: slt $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 1010

SLTI -- Set on less than immediate (signed)

Description: If $s is less than immediate, $t is set to one. It gets zero otherwise.

Operation: if $s < imm $t = 1; advance_pc (4); else $t = 0; advance_pc (4);

Syntax: slti $t, $s, imm

Encoding: 0010 10ss ssst tttt iiii iiii iiii iiii

SLTIU -- Set on less than immediate unsigned

Description: If $s is less than the unsigned immediate, $t is set to one. It gets zero otherwise.

Operation: if $s < imm $t = 1; advance_pc (4); else $t = 0; advance_pc (4);

Syntax: sltiu $t, $s, imm

Encoding: 0010 11ss ssst tttt iiii iiii iiii iiii

SLTU -- Set on less than unsigned

Description: If $s is less than $t, $d is set to one. It gets zero otherwise.

Operation: if $s < $t $d = 1; advance_pc (4); else $d = 0; advance_pc (4);

Syntax: sltu $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 1011

SRA -- Shift right arithmetic

Description:
Shifts a register value right by the shift amount (shamt) and places the value in the
destination register. The sign bit is shifted in.

Operation: $d = $t >> h; advance_pc (4);

Syntax: sra $d, $t, h

Encoding: 0000 00-- ---t tttt dddd dhhh hh00 0011

SRL -- Shift right logical

Description:
Shifts a register value right by the shift amount (shamt) and places the value in the
destination register. Zeroes are shifted in.

Operation: $d = $t >> h; advance_pc (4);

Syntax: srl $d, $t, h

Encoding: 0000 00-- ---t tttt dddd dhhh hh00 0010

SRLV -- Shift right logical variable

Description:
Shifts a register value right by the amount specified in $s and places the value in the
destination register. Zeroes are shifted in.

Operation: $d = $t >> $s; advance_pc (4);

Syntax: srlv $d, $t, $s

Encoding: 0000 00ss ssst tttt dddd d000 0000 0110

SUB -- Subtract

Description: Subtracts two registers and stores the result in a register

Operation: $d = $s - $t; advance_pc (4);

Syntax: sub $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0010

SUBU -- Subtract unsigned

Description: Subtracts two registers and stores the result in a register

Operation: $d = $s - $t; advance_pc (4);

Syntax: subu $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d000 0010 0011

SW -- Store word

Description: The contents of $t is stored at the specified address.

Operation: MEM[$s + offset] = $t; advance_pc (4);

Syntax: sw $t, offset($s)

Encoding: 1010 11ss ssst tttt iiii iiii iiii iiii

SYSCALL -- System call

Description: Generates a software interrupt.

Operation: advance_pc (4);

Syntax: syscall

Encoding: 0000 00-- ---- ---- ---- ---- --00 1100

The syscall instruction is described in more detail on the System Calls page.

XOR -- Bitwise exclusive or

Description: Exclusive ors two registers and stores the result in a register

Operation: $d = $s ^ $t; advance_pc (4);

Syntax: xor $d, $s, $t

Encoding: 0000 00ss ssst tttt dddd d--- --10 0110

XORI -- Bitwise exclusive or immediate

Description:
Bitwise exclusive ors a register and an immediate value and stores the result in a
register

Operation: $t = $s ^ imm; advance_pc (4);

Syntax: xori $t, $s, imm

Encoding: 0011 10ss ssst tttt iiii iiii iiii iiii

