Introduction to MARS

1.1 Objectives

After completing this lab, you will:
. Get familiar with the MARS simulator

. Learn how to assemble, run, and debug a MIPS pmogra

1.2 The MARS Simulator

MARS, the MIPS Assembly and Runtime Simulator, msiategrated development environment
(IDE) for programming in MIPS assembly languageallbws editing, assembling, debugging and
simulating the execution of MIPS assembly langyamgpgrams. MARS is written in Java.
There are two main windows in MARS, as shown iruFegl.1.

« TheEdit window: used to create and modify a MIPS program.

+ TheExecute window: used to run and debug a MIPS program.
To switch between thiedit and theExecute windows, use the tabs at the top.

The Execute window contains three main panes:
1. Text Segment: shows the machine code and related addresses.
2. Data Segment: shows memory locations that hold variables ind&a segment.

3. Labels: shows addresses of labeled items, i.e. variasldgump endpoints.

There are two tabbed message areas at the bottbiguoé 1.1:

1. The Mars Messages tab: Used for messages such as assembly or rurgmoes and
informational messages. You can click on assembipremessages to select the
corresponding line of code in the editor.

2. TheRun I/O tab: Used at runtime for displaying console ougnd entering console input as
program execution progresses.

1: Introduction to MARS

File Edit Run Settings Tools Help

Oea&2]e %0027 KOS

(@)

(2)

Run speed at max {no interaction}
c {

Edit | Execute |

Registers | Coprocl | Coproco |

fib.asm Name | Number value |
1 # Compute first twelve Fibo pr [a]|| 3|$2ero | 0 GX!
2 .data || i)$at 1 . |
3 fibs: .word 0 : 12 $v0 [2 0x00000000
4 size: .word 12 $vl 3 0x00000000)
5 .text $a0 [4 0x00000000)
6 la §to, fibs $al 5| 0x00000000
7 la §tS, size $a2 [6 0x00000000)
8 lw $t5, 0($tS) $a3 7 0x00000000]
9 U $t2, 1 =|| fsto [8 000000000
1(1) 3dd-d$g°'°§;fé)$f4 $t1 9 6x00606060)
sw
’ $t2 | 10 0x00000000
12 sw §t2, 4(§t0) - |
13 addi $t1, §ts, -2 e-2 :S I E &i
14 loop: v §$t3, 0($t0) 15 13 - {
15 v $t4, 4(3to) | {
16 add $t2, §t3, $t4 |l :[i¢te [141 £x00060000
17 sw $t2, 8(3t0) $t7 15 0x00000000]
18 addi $t0, $t0, 4 $s0 | 16 6x0B008000
19 addi $t1, $t1, -1 $s1 | 17, 000000000
20 bgtz $t1, loop $s2 18 000
21 la $a0, fibs 1$s3 19 0x00000000!
22 add $al, $zero, $t5 $s4 1 20 0x000EEE00
23 j?l print |$5S 21 [exgelelelelelelele)
24 U %{0. 10 $56 | 2 0x00000060
25 sysca $57 23 3
23 J— $t8 | 24| 0x00006000|
27 #EBEEEEEE routil e <[|$t9 25 |
]2‘3[- I 5| ke [26 0x00060600
$k1 27 0x00000000]
Line: 1 Column: 1 [v] Show Line Numbers $9p [28 Ox10002000
a |$sp 29 ox7fffeffc
(Mars Messages | Run /O | $fp | 30 0xBE000000
e = ¥ =1l j$ra 31 [exgelelelelelelele)
)) —| “lpe [0x00400000)
Go: running fib.asm hi Ox
|70 | 0x0E000000)
Go: execution completed successfully.
Assemble: assembling /home/ahmad/local/tmp/mars/fib.asm >
Assemble: operation completed successfully.
v

Figure1.1: The MARS Integrated Development Environment (IDE)

Figure 1.2 shows the MARS Execute window’s paned,eanphasizes the following features:

1. The Execute window's tab.

2. Assembly code displayed with addresses and machuoe

3. Values stored in the data segment. These arelglisgtitable.

4. Controls for navigating the data memory area. Alawitching to view the stack segment.

5. Switching between decimal and hexadecimal addressesalues in memory and registers.

6. Labels and their corresponding memory addresses.

7. Values stored in registers. These are directlyabb#it

8. Checkboxes used to setup breakpoints for each MiRfSiction. Useful in debugging.

9. Execution speed selection. Useful in debugging.

1: Introduction to MARS

File Edil Fum Setlings Tools Help

| | 2 | TE& TS =] [& [- | e] L Fun speed at max (o mieraction)
MRS PR N EEFIGE R,y =T
Ell | Erecun | : Redisters | Coprac 1 |Cmmﬁ s
o o || 5 Labets 55 [Mumber__ ;

2o
Label fiat
COlFE-EOr A = vl
GEN

pseudo op testasm

B0 -IAjOr s it}

1 Dol 0030
AHS 1 D00 0000d D)
0200000000

addl , ceme... [g
Adc can ; x [w|Data o] Tewt et | 1
' o

Q0000000 0
[N jafalvlv] Infs)

00
L

T i i« o000y
@ | o [[0x10010000 ;stata) |v’u:

Figure 1.2: The MARS Execute Window

At all times, the MIPS register window appears loa ight-hand side of the screen, even when you
are editing and not running a program. While wgtaprogram, this serves as a useful reference for
register names and their use. Move the mouse beeaegister name to see the tool tips.

There are three register tabs:
The Register File: integer registé® through$31, HI, LO, and the Program Counte€.
Coprocessor 0: exceptions, interrupts, and statdesc

Coprocessor 1: floating point registers.

1.3 Assemble, Run, and Debug a MIPS Program

To assemble the file currently in theit tab, selecAssemblefrom theRun menu, or use the
Assemble toolbar icon.

If there are syntax errors in the program, they apbear in thé/lars Messagestab at the bottom of
the MARS screen. Each error message containgatd column where the error occurred.

Once a MIPS program assembles successfully, thsteeg are initialized, and the Text Segment
and the Data Segment are filled, as shown in Figj8e

1: Introduction to MARS

file Edit Run Settings Tools Help

- | e | — = | el e [| [=~ | = | Runspeed at max {no interaction}
P> @2 A~ oja) x[e]e Qe ~
[Edit [Execute | E Coproc1 | Coproc@ |
— - =i Registers |_
Text Segment :
: MName | Mumber Value
Bkpt Address Code Basic Source slezern 0 0x00000000| -
L] 0x00400000| ox24p20004/addiu £2,50,4 16: ligvo, 4 # aystem call code for print string tat 1 nx000000aa0
™ ox00400004| ox3col1001|lui $1,4087 17: la%al, prompt # loed addr of prompt in $al =0 2 x00060000
[L] | nxoodooons| ox3d24p00p/ori £4,251,0 svl 3| o0x000000aa
|:| nx0040000c Ox0nOnoofc/syscall 18: syseall # print prompt £a0 1 Hx00000000
Jial ox0oaon0io| ox2apzogos|addin £2,50,5 18: 1i sv0; 5 # system call code for read in ;$a1 5 px00000000
; 000400014 Dx000nO0Oe|3v3call 20: syscall # read numl into &vO0 faz 73 x000000a0
[] nx0040001e| oxolozdnznladd 28,858,852 21: add &£t0, %c0, &0 # add nmuml to Sum ta3 7 nx00000000
™ Ox0040001c Ox2an20004|addiu $2,50,4 23: ligv0, 4 # system call code for print string £t0 8 Hx0000000a
|:| 0x00400020| Ox3c0ll001/lui 51,4097 24: la%al, prompt # load addr of prompt in $al ;$t1 3 px00000aan
[] | oxooaono24| ox3424nn00jeri §4,51,0 H ¥ 10] 0x00000000
[] | oxocacoozs| oxnoogoodciSyscall 25: syscall # print prompt £t3 11| 0x00o0000on
|:| 0x0040002c| 0x24020005/addiu £2,%0,5 26 1i %v0, &5 # aystem call code for read in £zl 12 H=000B0a00
HEE s e e e e e e | t5 13 0x00000000]
5Th 14 0x00000000
Data Segmen £L7 15 0x00000000
Address Value (+0) Value (+4) Value (+8) Value (+c) |:fizs0 16 0x00000000
ox100ioonn Oxged5200a O0x20726574 0x756e2061 0x726 £al 17 0x00000000
0x10010020 0x6e207275 0x65626d75 0x69207372 0x000| |z57 18] Gx00000000
0x10010040 0x00000000 0x00000000 0x00000000 0000/ ifzo5 19] 0x00000000
0x10010060 0x00000000 0x00000000 0x00000000 0x000) = FET! 20 000000000
0x10010080 0x00000000 0x00000000 0x00000000 0000/ :fs35 71l 0x00000000
Nw1Nninnsn fxinnnnnmnn fxfnnnnnmnn fxfnnnnnmnn MNufnn 536 22 ox000000on
Alea7 23| 0x00000000
| Mars Messages | Run L0 _ zt8 24] 0x00000000
Bssemble: assembling C:\Usera\Emmi\Documents\My Programs‘\MIPS\first.asm Hera 25 nx000000a0n
k0 26| 0x00000000
Clear mssemble: operation completed successfully. skl 27 0x00000000
| gap 28] 0x10008000
Asop 25| Ox7Iffefic|e

Figure 1.3: MARS screen after running the Assersblamand

After running the Assemble command, you can nowcetesthe program. The Run menu and the
toolbar contain the following execution options:

Menu Item Icon Action
Run > Assemble % Assemble the program.
Run> Go @ Run the program to completion, or until the nexdabpoint.
Run > Reset @ Reset the program and simulator to initial valdekws

restarting program execution.

. ! Single-step execution: execute one instruction ama. Allows
Run > Sep @1 debugging the program by inspecting register anchang after
‘ ‘ executing each single instruction.

Run > Backstep l@ Single-step backwards: “unexecute” the last exetunstruction.

Run speed 30 inst/sec The Run Speed Slider allows running the prografmlbaspeed or
¢ [_F= | slowing it down so you can watch the execution.e&f§ norma
execution only, not single-step execution.

1: Introduction to MARS

You can set a breakpoint at any instruction by kimgcthe checkbox in front of the instruction in
the text segment pane.

During execution, the instruction being executetighlighted in yellow, and the register that was
last modified is highlighted in green. Also, theigahle that was last updated in the data segment is
highlighted in blue. It's usually only possible see the highlighting when you are stepping or
running at less than full speed.

For more details about the MARS simulator, refethe MARS documentation at the following
link: http://courses.missouristate.edu/KenVollmar/MARS/

1.4 In-Lab Tasks

1. Test a simple MIPS program. Consider the followpnggram shown below:

(Edit | Execute |

|'Heﬂaasm | RowMajor.asm

.data
hello: .asciiz "Hello; world!\n"

.text

B oAk dk W L

.globl main
main:

la 5
1i S5v0, 4
syscall
Tin: S5v0,10
syscall

W A W
1

a) Type the program shown in the Figure above.
b) Find out how to show and hide line numbers.
c) Assemble and run the program.
d) What output does the program produce? and wdwas it appear?
2. Explore the MARS simulator:
a) Download and assemble thitbonacci.asm program from the MARS website.
b) Identify the locations and values of the iniiatl data.
c) Toggle the display format between decimal andabecimal.
d) Run the program at a speed of 3 instructionsgeond or less.

e) Single-step through the program and watch h@ster and memory values change.

1: Introduction to MARS

f) Observe the output of the program in B 1/O display window.

g) Set a breakpoint at the first instruction thaintgs results. What is the address of this
instruction?

h) Run the program at full speed and watch howopsat the breakpoint.
1) Change the line:

space: .asciiz # space to insert between numbers

to:
space: .asciiz "\n" # space to insert between numbers

Run the program again. What do you notice?

1: Introduction to MARS

Introduction to MIPS
Assembly Programming

2.1 Objectives

After completing this lab, you will:
* Learn about the MIPS assembly language
* Write simple MIPS programs

* Use system calls for simple input and output

2.2 MIPS Assembly Language Program Template

A MIPS assembly language program template is shiovangure 2.1.

Title:

Author:

Date:

Description:

Input:

Output:

Hi#HHEHEHEHEHHHEHE Data segment #H##HHHHHGHGHGHFHIEHTHHE
.data

HitHHH Y Code segment #H#HHHHHHHHHHHHHHHHHHE

.text

.globl main

main: # main function entry

1i $vo, 10

syscall # system call to exit program

Figure 2.1: MIPS Assembly Language Program Template

2: Introduction to MIPS Assembly Programming

There are three types of statements that can lkinsessembly language, where each statement
appears on a separate line:

1. Assembler directives: These provide information to the assembler whid@slating a program.
Directives are used to define segments and allosptxe for variables in memory. An
assembler directive always starts with a dot. AdgbMIPS assembly language program uses
the following directives:

.data Defines the data segment of the program, contaithm@grogram’s variables.
.text Defines the code segment of the program, contaithie@gnstructions.
.globl Defines a symbol as global that can be referenwed bther files.

2. Executable Instructions: These generate machine code for the processexeioute at runtime.
Instructions tell the processor what to do.

3. Pseudo-Instructions and Macros. Translated by the assembler into real instrustiofhese
simplify the programmer task.

In addition there are comments. Comments are veppitant for programmers, but ignored by the
assembler. A comment begins with thesymbol and terminates at the end of the line. Cenim
can appear at the beginning of a line, or afteinatruction. They explain the program purpose,
when it was written, revised, and by whom. Theylaixpthe data and registers used in the program,
input, output, the instruction sequence, and allgors used.

2.3 The Edit-Assemble-Link-Run Cycle

Before you can run a MIPS program, you must contleet assembly language code into an
executable form. This involves two steps:

1. Assemble: translate the MIPS assembly language code itioary object file. This is done by
the assembler. If there is more than one assembly languagetfieny each should be assembled
separately.

2. Link: combine all the object files together (if thesemore than one) as well as with libraries.
This is done by thénker. The linker checks if there are any calls to fiord in libraries. The
result is arexecutablefile.

Figure 2.2 summarizes tHlit-Assemble-Link-Run cycle of the program development process. If a
program is written in assembly language, #issembler detects anywyntax errors and will report
them to the programmer. Therefore, you shouldyawit program and assemble it again if there any
syntax errors.

It is typical that the first executable versionymiur program to have somentime errors. These
errors are not detected by the assembler but osten you are running your program. For
example, your program might compute erroneous t®esdlherefore, you shouldebug your
program to identify the errors at runtime. You can your program with various inputs and under
different conditions to verify that it is workingpectly. You can use the slow execution mode in

2: Introduction to MIPS Assembly Programming

MARS, the single-step feature, or breakpoints tenidy the sources of the errors. Single-step
execution is a standard and essential featuredabaigger. It allows inspecting the effect of each
instruction on CPU registers and main memory.

(Start)

y

Edit & Save <

Y

Y

Assemble & Link Yes

|

No

Run

Runtime Error?

Figure 2.2: The Edit-Assemble-Link-Run Cycle

2.4 MIPS Instructions, Registers, Format and Syntax

All MIPS instructions are 32-bit wide and occupybytes in memory. The address of a MIPS
instruction in memory is always a multiple of 4 &yt There are three basic MIPS instruction
formats: Register (R-Type) format, Immediate (I-&ygormat, and Jump (or J-Type) format as
shown in Figure 2.3.

All instructions have a 6-bit opcode that definee format and sometimes the operation of an
instruction. The R-type format has two source tegifdields: Rs and Rt, and one destination
register fieldRd. All register fields are 5-bit long and addressgéeral-purpose registers. Tée
field is used as thghift amount for shift instructions and thfunct field defines the ALU function
for R-type instructions.

The I-type format has two register fields onRs andRt, whereRs is always a source register,
while Rt can be a destination register or a second sowpending on the opcode. The 16-bit

2: Introduction to MIPS Assembly Programming

immediate field is used as a constant in arithmiestructions, or as an offset in load, store, and
branch instructions.

The J-type format has no register field. The 26hinediate field is used as an address in jump
and function call instructions.

R-Type Format

op° Rs’ Rt Rd’ sa’ funct®

I-Type Format

op° Rs’ Rt Immediate™®

J-Type Format

op° Immediate?®

Figure 2.3: MIPS Instruction Formats

The MIPS architecture defines 32 general-purpogisters, numbered froi$® to $31. The$ sign

is used to refer to a register. To simplify softev@levelopment, the assembler can also refer to
registers by name as shown in Table 2.1. The adeentgbnverts a register name to its
corresponding number.

Register Name Number Register Usage by Software

$zero $0 Always zero, forced by hardware

$at $1 Assembler Temporary register, reserved for assembk
$vo - $vi $2 - $3 Results of a function

$a0 - $a3 $4 - $7 Arguments of a function

$to - $t7 $8 - $15 | Registers for storing temporary values

$s0 - $s7 $16 - $23 | Registers that should be saved across functioa call
$t8 - $t9 $24 - $25 | Registers for storing more temporary values

$ko - $ki1 $26 - $27 | Registers reserved for the OS kernel use

$gp $28 Global Pointer register that points to global data

$sp $29 Stack Pointer register that points to top of stack

$fp $30 Frame Pointer register that points to stack frame

$ra $31 Return Address register used to return from a fanatall

Table 2.1: General-Purpose Registers and their Usage

2: Introduction to MIPS Assembly Programming

The general assembly language syntax of a MIP8uictgdn is:
[1label:] mnemonic [operands] [# comment]

The 1abel is optional. It marks the memory address of theruction. It must have a colon. In
addition, alabel can be used for referring to the address of akbgiin memory.

Themnemonic specifies the operatioadd, sub, etc.

The operands specify the data required by the instruction. &#int instructions have different
number of operands. Operands can be registers, ijeradables, or constants. Most arithmetic
and logical instructions have three operands.

An example of a MIPS instruction is shown belowisTé&xample uses theddiu to increment the
$t0 reqister:

L1: addiu $te, $te, 1 # increment $to

To be able to write programs, a basic set of iettyns is needed. Only few instructions are desdrib
in the following tables. Table 2.2 lists the baarthmetic instructions and Table 2.3 lists basic
control instructions.

Instruction Meaning
add Rd, Rs, Rt Rd = Rs + Rt. Overflow causes an exception.
sub Rd, Rs, Rt Rd = Rs - Rt. Overflow causes an exception.
addi Rt, Rs, Imm |Rt = Rs + Imm (16-bit constant). Overflow causes an exceptiopn.
1i Rt, Imm Rt = Imm (pseudo-instruction).
la Rt, var Rt = address of var (pseudo-instruction).
move Rd, Rs Rd = Rs (pseudo-instruction).

Table 2.2: Basic Arithmetic Instructions.

Instruction Meaning

beq Rs, Rt, label |if (Rs == Rt) branch talabel.

bne Rs, Rt, label |if (Rs != Rt) branch talabel.

j 1label Jump tolabel.

Table 2.3: Basic Control Instructions.

2: Introduction to MIPS Assembly Programming

2.5 System Calls

Programs do input and output using system callsa@eal-system, the operating system provides
system call services to application programs. THE3Marchitecture provides a specsaiscall
instruction that generates a system call exceptich is handled by the operating system.

System calls are operating-system specific. Eadratipg system provides its own set of system
calls. Because MARS is a simulator, there is noaipg system involved. The MARS simulator
handles thesyscall exception and provides system services to prograatde 2.1 shows a small
set of services provided by MARS for doing basiz. I/

Before using thayscall instruction, you should load the service numbgr iegistei$ve, and load
the arguments, if any, into regist$@0, $al, etc. After issuing theyscall instruction, you should
retrieve return values, if any, from regisga®.

Service Code in SvO | Arguments Result
Print Integer 1 $a0 = integer to print
Print String 4 $a0 = address of null-terminated string
Read Integer 5 $vo = integer read
Read String g $a0 = addr'ess of input buffer
$al = maximum characters to read
Exit program 10 Terminates program
Print char 11 $a0 = character to print
Read char 12 $vo = character read

Table 2.4: Basic System Call Services Provided by MARS.

Now, we are ready to write a MIPS assembly langyeiggram. A simple program that asks the user
to enter an integer value and then displays theeval this integer is shown in Figure 2.4.

Five system calls are used. The first system caltpstringstrl. The second system call reads an
input integer. The third system call prists2. The fourth system call prints the integer vaheg tvas
input by the user. The fifth system call exits pinegram.

2: Introduction to MIPS Assembly Programming

| Edit Execute
[syscall.asm \
1 .data .
2 Sstril: .asciiz
3 str2: .asciiz
4
S .globl main
6 .text
7 main:
8 1i $v0, 4
9 la $a0, str1 #
10 syscall
11 11 $v0, S
12 syscall
13 move $s0, $vO
14 11 $v0, 4
15 1a $a0, str2
16 syscall # print str? strina
17 11 $v0, 1 % corvice R ek e B
18 move $a0, $sO = . + i
19 syscall
20 11 $v0, 10
21 syscall |
< | Dl

Figure 2.4: MIPS Program that uses System Calls

2.6 In-Lab Tasks

1. Modify the program shown in Figure 2.4. Ask theruseenter an integer value, and then print
the result of doubling that number. Use 8 instruction.

2. Modify again the program shown in Figure 2.4. ABk user whether he wants to repeat the
program:"\nRepeat [y/n]? ". Use service code 12 to read a character and rdmechp
instruction to repeat the main function if the uisgut is charactety*.

3. Write a MIPS program that asks the user to inpsitniaime and then printélello ", followed
by the name entered by the user.

4. Write a MIPS program that executes the statenseniia + b) — (c + 101), where, b, andc are
user provided integer inputs, ast computed and printed as an output. Answerdhewing:

a. Suppose the user enters 5,b = 10, ancc = -30, what is the expected valuesaf
b. Which instruction in your program computed the eaddis and which register is used?
c. What is the address of this instruction in memory?

d. Put a breakpoint at this instruction and write\thkie of the register used for computsig
decimal and hexadecimal.

5. Write a MIPS program that inputs two integer valuBse program should outpegual if the
two integers are equal. Otherwise, it should outmtt equal. Use the branch instruction to
check for equality.

2: Introduction to MIPS Assembly Programming

