

1: Introduction to MARS Page 1

1 Introduction to MARS

1.1 Objectives

After completing this lab, you will:

• Get familiar with the MARS simulator

• Learn how to assemble, run, and debug a MIPS program

1.2 The MARS Simulator

MARS, the MIPS Assembly and Runtime Simulator, is an integrated development environment
(IDE) for programming in MIPS assembly language. It allows editing, assembling, debugging and
simulating the execution of MIPS assembly language programs. MARS is written in Java.

There are two main windows in MARS, as shown in Figure 1.1.

• The Edit window: used to create and modify a MIPS program.

• The Execute window: used to run and debug a MIPS program.

To switch between the Edit and the Execute windows, use the tabs at the top.

The Execute window contains three main panes:

1. Text Segment: shows the machine code and related addresses.

2. Data Segment: shows memory locations that hold variables in the data segment.

3. Labels: shows addresses of labeled items, i.e. variables and jump endpoints.

There are two tabbed message areas at the bottom of Figure 1.1:

1. The Mars Messages tab: Used for messages such as assembly or runtime errors and
informational messages. You can click on assembly error messages to select the
corresponding line of code in the editor.

2. The Run I/O tab: Used at runtime for displaying console output and entering console input as
program execution progresses.

1: Introduction to MARS Page 2

Figure 1.1: The MARS Integrated Development Environment (IDE)

Figure 1.2 shows the MARS Execute window’s panes, and emphasizes the following features:

1. The Execute window’s tab.

2. Assembly code displayed with addresses and machine code.

3. Values stored in the data segment. These are directly editable.

4. Controls for navigating the data memory area. Allows switching to view the stack segment.

5. Switching between decimal and hexadecimal addresses and values in memory and registers.

6. Labels and their corresponding memory addresses.

7. Values stored in registers. These are directly editable.

8. Checkboxes used to setup breakpoints for each MIPS instruction. Useful in debugging.

9. Execution speed selection. Useful in debugging.

1: Introduction to MARS Page 3

Figure 1.2: The MARS Execute Window

At all times, the MIPS register window appears on the right-hand side of the screen, even when you
are editing and not running a program. While writing a program, this serves as a useful reference for
register names and their use. Move the mouse over the register name to see the tool tips.

There are three register tabs:

The Register File: integer registers $0 through $31, HI, LO, and the Program Counter PC.

Coprocessor 0: exceptions, interrupts, and status codes.

Coprocessor 1: floating point registers.

1.3 Assemble, Run, and Debug a MIPS Program

To assemble the file currently in the Edit tab, select Assemble from the Run menu, or use the
Assemble toolbar icon.

If there are syntax errors in the program, they will appear in the Mars Messages tab at the bottom of
the MARS screen. Each error message contains the line and column where the error occurred.

Once a MIPS program assembles successfully, the registers are initialized, and the Text Segment
and the Data Segment are filled, as shown in Figure 1.3.

1: Introduction to MARS Page 4

Figure 1.3: MARS screen after running the Assemble command

After running the Assemble command, you can now execute the program. The Run menu and the
toolbar contain the following execution options:

Menu Item Icon Action

Run > Assemble

Assemble the program.

Run > Go

Run the program to completion, or until the next breakpoint.

Run > Reset

Reset the program and simulator to initial values. Allows
restarting program execution.

Run > Step

Single-step execution: execute one instruction at a time. Allows
debugging the program by inspecting register and memory after
executing each single instruction.

Run > Backstep

Single-step backwards: “unexecute” the last executed instruction.

The Run Speed Slider allows running the program at full speed or
slowing it down so you can watch the execution. Affects normal
execution only, not single-step execution.

1: Introduction to MARS Page 5

You can set a breakpoint at any instruction by checking the checkbox in front of the instruction in
the text segment pane.

During execution, the instruction being executed is highlighted in yellow, and the register that was
last modified is highlighted in green. Also, the variable that was last updated in the data segment is
highlighted in blue. It’s usually only possible to see the highlighting when you are stepping or
running at less than full speed.

For more details about the MARS simulator, refer to the MARS documentation at the following
link: http://courses.missouristate.edu/KenVollmar/MARS/

1.4 In-Lab Tasks

1. Test a simple MIPS program. Consider the following program shown below:

a) Type the program shown in the Figure above.

b) Find out how to show and hide line numbers.

c) Assemble and run the program.

d) What output does the program produce? and where does it appear?

2. Explore the MARS simulator:

a) Download and assemble the Fibonacci.asm program from the MARS website.

b) Identify the locations and values of the initialized data.

c) Toggle the display format between decimal and hexadecimal.

d) Run the program at a speed of 3 instructions per second or less.

e) Single-step through the program and watch how register and memory values change.

1: Introduction to MARS Page 6

f) Observe the output of the program in the Run I/O display window.

g) Set a breakpoint at the first instruction that prints results. What is the address of this
instruction?

h) Run the program at full speed and watch how it stops at the breakpoint.

i) Change the line:

 space: .asciiz " " # space to insert between numbers

 to:

 space: .asciiz "\n" # space to insert between numbers

 Run the program again. What do you notice?

2: Introduction to MIPS Assembly Programming Page 1

2
Introduction to MIPS

Assembly Programming

2.1 Objectives

After completing this lab, you will:

• Learn about the MIPS assembly language

• Write simple MIPS programs

• Use system calls for simple input and output

2.2 MIPS Assembly Language Program Template

A MIPS assembly language program template is shown in Figure 2.1.

Figure 2.1: MIPS Assembly Language Program Template

Title:

Author:

Date:

Description:

Input:

Output:

################### Data segment #####################

.data

 . . .

################### Code segment #####################

.text

.globl main

main: # main function entry

 . . .

li $v0, 10

syscall # system call to exit program

2: Introduction to MIPS Assembly Programming Page 2

There are three types of statements that can be used in assembly language, where each statement
appears on a separate line:

1. Assembler directives: These provide information to the assembler while translating a program.
Directives are used to define segments and allocate space for variables in memory. An
assembler directive always starts with a dot. A typical MIPS assembly language program uses
the following directives:

.data Defines the data segment of the program, containing the program’s variables.

.text Defines the code segment of the program, containing the instructions.

.globl Defines a symbol as global that can be referenced from other files.

2. Executable Instructions: These generate machine code for the processor to execute at runtime.
Instructions tell the processor what to do.

3. Pseudo-Instructions and Macros: Translated by the assembler into real instructions. These
simplify the programmer task.

In addition there are comments. Comments are very important for programmers, but ignored by the
assembler. A comment begins with the # symbol and terminates at the end of the line. Comments
can appear at the beginning of a line, or after an instruction. They explain the program purpose,
when it was written, revised, and by whom. They explain the data and registers used in the program,
input, output, the instruction sequence, and algorithms used.

2.3 The Edit-Assemble-Link-Run Cycle

Before you can run a MIPS program, you must convert the assembly language code into an
executable form. This involves two steps:

1. Assemble: translate the MIPS assembly language code into a binary object file. This is done by
the assembler. If there is more than one assembly language file, then each should be assembled
separately.

2. Link: combine all the object files together (if there is more than one) as well as with libraries.
This is done by the linker. The linker checks if there are any calls to functions in libraries. The
result is an executable file.

Figure 2.2 summarizes the Edit-Assemble-Link-Run cycle of the program development process. If a
program is written in assembly language, the assembler detects any syntax errors and will report
them to the programmer. Therefore, you should edit your program and assemble it again if there any
syntax errors.

It is typical that the first executable version of your program to have some runtime errors. These
errors are not detected by the assembler but occur when you are running your program. For
example, your program might compute erroneous results. Therefore, you should debug your
program to identify the errors at runtime. You can run your program with various inputs and under
different conditions to verify that it is working correctly. You can use the slow execution mode in

2: Introduction to MIPS Assembly Programming Page 3

MARS, the single-step feature, or breakpoints to identify the sources of the errors. Single-step
execution is a standard and essential feature in a debugger. It allows inspecting the effect of each
instruction on CPU registers and main memory.

Figure 2.2: The Edit-Assemble-Link-Run Cycle

2.4 MIPS Instructions, Registers, Format and Syntax

All MIPS instructions are 32-bit wide and occupy 4 bytes in memory. The address of a MIPS
instruction in memory is always a multiple of 4 bytes. There are three basic MIPS instruction
formats: Register (R-Type) format, Immediate (I-Type) format, and Jump (or J-Type) format as
shown in Figure 2.3.

All instructions have a 6-bit opcode that defines the format and sometimes the operation of an
instruction. The R-type format has two source register fields: Rs and Rt, and one destination
register field Rd. All register fields are 5-bit long and address 32 general-purpose registers. The sa
field is used as the shift amount for shift instructions and the funct field defines the ALU function
for R-type instructions.

The I-type format has two register fields only: Rs and Rt, where Rs is always a source register,
while Rt can be a destination register or a second source depending on the opcode. The 16-bit

2: Introduction to MIPS Assembly Programming Page 4

immediate field is used as a constant in arithmetic instructions, or as an offset in load, store, and
branch instructions.

The J-type format has no register field. The 26-bit Immediate field is used as an address in jump
and function call instructions.

R-Type Format

Op
6
 Rs

5
 Rt

5
 Rd

5
 sa

5
 funct

6

I-Type Format

Op
6
 Rs

5
 Rt

5
 Immediate

16

J-Type Format

Op
6
 Immediate

26

Figure 2.3: MIPS Instruction Formats

The MIPS architecture defines 32 general-purpose registers, numbered from $0 to $31. The $ sign
is used to refer to a register. To simplify software development, the assembler can also refer to
registers by name as shown in Table 2.1. The assembler converts a register name to its
corresponding number.

Register Name Number Register Usage by Software

$zero $0 Always zero, forced by hardware

$at $1 Assembler Temporary register, reserved for assembler use

$v0 - $v1 $2 - $3 Results of a function

$a0 - $a3 $4 - $7 Arguments of a function

$t0 - $t7 $8 - $15 Registers for storing temporary values

$s0 - $s7 $16 - $23 Registers that should be saved across function calls

$t8 - $t9 $24 - $25 Registers for storing more temporary values

$k0 - $k1 $26 - $27 Registers reserved for the OS kernel use

$gp $28 Global Pointer register that points to global data

$sp $29 Stack Pointer register that points to top of stack

$fp $30 Frame Pointer register that points to stack frame

$ra $31 Return Address register used to return from a function call

Table 2.1: General-Purpose Registers and their Usage

2: Introduction to MIPS Assembly Programming Page 5

The general assembly language syntax of a MIPS instruction is:

[label:] mnemonic [operands] [# comment]

The label is optional. It marks the memory address of the instruction. It must have a colon. In
addition, a label can be used for referring to the address of a variable in memory.

The mnemonic specifies the operation: add, sub, etc.

The operands specify the data required by the instruction. Different instructions have different
number of operands. Operands can be registers, memory variables, or constants. Most arithmetic
and logical instructions have three operands.

An example of a MIPS instruction is shown below. This example uses the addiu to increment the
$t0 register:

L1: addiu $t0, $t0, 1 # increment $t0

To be able to write programs, a basic set of instructions is needed. Only few instructions are described
in the following tables. Table 2.2 lists the basic arithmetic instructions and Table 2.3 lists basic
control instructions.

Instruction Meaning

add Rd, Rs, Rt Rd = Rs + Rt. Overflow causes an exception.

sub Rd, Rs, Rt Rd = Rs – Rt. Overflow causes an exception.

addi Rt, Rs, Imm Rt = Rs + Imm (16-bit constant). Overflow causes an exception.

li Rt, Imm Rt = Imm (pseudo-instruction).

la Rt, var Rt = address of var (pseudo-instruction).

move Rd, Rs Rd = Rs (pseudo-instruction).

Table 2.2: Basic Arithmetic Instructions.

Instruction Meaning

beq Rs, Rt, label if (Rs == Rt) branch to label.

bne Rs, Rt, label if (Rs != Rt) branch to label.

j label Jump to label.

Table 2.3: Basic Control Instructions.

2: Introduction to MIPS Assembly Programming Page 6

2.5 System Calls

Programs do input and output using system calls. On a real-system, the operating system provides

system call services to application programs. The MIPS architecture provides a special syscall

instruction that generates a system call exception, which is handled by the operating system.

System calls are operating-system specific. Each operating system provides its own set of system
calls. Because MARS is a simulator, there is no operating system involved. The MARS simulator

handles the syscall exception and provides system services to programs. Table 2.1 shows a small

set of services provided by MARS for doing basic I/O.

Before using the syscall instruction, you should load the service number into register $v0, and load

the arguments, if any, into registers $a0, $a1, etc. After issuing the syscall instruction, you should

retrieve return values, if any, from register $v0.

Service Code in $v0 Arguments Result

Print Integer 1 $a0 = integer to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 $v0 = integer read

Read String 8
$a0 = address of input buffer

$a1 = maximum characters to read

Exit program 10 Terminates program

Print char 11 $a0 = character to print

Read char 12 $v0 = character read

Table 2.4: Basic System Call Services Provided by MARS.

Now, we are ready to write a MIPS assembly language program. A simple program that asks the user
to enter an integer value and then displays the value of this integer is shown in Figure 2.4.

Five system calls are used. The first system call prints string str1. The second system call reads an
input integer. The third system call prints str2. The fourth system call prints the integer value that was
input by the user. The fifth system call exits the program.

2: Introduction to MIPS Assembly Programming Page 7

Figure 2.4: MIPS Program that uses System Calls

2.6 In-Lab Tasks

1. Modify the program shown in Figure 2.4. Ask the user to enter an integer value, and then print

the result of doubling that number. Use the add instruction.

2. Modify again the program shown in Figure 2.4. Ask the user whether he wants to repeat the

program: "\nRepeat [y/n]? ". Use service code 12 to read a character and the branch

instruction to repeat the main function if the user input is character 'y'.

3. Write a MIPS program that asks the user to input his name and then prints "Hello ", followed
by the name entered by the user.

4. Write a MIPS program that executes the statement: s = (a + b) – (c + 101), where a, b, and c are
user provided integer inputs, and s is computed and printed as an output. Answer the following:

a. Suppose the user enters a = 5, b = 10, and c = -30, what is the expected value of s?

b. Which instruction in your program computed the value of s and which register is used?

c. What is the address of this instruction in memory?

d. Put a breakpoint at this instruction and write the value of the register used for computing s in
decimal and hexadecimal.

5. Write a MIPS program that inputs two integer values. The program should output equal if the

two integers are equal. Otherwise, it should output not equal. Use the branch instruction to
check for equality.

