
NETWORKING LABORATORY

Course Instructor: Ms. Deepika Roselind J



Objectives

• To learn socket programming.

• To learn and use network commands.

• To gain knowledge about the working of routing algorithms.

• To use simulation tools to analyze the performance of protocols in

different layers in computer networks



Introduction

• Computer Network
• hosts, routers,
• communication channels

• Hosts run applications
• Routers forward information
• Packets: sequence of bytes

• contain control information
• e.g. destination host

• Protocol is an agreement
• meaning of packets
• structure and size of packets
• e.g. Hypertext Transfer Protocol (HTTP)



Protocol Families - TCP/IP

• Several protocols for different problems
• Protocol Suites or Protocol Families: TCP/IP

• TCP/IP provides end-to-end connectivity specifying how data should
be
• formatted,
• addressed,
• transmitted,
• routed, and
• received at the destination

• It can be used in the internet and in stand-alone private networks

• It is organized into layers



TCP/IP
Network Topology

Data Flow



Internet Protocol (IP)

• The Internet Protocol (IP) is the principal
communications protocol in the Internet
protocol suite
• Relay datagrams across network boundaries

• Datagrams are typically structured in header and
payload sections

• Its routing function enables internetworking,
and essentially establishes the Internet.

• IP has the task of delivering packets from the
source host to the destination host
• based on the IP addresses in the packet headers



Addresses - IPv4 
• The 32 bits of an IPv4 address are broken into 4 octets, or 8 bit fields (0-255 

value in decimal notation).
• For networks of different size,

• the first one (for large networks) to three (for small networks) octets can be use d to 
identify the network, while

• the rest of the octets can be used to identify the node on the network.



IP address classes

Class Address range Supports

Class A 1.0.0.1 to 126.255.255.254 Supports 16 million hosts on each of 127 networks.

Class B 128.1.0.1 to 191.255.255.254 Supports 65,000 hosts on each of 16,000 networks.

Class C 192.0.1.1 to 223.255.254.254 Supports 254 hosts on each of 2 million networks.

Class D 224.0.0.0 to 239.255.255.255 Reserved for multicast groups.

Class E 240.0.0.0 to 254.255.255.254 Reserved for future use, or research and development purposes.



Local Area Network Addresses - IPv4 



TCP vs UDP

TCP UDP

Reliable, guaranteed Unreliable. Instead, prompt delivery of packets

Connection-oriented Connectionless

Used in applications that require safety guarantee. 
(eg. file applications.)

Used in media applications. 
(eg. video or voice transmissions.)

Flow control, sequencing of packets, error-control.
No flow or sequence control, user must handle these 
manually.

Uses byte stream as unit of transfer. (stream sockets) Uses datagrams as unit of transfer. (datagram sockets)

Allows two-way data exchange, once the connection 
is established. (full-duplex)

Allows data to be transferred in one direction at once. 
(half-duplex)

e.g. Telnet uses stream sockets. e.g. TFTP (trivial file transfer protocol)



Introduction to Socket Programming

Client

• Initiates a request to the server
when interested

• E.g., web browser

• Needs to know the server’s address

• Active socket

Server

• Serve services to many clients

• E.g., www.google.com

• Not initiate contact with the clients

• Needs a fixed address

• Passive socket



What is a socket? 

• Socket: An interface between an application process and transport
layer
• The application process can send/receive messages to/from another

application process (local or remote)via a socket

• In Unix jargon, a socket is a file descriptor – an integer associated with
an open file



Socket Description



UNIX Socket API 
• Socket interface

• A collection of system calls to write a networking program at user-level.

• In UNIX, everything is like a file
• All input is like reading a file
• All output is like writing a file
• File is represented by an integer file descriptor
• Data written into socket on one host can be read out of socket on other host

• System calls for sockets
• Client: create, connect, write, read, close
• Server: create, bind, listen, accept, read, write, close



Sockets versus File I/O 

File I/O Network I/O

Open a file Open a socket

Name the socket

Associate with another socket

Read and Write Send & Receive between sockets

Close the file Close the socket



Byte Ordering 

• Two types of “Byte ordering”
• Network Byte Order: High-order byte of the number is stored in memory at

the lowest address
• Host Byte Order: Low-order byte of the number is stored in memory at the

lowest address
• Network stack (TCP/IP) expects Network Byte Order

• Conversions
• htons() - Host to Network Short
• htonl() - Host to Network Long
• ntohs() - Network to Host Short
• ntohl() - Network to Host Long

convert port numbers (16 bits)

convert port numbers (32 bits)



Outline of a client-server network interaction



Ports
• Sockets are uniquely identified by Internet

address, end-to-end protocol, and port number.

• When a socket is first created it is vital to match
it with a valid IP address and a port number.

• Ports are software objects to multiplex data
between different applications.

• When a host receives a packet, it travels up the
protocol stack and finally reaches the application
layer.

• Consider a user running an ftp client, a telnet
client, and a web browser concurrently. To which
application should the packet be delivered?

• Well part of the packet contains a value holding
a port number, and it is this number which
determines to which application the packet
should be delivered.

• So when a client first tries to contact a server,
which port number should the client specify? For
many common services, standard port numbers
are defined.

• Ports 0 – 1023  reserved and servers or clients that you create will not be able to bind to these
ports unless you have root privilege.

• Ports 1024 – 65535 available for use by your programs, but beware other network applications
maybe running and using these port numbers.



Sockets - Procedures 

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Express willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send data over the connection

Receive Receive data over the connection

Close Release the connection



Client - Server Communication - Unix



Socket creation in C: socket()

• sockid: socket descriptor, an integer (like a file-handle)

• family: integer, communication domain, e.g.,
• PF_INET, IPv4 protocols, Internet addresses (typically used)
• PF_UNIX, Local communication, File addresses

• type: communication type
• SOCK_STREAM - reliable, 2-way, connection-based service
• SOCK_DGRAM - unreliable, connectionless, messages of maximum length

• protocol: specifies protocol
• IPPROTO_TCP IPPROTO_UDP
• usually set to 0 (i.e., use default protocol)
• upon failure returns -1

int sockid = socket(family, type, protocol);



Specifying Addresses 
• Socket API defines a generic data type for addresses:

struct sockaddr { 

unsigned short sa_family; /* Address family (e.g. AF_INET) */ 

char sa_data[14]; /* Family-specific address information */ 

}

• Particular form of the sockaddr used for TCP/IP addresses:

struct in_addr {

unsigned long s_addr; /* Internet address (32 bits) */

}

struct sockaddr_in {

unsigned short sin_family; /* Internet protocol (AF_INET) */

unsigned short sin_port; /* Address port (16 bits) */

struct in_addr sin_addr; /* Internet address (32 bits) */

char sin_zero[8]; /* Not used */

}



bind()



Assign address to socket: bind()

• associates and reserves a port for use by the socket

int status = bind(sockid, &addrport, size);

• sockid: integer, socket descriptor

• addrport: struct sockaddr, the (IP) address and port of the machine

• for TCP/IP server, internet address is usually set to INADDR_ANY, i.e.,

• chooses any incoming interface

• size: the size (in bytes) of the addrport structure

• status: upon failure -1 is returned



bind()- Example with TCP

int sockid; 

struct sockaddr_in addrport; 

sockid = socket(PF_INET, SOCK_STREAM, 0); 

addrport.sin_family = AF_INET; 

addrport.sin_port = htons(5100); 

addrport.sin_addr.s_addr = htonl(INADDR_ANY); 

if(bind(sockid, (struct sockaddr *) &addrport, sizeof(addrport))!= -1) {                …}



Listen()



Listen()
• Instructs TCP protocol implementation to listen for connections

int status = listen(sockid, queueLimit);

• sockid: integer, socket descriptor
• queuelen: integer, # of active participants that can “wait” for a connection
• status: 0 if listening, -1 if error

• listen() is non-blocking: returns immediately

• The listening socket (sockid)
• is never used for sending and receiving
• is used by the server only as a way to get new sockets



Accept()



Establish Connection: connect()

• The client establishes a connection with the server by calling connect()

int status = connect(sockid, &foreignAddr, addrlen);

• sockid: integer, socket to be used in connection

• foreignAddr: struct sockaddr: address of the passive participant

• addrlen: integer, sizeof(name)

• status: 0 if successful connect, -1 otherwise

• connect() is blocking



Incoming Connection: accept()

• The server gets a socket for an incoming client connection by calling accept() 

int s = accept(sockid, &clientAddr, &addrLen); 

• s: integer, the new socket (used for data-transfer)
• sockid: integer, the orig. socket (being listened on) 
• clientAddr: struct sockaddr, address of the active participant 

• filled in upon return
• addrLen: sizeof(clientAddr): value/result parameter

• must be set appropriately before call
• adjusted upon return

• accept()
• is blocking: waits for connection before returning ‰ 
• dequeues the next connection on the queue for socket (sockid)



Send() & Recv()



Send() & Recv()
int count = send(sockid, msg, msgLen, flags);

• msg: const void[], message to be transmitted
• msgLen: integer, length of message (in bytes) to transmit
• flags: integer, special options, usually just 0
• count: # bytes transmitted (-1 if error)

int count = recv(sockid, recvBuf, bufLen, flags);

• recvBuf: void[], stores received bytes
• bufLen: # bytes received
• flags: integer, special options, usually just 0
• count: # bytes received (-1 if error)

• Calls are blocking - returns only after data is sent / received




