NETWORKING LABORATORY

Course Instructor: Ms. Deepika Roselind J

Objectives

* To learn socket programming.
* To learn and use network commands.
* To gain knowledge about the working of routing algorithmes.

* To use simulation tools to analyze the performance of protocols in

different layers in computer networks

Introduction

 Computer Network
* hosts, routers,
e communication channels

* Hosts run applications
* Routers forward information

* Packets: sequence of bytes
* contain control information
* e.g. destination host

* Protocol is an agreement
* meaning of packets
e structure and size of packets
* e.g. Hypertext Transfer Protocol (HTTP)

Protocol Families - TCP/IP

* Several protocols for different problems
* Protocol Suites or Protocol Families: TCP/IP

* TCP/IP provides end-to-end connectivity specifying how data should
be

* formatted,

e addressed,

* transmitted,

* routed, and

* received at the destination

* It can be used in the internet and in stand-alone private networks
* It is organized into layers

TCP/IP

Network Topology
Host Host
A Router Router B
Data Flow
FTP, SMTP, ... —> | Application | P I:CfCEEES_S_'Fq'_EI‘R'F{F{S:s"_“' e
Transport Layer y L
TCPor UDP | ‘oot he....... host-to-host .. 5 Tompor
Network Layer : y —
IP —— Internet
| | T
» Link Link Link Link
: Fiber,
— Ethernet Satellite, Fiheenet =

Data
UDP | UDP
header | data
13
header s
IFm! Frame data Frame

Internet Protocol (IP)

IP protocol version

* The Internet Protocol (IP) is the principal . ﬂumbeﬁ 3 it E:;l:‘{‘;ﬂi')“
communications protocol in the Internet E“(L'i']ri*s)a M= f
rotocol suite type” e eIt S
P , hpe'ofdefo T dentifier{flgs WMT =~fragmentation/
* Relay datagrams across network boundaries rox munber._[Tie o | appe Trieme;] reassembly
e Datagrams are typically structured in header and remairing hops | “live £ layer | checksum
payload sections (decremented at

each router) : /32 bit source IP address

* Its routing function enables internetworking, uper e profocl”|_ 321t dstination P adres

and essentially establishes the Internet.

to deliver payload to Optios (f any) Eg. Ticrlms'ramp,
* IP has the task of delivering packets from the data e ;:;E
source host to the destination host (varible length, st of routers
* based on the IP addresses in the packet headers fypically a TCP fo visit.

or UDP segment)

Addresses - |IPv4

* The 32 bits of an IPv4 address are broken into 4 octets, or 8 bit fields (0-255
value in decimal notation).

* For networks of different size,

* the first one (for large networks) to three (for small networks) octets can be use d to
identify the network, while

* the rest of the octets can be used to identify the node on the network.

Range of addresses

-— — - 24 -
1.0.0.0to
Class A: 0| Network ID Host ID 197.255.255.255
-— gy - - 15—
_ 128.0.0.0 to
Class B: 11 0 Network 1D Host ID 191.9255.255.255
- 9 - 8 pt
192.0.0.0 to
ClassC: [1] 1]0 Network ID e b 223.255.255.255
- 28 -
. _ 22400010
Class D (multicast): 111110 Multicast address 239,955 255 255
- 27 -
240.0.0.0 to
Class E (reserved): 1]1]1|1|0 unused 965 955 255 955

|P address classes

Class Address range Supports

ClassA | 1.0.0.1to 126.255.255.254 Supports 16 million hosts on each of 127 networks.

Class B 128.1.0.1 to 191.255.255.254 Supports 65,000 hosts on each of 16,000 networks.

ClassC | 192.0.1.1 to 223.255.254.254 Supports 254 hosts on each of 2 million networks.

ClassD | 224.0.0.0 to 239.255.255.255 Reserved for multicast groups.

Class E 240.0.0.0 to 254.255.255.254 Reserved for future use, or research and development purposes.

Local Area Network Addresses - IPv4

192.168.0.11 - 192,168.0.4%9

192.168.0.10

e
=
Q Wi-Fi

192,168.0,51 - 192,168.0.99

o |

PDA
Switch

Router

Access Point

192.168.0.50

.

Access Point

|
192,168.0.101 192.168.0.102 192.168.0.103

-

Ethemet connection

192.168.0.2 7
s Q 192.168.0.1 ¢/

—

.
~~

- 2

192.168.1.1

192.168.1.2

S 4

Router

ADSL

Internet

TCP vs UDP

TCP

UDP

Reliable, guaranteed

Unreliable. Instead, prompt delivery of packets

Connection-oriented

Connectionless

Used in applications that require safety guarantee.
(eg. file applications.)

Used in media applications.
(eg. video or voice transmissions.)

Flow control, sequencing of packets, error-control.

No flow or sequence control, user must handle these
manually.

Uses byte stream as unit of transfer. (stream sockets)

Uses datagrams as unit of transfer. (datagram sockets)

Allows two-way data exchange, once the connection
is established. (full-duplex)

Allows data to be transferred in one direction at once.
(half-duplex)

e.g. Telnet uses stream sockets.

e.g. TFTP (trivial file transfer protocol)

Introduction to Socket Programming

Client

* |Initiates a request to the server
when interested

* E.g., web browser
* Needs to know the server’s address

e Active socket

Server
* Serve services to many clients

e E.g., www.google.com

Not initiate contact with the clients
 Needs a fixed address

e Passive socket

What is a socket?

* Socket: An interface between an application process and transport
layer

 The application process can send/receive messages to/from another
application process (local or remote)via a socket

* In Unix jargon, a socket is a file descriptor — an integer associated with
an open file

User Space

Kernel Space

Server

Process

Transport

Network

Link

Physical

Socket Description

Internet
e (i

Client

Process

Transport

Network

Link

Physical

User Space

Kernel Space

UNIX Socket API

* Socket interface
* A collection of system calls to write a networking program at user-level.

* In UNIX, everything is like a file
* All input is like reading a file
e All output is like writing a file
* File is represented by an integer file descriptor
e Data written into socket on one host can be read out of socket on other host

 System calls for sockets
* Client: create, connect, write, read, close
e Server: create, bind, listen, accept, read, write, close

Sockets versus File 1/0

Open afile Open a socket

Name the socket

Associate with another socket

Read and Write Send & Receive between sockets

Close the file Close the socket

Byte Ordering

e Two types of “Byte ordering”

* Network Byte Order: High-order byte of the number is stored in memory at
the lowest address

* Host Byte Order: Low-order byte of the number is stored in memory at the
lowest address

* Network stack (TCP/IP) expects Network Byte Order

* Conversions
* htons() - Host to Network Short
* htonl() - Host to Network Long
* ntohs() - Network to Host Short
* ntohl() - Network to Host Long

convert port numbers (16 bits)

convert port numbers (32 bits)

TCP Server
Outline of a client-server network interaction

socket {]
well-known - nt .
port s
h J
lisecen()
) J
accept ()
TCP Client o
blocks until connection
* T connection establishment -__,
connactl) = (TCP three-way handshake)
| .
¥

—= write(] data (re uest) Y
x‘xi\H read() |-l—

process reguest

Y W 'w"-'i1|:E-.’:| —

— read(] - i
A |
close) ———_.__'En_di'ﬂﬂf' notificatiog Y

read()
¥

close()

Ports

Sockets are uniquely identified by Internet
address, end-to-end protocol, and port number.

When a socket is first created it is vital to match
it with a valid IP address and a port number.

Ports are software objects to multiplex data
between different applications.

When a host receives a packet, it travels up the
protocol stack and finally reaches the application
layer.

e Consider a user running an ftp client, a telnet

client, and a web browser concurrently. To which
application should the packet be delivered?

Well part of the packet contains a value holding
a port number, and it is this number which
determines to which application the packet
should be delivered.

So when a client first tries to contact a server,
which port number should the client specify? For
many common services, standard port numbers
are defined.

e Ports 0 — 1023 - reserved and servers or clients that you create will not be able to bind to these

ports unless you have root privilege.

* Ports 1024 — 65535 - available for use by your programs, but beware other network applications

maybe running and using these port numbers.

Sockets - Procedures

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Express willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send data over the connection
Receive Receive data over the connection
Close Release the connection

Client - Server Communication - Unix

Stream Datagram
Server (e.g. TCP) Client Server (e.g- UDP) Client
{ socket() socket() socket() — J
bind() bind() i
listen()
synchmpizatiun !
accept() < powt » connect()
< reT() N send() > < recvfrom() [* *
ST.;} e sendio() T
close() cln;E() close() [close() |

Socket creation in C: socket()

int sockid = socket(family, type, protocol);

 sockid: socket descriptor, an integer (like a file-handle)

e family: integer, communication domain, e.g.,
 PF_INET, IPv4 protocols, Internet addresses (typically used)
 PF_UNIX, Local communication, File addresses

* type: communication type
 SOCK_STREAM - reliable, 2-way, connection-based service
 SOCK_DGRAM - unreliable, connectionless, messages of maximum length

* protocol: specifies protocol
« IPPROTO_TCP IPPROTO_UDP
e usually set to O (i.e., use default protocol)
e upon failure returns -1

Specifying Addresses

* Socket API defines a generic data type for addresses:

struct sockaddr {
unsigned short sa_family; /* Address family (e.g. AF_INET) */
char sa_data[14]; /* Family-specific address information */

* Particular form of the sockaddr used for TCP/IP addresses:
struct in_addr {

unsigned long s_addr; /* Internet address (32 bits) */

}

struct sockaddr _in {
unsigned short sin_family; /* Internet protocol (AF_INET) */
unsigned short sin_port; /* Address port (16 bits) */
struct in_addr sin_addr; /* Internet address (32 bits) */
char sin_zero[8]; /* Not used */

bind()

Stream Datagram
Server (e.g. TCP) Client Server (e.g. UDP) Client
socket() socket() socket() *
([bindg bind() [bind) |
Iist;n[}
synchmpizatinn Il
accept() == connect()
< reTr(} “ send() > < recvfrom() |* *
SET(} recv() sendto() ‘;T
close() close() close() [close()]

Assign address to socket: bind()

 associates and reserves a port for use by the socket

int status = bind(sockid, &addrport, size);

sockid: integer, socket descriptor

addrport: struct sockaddr, the (IP) address and port of the machine

» for TCP/IP server, internet address is usually set to INADDR_ANY, i.e.,

* chooses any incoming interface

size: the size (in bytes) of the addrport structure

status: upon failure -1 is returned

bind()- Example with TCP

int sockid;

struct sockaddr_in addrport;

sockid = socket(PF_INET, SOCK_STREAM, 0);
addrport.sin_family = AF_INET;
addrport.sin_port = htons(5100);
addrport.sin_addr.s_addr = htonl(INADDR_ANY);

if(bind(sockid, (struct sockaddr *) &addrport, sizeof(addrport))!=-1) {

Listen()

Stream Datagram
Server (e.g. TCP) Client Server (e.g. UDP) Client
socket() socket() socket() =
bind() bind()
listen()
synchmpizatinn !
accept() PO [connect()
recv() send() -> < recvirom() _J* *
SET(} recv() sendto() :T
iosal) ioss() dosal [oose) |

Listen()

* |Instructs TCP protocol implementation to listen for connections

int status = listen(sockid, queuelimit);

* sockid: integer, socket descriptor
* queuelen: integer, # of active participants that can “wait” for a connection
 status: O if listening, -1 if error

* listen() is non-blocking: returns immediately

* The listening socket (sockid)
* is never used for sending and receiving
* is used by the server only as a way to get new sockets

Accept()

Stream Datagram
Server (e.g. TCP) Client Server (e.g. UDP) Client
| socket() socket() socket() =
bind() bind()
| listen() |
synchmpizatinn
[acoept(P [connect()
< reTf[} [« send() > < recvfrom() |* *
SET[} recv() sendto() ‘;T
[close() | close() | close() | [close() |

Establish Connection: connect()

* The client establishes a connection with the server by calling connect()

int status = connect(sockid, &foreignAddr, addrlen);

sockid: integer, socket to be used in connection

foreignAddr: struct sockaddr: address of the passive participant
addrlen: integer, sizeof(name)

status: O if successful connect, -1 otherwise

e connect() is blocking

Incoming Connection: accept()

* The server gets a socket for an incoming client connection by calling accept()

int s = accept(sockid, &clientAddr, &addrlLen);

* s:integer, the new socket (used for data-transfer)
» sockid: integer, the orig. socket (being listened on)

* clientAddr: struct sockaddr, address of the active participant
* filled in upon return

* addrlLen: sizeof(clientAddr): value/result parameter
* must be set appropriately before call
e adjusted upon return

e accept()
* is blocking: waits for connection before returning
* dequeues the next connection on the queue for socket (sockid)

Send() & Recv()

Stream Datagram
Server (e.9. TCP) Client Server (e.g. UDP) Client
socket() socket() socket() =
bind() bind()
listen()
synchmpizatiun Il
accept() J«—"——+[__connect(
recv() N send() > < recvfrom() ¢
send() > mf:v() sendto()

v L 4 v

close() close() close()

Send() & Recv()

int count = send(sockid, msg, msglLen, flags);

* msg: const void[], message to be transmitted

* msglen: integer, length of message (in bytes) to transmit
* flags: integer, special options, usually just O

* count: # bytes transmitted (-1 if error)

int count = recv(sockid, recvBuf, bufLen, flags);

* recvBuf: void[], stores received bytes

* bufLen: # bytes received

* flags: integer, special options, usually just O
* count: # bytes received (-1 if error)

* Calls are blocking - returns only after data is sent / received

