
Chapter 19

Your First Machine Learning Project
in Python Step-By-Step

You need to see how all of the pieces of a predictive modeling machine learning project actually
fit together. In this lesson you will complete your first machine learning project using Python.
In this step-by-step tutorial project you will:

� Download and install Python SciPy and get the most useful package for machine learning
in Python.

� Load a dataset and understand it’s structure using statistical summaries and data visual-
ization.

� Create 6 machine learning models, pick the best and build confidence that the accuracy is
reliable.

If you are a machine learning beginner and looking to finally get started using Python, this
tutorial was designed for you. Let’s get started!

19.1 The Hello World of Machine Learning

The best small project to start with on a new tool is the classification of iris flowers. This is a
good dataset for your first project because it is so well understood.

� Attributes are numeric so you have to figure out how to load and handle data.

� It is a classification problem, allowing you to practice with an easier type of supervised
learning algorithm.

� It is a multiclass classification problem (multi-nominal) that may require some specialized
handling.

� It only has 4 attributes and 150 rows, meaning it is small and easily fits into memory (and
a screen or single sheet of paper).

� All of the numeric attributes are in the same units and the same scale not requiring any
special scaling or transforms to get started.

111



19.2. Load The Data 112

In this tutorial we are going to work through a small machine learning project end-to-end.
Here is an overview of what we are going to cover:

1. Loading the dataset.

2. Summarizing the dataset.

3. Visualizing the dataset.

4. Evaluating some algorithms.

5. Making some predictions.

Take your time and work through each step. Try to type in the commands yourself or
copy-and-paste the commands to speed things up. Start your Python interactive environment
and let’s get started with your hello world machine learning project in Python.

19.2 Load The Data

In this step we are going to load the libraries and the iris data CSV file from URL.

19.2.1 Import libraries

First, let’s import all of the modules, functions and objects we are going to use in this tutorial.

# Load libraries

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

from matplotlib import pyplot

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

Listing 19.1: Load libraries.

Everything should load without error. If you have an error, stop. You need a working SciPy
environment before continuing. See the advice in Chapter 2 about setting up your environment.

19.2.2 Load Dataset

The iris dataset can be downloaded from the UCI Machine Learning repository1. We are using
Pandas to load the data. We will also use Pandas next to explore the data both with descriptive

1https://goo.gl/mLmoIz



19.3. Summarize the Dataset 113

statistics and data visualization. Note that we are specifying the names of each column when
loading the data. This will help later when we explore the data.

# Load dataset

filename = �iris.data.csv�

names = [�sepal-length�, �sepal-width�, �petal-length�, �petal-width�, �class�]

dataset = read_csv(filename, names=names)

Listing 19.2: Load the Iris dataset.

19.3 Summarize the Dataset

Now it is time to take a look at the data. In this step we are going to take a look at the data a
few different ways:

� Dimensions of the dataset.

� Peek at the data itself.

� Statistical summary of all attributes.

� Breakdown of the data by the class variable.

Don’t worry, each look at the data is one command. These are useful commands that you
can use again and again on future projects.

19.3.1 Dimensions of Dataset

We can get a quick idea of how many instances (rows) and how many attributes (columns) the
data contains with the shape property.

# shape

print(dataset.shape)

Listing 19.3: Print the shape of the dataset.

You should see 150 instances and 5 attributes:

(150, 5)

Listing 19.4: Output of shape of the dataset.

19.3.2 Peek at the Data

It is also always a good idea to actually eyeball your data.

# head

print(dataset.head(20))

Listing 19.5: Print the first few rows of the dataset.

You should see the first 20 rows of the data:



19.3. Summarize the Dataset 114

sepal-length sepal-width petal-length petal-width class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

7 5.0 3.4 1.5 0.2 Iris-setosa

8 4.4 2.9 1.4 0.2 Iris-setosa

9 4.9 3.1 1.5 0.1 Iris-setosa

10 5.4 3.7 1.5 0.2 Iris-setosa

11 4.8 3.4 1.6 0.2 Iris-setosa

12 4.8 3.0 1.4 0.1 Iris-setosa

13 4.3 3.0 1.1 0.1 Iris-setosa

14 5.8 4.0 1.2 0.2 Iris-setosa

15 5.7 4.4 1.5 0.4 Iris-setosa

16 5.4 3.9 1.3 0.4 Iris-setosa

17 5.1 3.5 1.4 0.3 Iris-setosa

18 5.7 3.8 1.7 0.3 Iris-setosa

19 5.1 3.8 1.5 0.3 Iris-setosa

Listing 19.6: Output of the first few rows of the dataset.

19.3.3 Statistical Summary

Now we can take a look at a summary of each attribute. This includes the count, mean, the
min and max values as well as some percentiles.

# descriptions

print(dataset.describe())

Listing 19.7: Print the statistical descriptions of the dataset.

We can see that all of the numerical values have the same scale (centimeters) and similar
ranges between 0 and 8 centimeters.

sepal-length sepal-width petal-length petal-width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

Listing 19.8: Output of the statistical descriptions of the dataset.

19.3.4 Class Distribution

Let’s now take a look at the number of instances (rows) that belong to each class. We can view
this as an absolute count.



19.4. Data Visualization 115

# class distribution

print(dataset.groupby(�class�).size())

Listing 19.9: Print the class distribution in the dataset.

We can see that each class has the same number of instances (50 or 33% of the dataset).

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

Listing 19.10: Output of the class distribution in the dataset.

19.4 Data Visualization

We now have a basic idea about the data. We need to extend this with some visualizations. We
are going to look at two types of plots:

� Univariate plots to better understand each attribute.

� Multivariate plots to better understand the relationships between attributes.

19.4.1 Univariate Plots

We will start with some univariate plots, that is, plots of each individual variable. Given that
the input variables are numeric, we can create box and whisker plots of each.

# box and whisker plots

dataset.plot(kind=�box�, subplots=True, layout=(2,2), sharex=False, sharey=False)

pyplot.show()

Listing 19.11: Visualize the dataset using box and whisker plots.



19.4. Data Visualization 116

Figure 19.1: Box and Whisker Plots of Each Attribute.

We can also create a histogram of each input variable to get an idea of the distribution.

# histograms

dataset.hist()

pyplot.show()

Listing 19.12: Visualize the dataset using histogram plots.

It looks like perhaps two of the input variables have a Gaussian distribution. This is useful
to note as we can use algorithms that can exploit this assumption.



19.4. Data Visualization 117

Figure 19.2: Histogram Plots of Each Attribute.

19.4.2 Multivariate Plots

Now we can look at the interactions between the variables. Let’s look at scatter plots of all
pairs of attributes. This can be helpful to spot structured relationships between input variables.

# scatter plot matrix

scatter_matrix(dataset)

pyplot.show()

Listing 19.13: Visualize the dataset using scatter plots.

Note the diagonal grouping of some pairs of attributes. This suggests a high correlation and
a predictable relationship.



19.5. Evaluate Some Algorithms 118

Figure 19.3: Scatter Plots of Each Pairwise Set of Attribute.

19.5 Evaluate Some Algorithms

Now it is time to create some models of the data and estimate their accuracy on unseen data.
Here is what we are going to cover in this step:

1. Separate out a validation dataset.

2. Setup the test harness to use 10-fold cross validation.

3. Build 5 different models to predict species from flower measurements

4. Select the best model.

19.5.1 Create a Validation Dataset

We need to know whether or not the model that we created is any good. Later, we will use
statistical methods to estimate the accuracy of the models that we create on unseen data.
We also want a more concrete estimate of the accuracy of the best model on unseen data by
evaluating it on actual unseen data. That is, we are going to hold back some data that the
algorithms will not get to see and we will use this data to get a second and independent idea of



19.5. Evaluate Some Algorithms 119

how accurate the best model might actually be. We will split the loaded dataset into two, 80%
of which we will use to train our models and 20% that we will hold back as a validation dataset.

# Split-out validation dataset

array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y,

test_size=validation_size, random_state=seed)

Listing 19.14: Separate data into Train and Validation Datasets.

You now have training data in the X train and Y train for preparing models and a
X validation and Y validation sets that we can use later.

19.5.2 Test Harness

We will use 10-fold cross validation to estimate accuracy. This will split our dataset into 10
parts, train on 9 and test on 1 and repeat for all combinations of train-test splits. We are using
the metric of accuracy to evaluate models. This is a ratio of the number of correctly predicted
instances divided by the total number of instances in the dataset multiplied by 100 to give a
percentage (e.g. 95% accurate). We will be using the scoring variable when we run build and
evaluate each model next.

19.5.3 Build Models

We don’t know which algorithms would be good on this problem or what configurations to use.
We get an idea from the plots that some of the classes are partially linearly separable in some
dimensions, so we are expecting generally good results. Let’s evaluate six different algorithms:

� Logistic Regression (LR).

� Linear Discriminant Analysis (LDA).

� k-Nearest Neighbors (KNN).

� Classification and Regression Trees (CART).

� Gaussian Naive Bayes (NB).

� Support Vector Machines (SVM).

This list is a good mixture of simple linear (LR and LDA), nonlinear (KNN, CART, NB
and SVM) algorithms. We reset the random number seed before each run to ensure that the
evaluation of each algorithm is performed using exactly the same data splits. It ensures the
results are directly comparable. Let’s build and evaluate our five models:



19.5. Evaluate Some Algorithms 120

# Spot-Check Algorithms

models = []

models.append((�LR�, LogisticRegression()))

models.append((�LDA�, LinearDiscriminantAnalysis()))

models.append((�KNN�, KNeighborsClassifier()))

models.append((�CART�, DecisionTreeClassifier()))

models.append((�NB�, GaussianNB()))

models.append((�SVM�, SVC()))

# evaluate each model in turn

results = []

names = []

for name, model in models:

kfold = KFold(n_splits=10, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=�accuracy�)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 19.15: Evaluate a suite of algorithms on the dataset.

19.5.4 Select The Best Model

We now have 6 models and accuracy estimations for each. We need to compare the models to
each other and select the most accurate. Running the example above, we get the following raw
results:

LR: 0.966667 (0.040825)

LDA: 0.975000 (0.038188)

KNN: 0.983333 (0.033333)

CART: 0.975000 (0.038188)

NB: 0.975000 (0.053359)

SVM: 0.981667 (0.025000)

Listing 19.16: Output of evaluating a suite of algorithms.

We can see that it looks like KNN has the largest estimated accuracy score. We can also
create a plot of the model evaluation results and compare the spread and the mean accuracy
of each model. There is a population of accuracy measures for each algorithm because each
algorithm was evaluated 10 times (10 fold cross validation).

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle(�Algorithm Comparison�)

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 19.17: Plot the distribution of scores for each algorithm.

You can see that the box and whisker plots are squashed at the top of the range, with many
samples achieving 100% accuracy.



19.6. Make Predictions 121

Figure 19.4: Box and Whisker Plots Comparing Algorithm Performance.

19.6 Make Predictions

The KNN algorithm was the most accurate model that we tested. Now we want to get an idea
of the accuracy of the model on our validation dataset. This will give us an independent final
check on the accuracy of the best model. It is important to keep a validation set just in case
you made a slip during training, such as overfitting to the training set or a data leak. Both
will result in an overly optimistic result. We can run the KNN model directly on the validation
set and summarize the results as a final accuracy score, a confusion matrix and a classification
report.

# Make predictions on validation dataset

knn = KNeighborsClassifier()

knn.fit(X_train, Y_train)

predictions = knn.predict(X_validation)

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions))

Listing 19.18: Make Predictions on the Validation Dataset.

We can see that the accuracy is 0.9 or 90%. The confusion matrix provides an indication of
the three errors made. Finally the classification report provides a breakdown of each class by



19.7. Summary 122

precision, recall, f1-score and support showing excellent results (granted the validation dataset
was small).

0.9

[[ 7 0 0]

[ 0 11 1]

[ 0 2 9]]

precision recall f1-score support

Iris-setosa 1.00 1.00 1.00 7

Iris-versicolor 0.85 0.92 0.88 12

Iris-virginica 0.90 0.82 0.86 11

avg / total 0.90 0.90 0.90 30

Listing 19.19: Output of Making Predictions on the Validation Dataset.

19.7 Summary

In this lesson you discovered step-by-step how to complete your first machine learning project
in Python. You discovered that completing a small end-to-end project from loading the data to
making predictions is the best way to get familiar with the platform.

19.7.1 Next Step

You have applied the lessons from Part II on a simple problem and completed your first machine
learning project. Next you will take things one step further and work through a regression
predictive modeling problem. It will be a slightly more complex project and involve data
transforms, algorithm tuning and use of ensemble methods to improve results.


