
LAB EXERCISE – 7

Perceptron

1. Aim of the Experiment:

Implement and demonstrate perceptron model, a linear binary classifier used for supervised

learning.

Figure 7: Perceptron for Boolean Function OR

Desired output for Boolean function OR is shown in Table 7.1.

Table 7.1: OR Truth Table

X1 X2 Ydes

0 0 0

0 1 1

1 0 1

1 1 1

Consider the perceptron to represent the Boolean function OR with the initial weights W 1 =

0.3, W2 = -0.2, learning rate ∝ = 0.2 and bias W0 = 0.4 as shown in Figure 7. The activation

function used is the Step function f(x) which gives the output value as binary i.e., 0 or 1. If

value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs 0.

We design a perceptron that performs the Boolean function OR. The weights are updated

until the Boolean function gives the desired output.

3. Python Program with Explanation:

1. Import numpy, array-processing package to work with the arrays.

import numpy as np

2. Create a Perceptron class to implement a perceptron network. Define the built-in __init__()

function that takes learning rate of 0.2 and number of epochs of 4 to initialize the object. The

initial weight vector is set as [0.3, -0.2].

class Perceptron(object):

 def __init__(self, input_size, lr=0.2, epochs=4):

 self.W = np.array([0.3,-0.2])

 self.epochs = epochs

 self.lr = lr

3. Define the activation function as Step function f(x) which gives the output value as binary

i.e., 0 or 1. If value of f(x) is greater than or equal to 0, it outputs 1 or else it outputs 0.

 def activation_fn(self, x):

 return 1 if x >= 0 else 0

4. Define the predict function to compute the weighted sum ‘z’ by multiplying the inputs with

the weights and add the products. Then subtractθ. Round the value to 2 decimals. Then call

the activation function.

 def predict(self, x, theta):

 z = self.W.T.dot(x)-theta

 z=round(z,2)

 a = self.activation_fn(z)

 return a

5. Define the learning function fit() passing all inputs X, the desired output d, bias θ and

 count.

 Update the weights for epochs, until the perceptron can correctly classify all inputs.

 def fit(self, X, d,theta ,count):

 for _ in range(self.epochs):

 print("Epoch: ", count, "\n")

 count = count+1

 for i in range(d.shape[0]):

 x = X[i]

 print("input", x , "\t", "Weight:",self.W)

 print("\n")

Call the predict function, passing the input value x and theta. The function returns the

predicted output value ‘y’.

 y = self.predict(x,theta)

Calculate error as the difference between the desired output d[i] and the predicted output y.

 e = d[i] – y

Update the weight vector.

 self.W = self.W + self.lr * e * x

6. Define the main function with input array X, desired output array d. This function is the

entry point of the program.

if __name__ == '__main__':

 X = np.array([

 [0, 0],

 [0, 1],

 [1, 0],

 [1, 1]

])

 d = np.array([0, 1, 1, 1])

Create perceptron object. When the object is created, the __init__() function is called and the

object is initialized.

 perceptron = Perceptron(input_size=2)

 theta=0.4

 count =1

Call the learning function of the perceptron passing training input X, desired output d, theta

and count.

 perceptron.fit(X, d, theta, count)

Finally print the learned weights for the AND gate which gives the desired output.

 print(perceptron.W)

Complete Program:

import numpy as np

class Perceptron(object):

 def __init__(self, input_size, lr=0.2, epochs=4):

 self.W = np.array([0.3,-0.2])

 self.epochs = epochs

 self.lr = lr

 def activation_fn(self, x):

 return 1 if x >= 0 else 0

 def predict(self, x,theta):

 z = self.W.T.dot(x)-theta

 z=round(z,2)

 a = self.activation_fn(z)

 return a

 def fit(self, X, d,theta ,count):

 for _ in range(self.epochs):

 print("Epoch: ", count)

 count = count+1

 for i in range(d.shape[0]):

 x = X[i]

 print("input", x , "\t", "Weight:",self.W)

 y = self.predict(x,theta)

 e = d[i] - y

 self.W = self.W + self.lr * e * x

if __name__ == '__main__':

 X = np.array([

 [0, 0],

 [0, 1],

 [1, 0],

 [1, 1]

])

 d = np.array([0, 0, 0, 1])

 perceptron = Perceptron(input_size=2)

 theta=0.4

 count =1

 perceptron.fit(X, d,theta, count)

 print(perceptron.W)

Output:

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:37:02) [MSC v.1924 64 bit

(AMD64)] on win32

>>>

========== RESTART: C:\Users\ADMIN\pythonpgms\final\jnf perceptron.py

==========

Epoch: 1

input [0 0] Weight: [0.3 -0.2]

input [0 1] Weight: [0.3 -0.2]

input [1 0] Weight: [0.3 -0.2]

input [1 1] Weight: [0.3 -0.2]

Epoch: 2

input [0 0] Weight: []

input [0 1] Weight: []

input [1 0] Weight: []

input [1 1] Weight: []

Epoch: 3

input [0 0] Weight: []

input [0 1] Weight: []

input [1 0] Weight: []

input [1 1] Weight: []

Epoch: 4

input [0 0] Weight: []

input [0 1] Weight: []

input [1 0] Weight: []

input [1 1] Weight: []

[0.3 0.2]

>>>

It is observed that with 4 epochs, the perceptron learns, and the weights have been updated to

new weights[] and with which the perceptron gives the desired output of a Boolean OR

function.

Screenshot of the Output:

Programming Exercises:

1. Consider the perceptron taking two inputs x1 and x2 with weights w1 = 1.0, w2= 1.0 and

w0= 1.5. Determine the outputs for different combination of the inputs and plot them

in graph x1 vs. x2.

