

4: Flow Control Page 1

4 Flow Control

4.1 Objectives

After completing this lab, you will:

• Get familiar with MIPS Jump and Branch instructions

• Learn about pseudo instructions in MIPS

• Learn how to translate high-level flow control constructs (if-then-else, for loop, while
loop) to MIPS code

4.2 MIPS Jump and Branch Instructions

Like all processors, MIPS has instructions for implementing unconditional and conditional jumps.
The MIPS Jump and Branch instructions are shown in Table 4.1.

Table 4.1: MIPS Jump and Branch Instructions.

For unconditional jump, the instruction j label is used where label is the address of the target
instruction as shown below:

j label # jump to label

. . .

label:

4: Flow Control Page 2

There are two MIPS conditional branch instructions that branch based on the condition whether two
registers are equal or not as follows:

beq Rs, Rt, label # branch to label if (Rs == Rt)

bne Rs, Rt, label # branch to label if (Rs != Rt)

Four additional MIPS instructions are provided based on comparing the content of a register with 0
as follows:

bltz Rs, label # branch to label if (Rs < 0)

bgtz Rs, label # branch to label if (Rs > 0)

blez Rs, label # branch to label if (Rs <= 0)

bgez Rs, label # branch to label if (Rs >= 0)

Note that MIPS does not provide the instructions beqz and bnez as these can be implemented
using the beq and bne instructions with register $0 used as the second operand.

MIPS also provides four set on less than instructions as follows:

slt rd, rs, rt # if (rs < rt) rd = 1 else rd = 0

sltu rd, rs, rt # unsigned <

slti rt, rs, im16 # if (rs < im16) rt = 1 else rt = 0

sltiu rt, rs, im16 # unsigned <

Note that the instructions slt and slti are used for signed comparison while instructions sltu
and sltiu are used for unsigned comparison.

For example, assume that $s0 = 1 and $s1 = -1 = 0xffffffff, then the following two
instructions produce different results as shown below:

slt $t0, $s0, $s1 # results in $t0 = 0

sltu $t0, $s0, $s1 # results in $t0 = 1

4.3 Pseudo Instructions

Pseudo instructions are instructions introduced by an assembler as if they were real instructions. We
have seen an example of a pseudo instruction before, which is the li instruction. Pseudo
instructions are useful as they facilitate programming in assembly language.

For example, the MIPS processor does not have the following useful conditional branch comparison
instructions:

4: Flow Control Page 3

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

The reason for not implementing these instructions as part of the MIPS instruction set is that they
can be easily implemented based on a set of two instructions.

For example, the instruction blt $s0, $s1, label can be implemented using the following
sequence of two instructions:

slt $at, $s0, $s1

bne $at, $zero, label

Similarly, the instruction ble $s2, $s3, label can be implemented using the following
sequence of two instructions:

slt $at, $s3, $s2

beq $at, $zero, label

Table 4.2 shows more examples of pseudo instructions. Note that the assembler temporary register
$at=$1 is reserved for its own use.

Table 4.2: Examples of pseudo instructions.

4.4 Translating High-Level Flow Control Constructs

We can translate any high-level flow construct into assembly language using the jump, branch and
set-less-than instructions. For example, let us consider the following if statement:

if (a == b) c = d + e; else c = d – e;

4: Flow Control Page 4

Let us assume that variables a, b, c, d, e are stored in registers $s0 thru $s4 respectively. The
following assembly code implements this IF statement:

bne $s0, $s1, else

addu $s2, $s3, $s4

j exit

else: subu $s2, $s3, $s4

exit: . . .

We can also implement an IF statement with a compound condition involving logical AND
operation. For example, let us consider implementing the following IF statement:

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

The IF statement is implemented efficiently using the following assembly code which uses the fall
through concept which skips the execution of the instruction if the first condition is false otherwise
it continues the execution:

 blez $s1, next # skip if false

 bgez $s2, next # skip if false

 addiu $s3, $s3, 1 # both are true

next:

Similarly, we can translate an IF statement with a compound condition involving logical OR
operation. For example, let us consider implementing the following IF statement:

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

The IF statement is implemented efficiently using the following assembly code which checks the
first condition and if it is true, it skips the second condition:

 bgt $s1, $s2, L1 # yes, execute if part

 ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1

next:

We can also implement all types of loops. Let us consider implementing the following for loop:

for (i=0; i<n; i++) {

 loop body

}

4: Flow Control Page 5

Let us assume that variable i is stored in register $s0 and n is stored in register $s1. Then, the for
loop is implemented using the following assembly code:

 li $s0, 0 # i = 0

ForLoop:

 bge $s0, $s1, EndFor

 loop body

 addi $s0, #s0, 1 # i++

 j ForLoop

EndFor:

Consider the implementing of the following while loop:

i=0;

while (i<n) {

 loop body

 i++;

}

We can note that this while loop has identical behavior to the for loop and hence its assembly
code will be identical.

Finally, let us consider implementing the following do-while loop:

i=0;

do {

 loop body

 i++;

} while (i<n)

The do-while loop can be translated using the following assembly code:

 li $s0, 0 # i = 0

WhileLoop:

 loop body

 addi $s0, $s0, 1 # i++

 blt $s0, $s1, WhileLoop

4: Flow Control Page 6

4.5 In-Lab Tasks

1. Write a program that asks the user to enter an integer and then displays the number of 1's in the

binary representation of that integer. For example, if the user enters 9, then the program should

display 2.

2. Write a program that asks the user to enter two integers: n1 and n2 and prints the sum of all

numbers from n1 to n2. For example, if the user enters n1=3 and n2=7, then the program

should display the sum as 25.

3. Write a program that asks the user to enter an integer and then display the hexadecimal
representation of that integer.

4. The Fibonacci sequence are the numbers in the following integer sequence: 0, 1, 1, 2, 3,

5, 8, 13, 21, 34, 55, 89, 144, ...

The first two numbers are 0 and 1 and each subsequent number is the sum of the previous two.

Write a program that asks the user to enter a positive integer number n and then prints the nth
number in the Fibonacci sequence. The following algorithm can be used:

Input: n positive integer

Output: nth Fibonacci number

 Fib0 = 0 Fib1 = 1

 for (i=2; i <= n; i++) do

 temp = fib0

 fib0 = fib1

 fib1 = temp + fib1

 if (n > 0) fib = fib1

 else fib = 0

4: Flow Control Page 7

4.6 Bonus Problem

5. One method for computing the greatest common divisor of two positive numbers is the binary
gcd method, which uses only subtraction and division by 2. The algorithm of the binary gcd is
outlined below:

Input: a, b positive integers

Output: g and d such that g is odd and gcd(a, b) = g×2d

 d = 0

 while (a and b are both even) {

 a = a/2

 b = b/2

 d = d + 1

 }

 while (a != b) {

 if (a is even) a = a/2

 else if (b is even) b = b/2

 else if (a > b) a = (a – b)/2

 else b = (b – a)/2

 }

 g = a

Write a program that asks the user to enter two positive numbers a and b and outputs the
greatest common divisor of the two numbers by implementing the given algorithm. If the user
enters a=48 and b=18, your program should output the gcd as 6.

