LAB EXERCISE – 9

SUPPORT VECTOR MACHINES

Aim of the Experiment

The main aim of this experiment is to implement support vector machine for the Iris dataset. he objectives of this experiment are

- 1. Implement SVM for Iris Dataset
- 2. Find confusion matrix and evaluation metrics for SVM

SVM model can be constructed using sklearn command,

model = SVC(kernel='linear',random state=0)

Similarly, by changing the flag 'linear' with 'rbf', one can construct the Gaussian RBF kernel also.

model.fit and model.predict can be used to fit the data and to make prediction.

Program Listing - 1

```
import pandas as pd
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy score
```

Reading the csv Iris dataset file

```
df = pd.read_csv("iris1.csv")
print(df.head(10))
```

Conditioning the data

array = df.values

```
X = array[:,0:4]
y = array[:,4]
# Condition the training and Testing data
# The number of samples can be tuned with the test size parameter.
# Here, 95% of the data is used.
X_train, X_test, y_train, y_test = train_test_split( \
 X, y,test size=0.95,random state=0)
# Construct the Linear model
model = SVC(kernel='linear',random_state=0)
model.fit(X_train,y_train)
# Test the model with Linear kernel
pred = model.predict(X_test)
# Prepare confusion matrix
print("\n\nThe confusion matrix is \n\n")
conf = confusion_matrix(y_test,pred)
print(conf)
# pepare Classification Report
print("\n\nAccuracy is")
accuracy = accuracy_score(y_test,pred)
print(accuracy)
```

```
# Or report can be obtained as follows
print('\n Classification Report')
report = classification_report(y_test,pred)
print(report)
# RBF kernel
model1 = SVC(kernel='rbf',random state=0)
model1.fit(X train,y train)
# Test the model
pred = model1.predict(X_test)
# Prepare confusion matrix
print("\n\nThe confusion matrix for RBF kernel is \n\n")
conf = confusion_matrix(y_test,pred)
print(conf)
# pepare Classification Report
print("\n\nAccuracy for RBF kernel is")
accuracy = accuracy_score(y_test,pred)
print(accuracy)
```

Output

The following screenshot shows the confusion matrix of SVM with linear kernel.

```
The confusion matrix is

[[46  0  0]
  [ 0  40  9]
  [ 0  1  47]]

Accuracy is
0.9300699300699301
```

The following screenshot shows the classification report of SVM with linear kernel.

Classificati	on Report precision	recall	f1-score	support	
Setosa	1.00	1.00	1.00	46	
Versicolor	0.98	0.82	0.89	49	
Virginica	0.84	0.98	0.90	48	
accuracy			0.93	143	
macro avg	0.94	0.93	0.93	143	
weighted avg	0.94	0.93	0.93	143	

The following screenshot shows the confusion matrix of SVM with Gaussian RBF kernel.