LAB EXERCISE - 3 (06-07-2022)

Instructions:

Linear Regression, Multiple Regression, Logistic Regression:

Use the following Template (in that order) for Regression experiments:

>

vV V V ¥V V VYV V

>

Load dataset

plot and visualize data

Reshape data

Split data to Train, Validation, Test
Use the model

print the parameters of the model
Print Score

Start prediction

Show classification report

Skokokokokokkok ok sk sk sk ok ok ok sk ok ok ok sk sk ok ok ok sk sk ke ok sk sk sk ok ok sk ok ok sk sk sk ok Sk sk sk sk ok Sk ok sk sk ok ok skok k ok ok sk ok ok sk sk sk ok ok sk sk sk ok sk sk sk k ok sk sk sk kk sk sk

v

Identify your own dataset (other than IRIS or standard datasets)
with atleast 500 to 1000 instances. You can also use a random
dataset.Demonstrate Linear Regression, Logistic Regression. You
may also attempt polynomial regression for a single variable
y=a+al*x+a2*x*

Use Gradient Descent approach to arrive at the optimized value of a
parameter for linear regression.

Skokokokokokskok ok sk sk sk ok ok sk sk ok ok ok sk sk ok ok Sk sk sk ok ok sk sk sk ok ok sk ok ok sk sk sk ok Sk sk sk sk ok Sk sk sk sk ok ok skok k ok Sk sk ok ok sk sk sk ok ok sk sk sk ok sk sk sk sk ok sk sk sk kk sk sk

LAB EXERCISE -3.1
LINEAR REGRESSION AND MULTIPLE REGRESSION

Aim of the Experiment

To write Python program for finding linear regression.

Consider the dataset given.

First one can write a linear regression for this problem and can verify that the
results are same.

Table 5.1: Sample Data

X y

(Week) (Sales in Thousands)
1 1.2

2 1.8

3 2.6

4 3.2

5 3.8

In listing 2, A random dataset is taken, and multiple regression is applied. This
experiment will help to understand the concepts of multiple regression.

The command
X,y = make_regression(n_samples = 50,n_features=1,noise=0.1)

Can create a regression dataset with 50 samples and 1 feature. The number of
features field can be changed with 2 for multiple regression as

X,y = make_regression(n_samples = 50,n_features=2,noise=0.1)

WARNING - Random dataset is used for Listing 2 and 3. So, the dataset
would be generated at every run. As dataset is generated again, the
results would vary every time the program is run.

Listing - 1

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn import linear_model

salesdata = {'week': [1,2,3,4,5],
'sales': [1.2,1.8,2.6,3.2,3.8]
}

df = pd.DataFrame(salesdata,columns=['week’,'sales'])

plt.scatter(df['week'], df['sales'], color="'green’')
plt.title('Regression among week and sales')
plt.xlabel('X - axis - Week")

plt.ylabel('Y- Dependent - Sales')

week = df['week'].values.reshape(1,-1)

sales = dff'sales'].values.reshape(1,-1)

X = df[['week']]
y = df['sales']

regr = linear_model.LinearRegression()

regr.fit(X,y)

print(‘Intercept: \n', regr.intercept)

print(‘Coefficients: \n', regr.coef)

print(\nThe Regression Equation is',regr.coef ,”* X+',regr.intercept)

Fit the model for the given data

pred = regr.predict(X)
plt.plot(X,pred)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

Intercept:
0.54000000000000085

Coefficients:
[6.66]

The Regression Equation 1s [B.66] * X+ 0.5400000000GG0005

Adjusted R Squared for Regression model: 0.9972527472527473

Regression among week and sales

¥ Dependent - Sales

140 15 20 25 EX1] 35 40 45 50
X -axis -Week

Listing 2

NOTE - Random dataset is used for Listing 2. So, the random dataset
would be generated at every run. As dataset is generated again, the
results would vary every time the program is run.

import matplotlib.pyplot as plt
from sklearn import linear_model

from sklearn.datasets import make_regression

X,y = make_regression(n_samples = 50,n_features=1,noise=0.1)

plt.scatter(X,y,color="'green')
plt.title('Regression among X and y')
plt.xlabel('X - axis - X')
plt.ylabel('Y- Dependent - y')

regr = linear_model.LinearRegression()

regr.fit(X,y)

print(‘Intercept: \n', regr.intercept)

print(‘Coefficients: \n', regr.coef)

print(\nThe Regression Equation is',regr.coef ,* X +',regr.intercept)

Fit the model for the given data

pred = regr.predict(X)
plt.plot(X,pred)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

Intercept:
-0.01850347285833942

Coefficients:
[65.47285324]

The Regression Equation 1s [65.47285324] * X + -0.01950347285833042

Adjusted R Squared for Regression model: ©.99999

Regression among X and y

100 1

¥ Dependent - v

Listing 3

NOTE- Random dataset is used for Listing 3. So, the random dataset would
be generated at every run. As dataset is generated again, the results
would vary every time the program is run.

Multiple Regression

from sklearn import linear_model

from sklearn.datasets import make_regression

print("Multiple regression \n\n")

Multiple Regression

Create random dataset with 2 features. Dataset has 50 samples with noise 0.1.

X,y = make_regression(n_samples = 50,n_features=2,noise=0.1)

regr = linear_model.LinearRegression()

regr.fit(X,y)

print(‘Intercept: \n', regr.intercept)

print(‘Coefficients: \n', regr.coef)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

Multiple regression

Intercept:
-0.012331786831634162
Coefficients:
[53.95803654 36.80928639]

Adjusted R Squared for Regression model: ©.999998852358959

LAB EXERCISE - 3.2

Logistic Regression

Aim of the Experiment

The main aim of this experiment is to explore logistic regression model of scikit-learn. The
objectives of this experiment are:

1. Explore random dataset generation for logistic regression.
2. Explore logistic regression model in python for randomly generated
dataset

Random dataset for classification model can be as follows:
X, y = make_blobs(n_samples=200, centers=3, n_features=3)

The n_samples and n_features can be changed. This has to be imported using the
command,

from sklearn.datasets import make_blobs

Logistic regression model can be created by scikit-learn as
model = LogisticRegression()

The algorithm can be applied to the given data as
model.fit(X_train,y_train)

The predictions of the constructed model can be done as
predicted = model.predict(X_test)

The classification report can be generated as follows:
report_Ir = classification_report(y_test,predicted)

This classification report must be imported as

from sklearn.metrics import classification_report

NOTE - Random dataset is used for Listing 1. So, the dataset would be
generated at every run. As dataset is generated again, the results would
vary every time the program is run.

Listing - 1

import pandas as pd

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

X, y = make_blobs(n_samples=200, centers=3, n_features=3)
df = pd.DataFrame(dict(x=X[:,0], y=XI[:,1], label=y))

Print the sample top five records

print("Top five Records\n\n")

df_top = df.head(5)

print(df_top)

Condition the input

X _train,X_test,y train,y test = train_test split(X,y,test size=0.40,random_state=0)
Construct the logistic regression model

model = LogisticRegression()

Fit the model

model.fit(X_train,y_train)

#Prediction for the test sample

predicted = model.predict(X_test)

Print the classification report

print("\n\nClassification Report")

report_Ir = classification_report(y_test,predicted)
print(report_Ir)

Output

The top five records of 200 samples is displayed as follows:

Top five Records

o p 2 ®
B b B D O

The Classification report generated for this problem

Classification Report
precision

-
m
[l
{51
=
=

fl-score support

o

1.
1.
1.

P B e
& &
I-II |-I| I-II
o & &
I-II I-II ;xl
& & &
| R O T]
[=:4]

o

[}

accuracy
macro avg
weighted avg

[I s B
& & &
[+ i

o m m

is shown as follows:

