
LAB EXERCISE - 3 (06-07-2022)

Instructions:

Linear Regression, Multiple Regression, Logistic Regression:

Use the following Template (in that order) for Regression experiments:

➢ Load dataset

➢ plot and visualize data

➢ Reshape data

➢ Split data to Train, Validation, Test

➢ Use the model

➢ print the parameters of the model

➢ Print Score

➢ Start prediction

➢ Show classification report

**

✔ Identify your own dataset (other than IRIS or standard datasets)
with atleast 500 to 1000 instances. You can also use a random
dataset.Demonstrate Linear Regression, Logistic Regression. You
may also attempt polynomial regression for a single variable
y=a+a1*x+a2*x2.

✔ Use Gradient Descent approach to arrive at the optimized value of a
parameter for linear regression.

**

LAB EXERCISE - 3.1

LINEAR REGRESSION AND MULTIPLE REGRESSION

Aim of the Experiment

To write Python program for finding linear regression.

Consider the dataset given.

First one can write a linear regression for this problem and can verify that the
results are same.

Table 5.1: Sample Data

x

(Week)

y

(Sales in Thousands)

1 1.2

2 1.8

3 2.6

4 3.2

5 3.8

In listing 2, A random dataset is taken, and multiple regression is applied. This
experiment will help to understand the concepts of multiple regression.

The command

X,y = make_regression(n_samples = 50,n_features=1,noise=0.1)

Can create a regression dataset with 50 samples and 1 feature. The number of
features field can be changed with 2 for multiple regression as

X,y = make_regression(n_samples = 50,n_features=2,noise=0.1)

WARNING – Random dataset is used for Listing 2 and 3. So, the dataset
would be generated at every run. As dataset is generated again, the
results would vary every time the program is run.

Listing - 1

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn import linear_model

salesdata = {'week': [1,2,3,4,5],

 'sales': [1.2,1.8,2.6,3.2,3.8]

 }

df = pd.DataFrame(salesdata,columns=['week','sales'])

plt.scatter(df['week'], df['sales'], color='green')

plt.title('Regression among week and sales')

plt.xlabel('X - axis - Week')

plt.ylabel('Y- Dependent - Sales')

"""

week = df['week'].values.reshape(1,-1)

sales = df['sales'].values.reshape(1,-1)

"""

X = df[['week']]

y = df['sales']

regr = linear_model.LinearRegression()

regr.fit(X,y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

print('\nThe Regression Equation is',regr.coef_,'* X+',regr.intercept_)

Fit the model for the given data

pred = regr.predict(X)

plt.plot(X,pred)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

Listing 2

NOTE – Random dataset is used for Listing 2. So, the random dataset
would be generated at every run. As dataset is generated again, the
results would vary every time the program is run.

import matplotlib.pyplot as plt

from sklearn import linear_model

from sklearn.datasets import make_regression

X,y = make_regression(n_samples = 50,n_features=1,noise=0.1)

plt.scatter(X,y,color='green')

plt.title('Regression among X and y')

plt.xlabel('X - axis - X')

plt.ylabel('Y- Dependent - y')

regr = linear_model.LinearRegression()

regr.fit(X,y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

print('\nThe Regression Equation is',regr.coef_,'* X +',regr.intercept_)

Fit the model for the given data

pred = regr.predict(X)

plt.plot(X,pred)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

Listing 3

NOTE– Random dataset is used for Listing 3. So, the random dataset would
be generated at every run. As dataset is generated again, the results
would vary every time the program is run.

Multiple Regression

from sklearn import linear_model

from sklearn.datasets import make_regression

print("Multiple regression \n\n")

Multiple Regression

Create random dataset with 2 features. Dataset has 50 samples with noise 0.1.

X,y = make_regression(n_samples = 50,n_features=2,noise=0.1)

regr = linear_model.LinearRegression()

regr.fit(X,y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

Compute Adjusted R squared Error

print("\nAdjusted R Squared for Regression model:",regr.score(X,y))

Output

LAB EXERCISE – 3.2

Logistic Regression

Aim of the Experiment

The main aim of this experiment is to explore logistic regression model of scikit-learn. The

objectives of this experiment are:

1. Explore random dataset generation for logistic regression.

2. Explore logistic regression model in python for randomly generated

dataset

Random dataset for classification model can be as follows:

X, y = make_blobs(n_samples=200, centers=3, n_features=3)

The n_samples and n_features can be changed. This has to be imported using the

command,

from sklearn.datasets import make_blobs

Logistic regression model can be created by scikit-learn as

model = LogisticRegression()

The algorithm can be applied to the given data as

model.fit(X_train,y_train)

The predictions of the constructed model can be done as

predicted = model.predict(X_test)

The classification report can be generated as follows:

report_lr = classification_report(y_test,predicted)

This classification report must be imported as

from sklearn.metrics import classification_report

NOTE – Random dataset is used for Listing 1. So, the dataset would be

generated at every run. As dataset is generated again, the results would

vary every time the program is run.

Listing - 1

import pandas as pd

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

X, y = make_blobs(n_samples=200, centers=3, n_features=3)

df = pd.DataFrame(dict(x=X[:,0], y=X[:,1], label=y))

Print the sample top five records

print("Top five Records\n\n")

df_top = df.head(5)

print(df_top)

 # Condition the input

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.40,random_state=0)

Construct the logistic regression model

model = LogisticRegression()

Fit the model

model.fit(X_train,y_train)

#Prediction for the test sample

predicted = model.predict(X_test)

Print the classification report

print("\n\nClassification Report")

report_lr = classification_report(y_test,predicted)

print(report_lr)

Output

The top five records of 200 samples is displayed as follows:

The Classification report generated for this problem is shown as follows:

