Introduction to MARS

1.1 Objectives

After completing this lab, you will:
. Get familiar with the MARS simulator

. Learn how to assemble, run, and debug a MIPS pmogra

1.2 The MARS Simulator

MARS, the MIPS Assembly and Runtime Simulator, msiategrated development environment
(IDE) for programming in MIPS assembly languageallbws editing, assembling, debugging and
simulating the execution of MIPS assembly langyamgpgrams. MARS is written in Java.
There are two main windows in MARS, as shown iruFegl.1.

« TheEdit window: used to create and modify a MIPS program.

+ TheExecute window: used to run and debug a MIPS program.
To switch between thiedit and theExecute windows, use the tabs at the top.

The Execute window contains three main panes:
1. Text Segment: shows the machine code and related addresses.
2. Data Segment: shows memory locations that hold variables ind&a segment.

3. Labels: shows addresses of labeled items, i.e. variasldgump endpoints.

There are two tabbed message areas at the bottbiguoé 1.1:

1. The Mars Messages tab: Used for messages such as assembly or rurgmoes and
informational messages. You can click on assembipremessages to select the
corresponding line of code in the editor.

2. TheRun I/O tab: Used at runtime for displaying console ougnd entering console input as
program execution progresses.

1: Introduction to MARS

File Edit Run Settings Tools Help

Oea&2]e %0027 KOS

(@)

(2)

Run speed at max {no interaction}
c {

Edit | Execute |

Registers | Coprocl | Coproco |

fib.asm Name | Number value |
1 # Compute first twelve Fibo pr [a]|| 3|$2ero | 0 GX!
2 .data || i)$at 1 . |
3 fibs: .word 0 : 12 $v0 [2 0x00000000
4 size: .word 12 $vl 3 0x00000000)
5 .text $a0 [4 0x00000000)
6 la §to, fibs $al 5| 0x00000000
7 la §tS, size $a2 [6 0x00000000)
8 lw $t5, 0($tS) $a3 7 0x00000000]
9 U $t2, 1 =|| fsto [8 000000000
1(1) 3dd-d$g°'°§;fé)$f4 $t1 9 6x00606060)
sw
’ $t2 | 10 0x00000000
12 sw §t2, 4(§t0) - |
13 addi $t1, §ts, -2 e-2 :S I E &i
14 loop: v §$t3, 0($t0) 15 13 - {
15 v $t4, 4(3to) | {
16 add $t2, §t3, $t4 |l :[i¢te [141 £x00060000
17 sw $t2, 8(3t0) $t7 15 0x00000000]
18 addi $t0, $t0, 4 $s0 | 16 6x0B008000
19 addi $t1, $t1, -1 $s1 | 17, 000000000
20 bgtz $t1, loop $s2 18 000
21 la $a0, fibs 1$s3 19 0x00000000!
22 add $al, $zero, $t5 $s4 1 20 0x000EEE00
23 j?l print |$5S 21 [exgelelelelelelele)
24 U %{0. 10 $56 | 2 0x00000060
25 sysca $57 23 3
23 J— $t8 | 24| 0x00006000|
27 #EBEEEEEE routil e <[|$t9 25 |
]2‘3[- I 5| ke [26 0x00060600
$k1 27 0x00000000]
Line: 1 Column: 1 [v] Show Line Numbers $9p [28 Ox10002000
a |$sp 29 ox7fffeffc
(Mars Messages | Run /O | $fp | 30 0xBE000000
e = ¥ =1l j$ra 31 [exgelelelelelelele)
)) —| “lpe [0x00400000)
Go: running fib.asm hi Ox
|70 | 0x0E000000)
Go: execution completed successfully.
Assemble: assembling /home/ahmad/local/tmp/mars/fib.asm >
Assemble: operation completed successfully.
v

Figure1l.1: The MARS Integrated Development Environment (IDE)

Figure 1.2 shows the MARS Execute window’s paned,eanphasizes the following features:

1. The Execute window's tab.

2. Assembly code displayed with addresses and machuoe

3. Values stored in the data segment. These arelglisgtitable.

4. Controls for navigating the data memory area. Alawitching to view the stack segment.

5. Switching between decimal and hexadecimal addressesalues in memory and registers.

6. Labels and their corresponding memory addresses.

7. Values stored in registers. These are directlyabb#it

8. Checkboxes used to setup breakpoints for each MiRfSiction. Useful in debugging.

9. Execution speed selection. Useful in debugging.

1: Introduction to MARS

File Edil Fum Setlings Tools Help

| | 2 | TE& TS =] [& [- | e] L Fun speed at max (o mieraction)
MRS PR N EEFIGE R,y =T
Ell | Erecun | : Redisters | Coprac 1 |Cmmﬁ s
o o || 5 Labets 55 [Mumber__ ;

2o
Label fiat
COlFE-EOr A = vl
GEN

pseudo op testasm

B0 -IAjOr s it}

1 Dol 0030
AHS 1 D00 0000d D)
0200000000

addl , ceme... [g
Adc can ; x [w|Data o] Tewt et | 1
' o

Q0000000 0
[N jafalvlv] Infs)

00
L

T i i« o000y
@ | o [[0x10010000 ;stata) |v’u:

Figure 1.2: The MARS Execute Window

At all times, the MIPS register window appears loa ight-hand side of the screen, even when you
are editing and not running a program. While wgtaprogram, this serves as a useful reference for
register names and their use. Move the mouse beeaegister name to see the tool tips.

There are three register tabs:
The Register File: integer registé® through$31, HI, LO, and the Program Counte€.
Coprocessor 0: exceptions, interrupts, and statdesc

Coprocessor 1: floating point registers.

1.3 Assemble, Run, and Debug a MIPS Program

To assemble the file currently in theit tab, selecAssemblefrom theRun menu, or use the
Assemble toolbar icon.

If there are syntax errors in the program, they apbear in thé/lars Messagestab at the bottom of
the MARS screen. Each error message containgatd column where the error occurred.

Once a MIPS program assembles successfully, thsteeg are initialized, and the Text Segment
and the Data Segment are filled, as shown in Figj8e

1: Introduction to MARS

file Edit Run Settings Tools Help

- | e | — = | el e [| [=~ | = | Runspeed at max {no interaction}
P> @2 A~ oja) x[e]e Qe ~
[Edit [Execute | E Coproc1 | Coproc@ |
— - =i Registers |_
Text Segment :
: MName | Mumber Value
Bkpt Address Code Basic Source slezern 0 0x00000000| -
L] 0x00400000| ox24p20004/addiu £2,50,4 16: ligvo, 4 # aystem call code for print string tat 1 nx000000aa0
™ ox00400004| ox3col1001|lui $1,4087 17: la%al, prompt # loed addr of prompt in $al =0 2 x00060000
[L] | nxoodooons| ox3d24p00p/ori £4,251,0 svl 3| o0x000000aa
|:| nx0040000c Ox0nOnoofc/syscall 18: syseall # print prompt £a0 1 Hx00000000
Jial ox0oaon0io| ox2apzogos|addin £2,50,5 18: 1i sv0; 5 # system call code for read in ;$a1 5 px00000000
; 000400014 Dx000nO0Oe|3v3call 20: syscall # read numl into &vO0 faz 73 x000000a0
[] nx0040001e| oxolozdnznladd 28,858,852 21: add &£t0, %c0, &0 # add nmuml to Sum ta3 7 nx00000000
™ Ox0040001c Ox2an20004|addiu $2,50,4 23: ligv0, 4 # system call code for print string £t0 8 Hx0000000a
|:| 0x00400020| Ox3c0ll001/lui 51,4097 24: la%al, prompt # load addr of prompt in $al ;$t1 3 px00000aan
[] | oxooaono24| ox3424nn00jeri §4,51,0 H ¥ 10] 0x00000000
[] | oxocacoozs| oxnoogoodciSyscall 25: syscall # print prompt £t3 11| 0x00o0000on
|:| 0x0040002c| 0x24020005/addiu £2,%0,5 26 1i %v0, &5 # aystem call code for read in £zl 12 H=000B0a00
HEE s e e e e e e | t5 13 0x00000000]
5Th 14 0x00000000
Data Segmen £L7 15 0x00000000
Address Value (+0) Value (+4) Value (+8) Value (+c) |:fizs0 16 0x00000000
ox100ioonn Oxged5200a O0x20726574 0x756e2061 0x726 £al 17 0x00000000
0x10010020 0x6e207275 0x65626d75 0x69207372 0x000| |z57 18] Gx00000000
0x10010040 0x00000000 0x00000000 0x00000000 0000/ ifzo5 19] 0x00000000
0x10010060 0x00000000 0x00000000 0x00000000 0x000) = FET! 20 000000000
0x10010080 0x00000000 0x00000000 0x00000000 0000/ :fs35 71l 0x00000000
Nw1Nninnsn fxinnnnnmnn fxfnnnnnmnn fxfnnnnnmnn MNufnn 536 22 ox000000on
Alea7 23| 0x00000000
| Mars Messages | Run L0 _ zt8 24] 0x00000000
Bssemble: assembling C:\Usera\Emmi\Documents\My Programs‘\MIPS\first.asm Hera 25 nx000000a0n
k0 26| 0x00000000
Clear mssemble: operation completed successfully. skl 27 0x00000000
| gap 28] 0x10008000
Asop 25| Ox7Iffefic|e

Figure 1.3: MARS screen after running the Assersblamand

After running the Assemble command, you can nowcetesthe program. The Run menu and the
toolbar contain the following execution options:

Menu Item Icon Action
Run > Assemble % Assemble the program.
Run> Go @ Run the program to completion, or until the nexdabpoint.
Run > Reset @ Reset the program and simulator to initial valdekws

restarting program execution.

. ! Single-step execution: execute one instruction ama. Allows
Run > Sep @1 debugging the program by inspecting register anchang after
‘ ‘ executing each single instruction.

Run > Backstep l@ Single-step backwards: “unexecute” the last exetunstruction.

Run speed 30 inst/sec The Run Speed Slider allows running the prografmlbaspeed or
¢ [_F= | slowing it down so you can watch the execution.e&f§ norma
execution only, not single-step execution.

1: Introduction to MARS

You can set a breakpoint at any instruction by kimgcthe checkbox in front of the instruction in
the text segment pane.

During execution, the instruction being executetighlighted in yellow, and the register that was
last modified is highlighted in green. Also, theigahle that was last updated in the data segment is
highlighted in blue. It's usually only possible see the highlighting when you are stepping or
running at less than full speed.

For more details about the MARS simulator, refethe MARS documentation at the following
link: http://courses.missouristate.edu/KenVollmar/MARS/

1.4 In-Lab Tasks

1. Test a simple MIPS program. Consider the followpnggram shown below:

(Edit | Execute |

|'Heﬂaasm | RowMajor.asm

.data
hello: .asciiz "Hello; world!\n"

.text

B oAk dk W L

.globl main
main:

la 5
1i S5v0, 4
syscall
Tin: S5v0,10
syscall

W A W
1

a) Type the program shown in the Figure above.
b) Find out how to show and hide line numbers.
c) Assemble and run the program.
d) What output does the program produce? and wdwas it appear?
2. Explore the MARS simulator:
a) Download and assemble thitbonacci.asm program from the MARS website.
b) Identify the locations and values of the iniiatl data.
c) Toggle the display format between decimal andabecimal.
d) Run the program at a speed of 3 instructionsgeond or less.

e) Single-step through the program and watch h@ster and memory values change.

1: Introduction to MARS

f) Observe the output of the program in B 1/O display window.

g) Set a breakpoint at the first instruction thaints results. What is the address of this
instruction?

h) Run the program at full speed and watch howopsat the breakpoint.
1) Change the line:

space: .asciiz # space to insert between numbers

to:
space: .asciiz "\n" # space to insert between numbers

Run the program again. What do you notice?

1: Introduction to MARS

