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Abstract

Computer architecture is an important subject for informatics and electrical engineering courses,
where students get to know how a CPU works internally. However, the students exhibit some
difficulties in this subject. This is due to the lack of versatile educational tools that simulate the
operation of a processor in an intuitive, integrated, graphical and configurable way.

One of the most used processor architectures for teaching computer architecture is MIPS. The
architecture has a few different versions, but the most used for teaching are the unicycle and the
5-stage pipeline.

In this dissertation, an educational MIPS simulator, DrMIPS, is described. This tool simu-
lates the execution of an assembly program on the CPU, step-by-step, and displays the status of
the datapath graphically. Registers, data memory and assembled code are also displayed, and a
“performance mode” for latencies and critical path analysis is also provided. Both unicycle and
pipeline implementations are supported and the CPUs and their instruction sets are configurable.
The pipeline implementation includes complete hazard detection and resolution.

The tool seeks to help students to understand topics like the composition and operation of a
datapath, pipelining, instruction encoding and processor measuring. It is available not only for
PCs but also for Android tablets. None of the other existing tools have a version for Android and
this is a platform that is becoming very popular. The tool supports multiple languages and is fairly
intuitive and versatile on both platforms.
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Resumo

A arquitectura de computadores é uma disciplina importante dos cursos de engenharia informática
e electrotécnica, onde os estudantes ficam a conhecer como um CPU funciona internamente. No
entanto, os estudantes demonstram algumas dificuldades nesta disciplina. Isto deve-se à ausência
de ferramentas educativas versáteis que simulem o funcionamento de um processador de forma
intuitiva, integrada, gráfica e configurável.

Uma das arquitecturas de processadores mais usadas para o ensino de arquitectura de com-
putadores é o MIPS. A arquitectura tem algumas versões diferentes, mas as mais usadas no ensino
são as versões uniciclo e pipeline de 5 etapas.

Nesta dissertação, um simulador educativo do MIPS, DrMIPS, é descrito. Esta ferramenta
simula a execução de um programa em assembly no CPU, passo-a-passo, e mostra o estado do
caminho de dados graficamente. Registos, memória de dados e código assemblado também são
mostrados, e um “modo de desempenho” para análise de latências e caminho crítico é fornecido.
Ambas as implementações uniciclo e pipeline são suportadas e os CPUs e seus conjuntos de in-
struções são configuráveis. A implementação pipeline inclui detecção e resolução completa de
conflitos.

A ferramenta pretende ajudar os estudantes a entender tópicos como a composição e funciona-
mento de um caminho de dados, pipelining, codificação de instruções e desempenho de proces-
sadores. Está disponível não só para PCs mas também para tablets Android. Nenhuma das outras
ferramentas existentes tem uma versão para Android e esta é uma plataforma que está a ganhar
bastante popularidade. A ferramenta suporta vários idiomas e é bastante intuitiva e versátil em
ambas as plataformas.
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“There are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies,

and the other way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.”

Charles Antony Richard Hoare
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Chapter 1

Introduction

This thesis was written for the dissertation of the MIEIC (Mestrado Integrado em Engenharia

Informática e Computação) of the Faculty of Engineering of the University of Porto (FEUP) and

its aim is to present and describe the work done during the dissertation and the methodology used.

The work described in this document refers to a software tool that was developed to help stu-

dents to learn about processor architectures, using the Microprocessor without Interlocked Pipeline

Stages (MIPS) architecture as an example.

This chapter is an introduction to the document, presenting the motives that led to this work

and the objectives that it aimed to achieve. It ends with the outline of the rest of the document.

1.1 Context and Motivation

Computer architecture is an important subject in the syllabus of Informatics and Electrical Engi-

neering courses, such as the MIEIC and MIEEC (Mestrado Integrado em Engenharia Electrotéc-

nica e de Computadores) of FEUP. Here, students get to know the basics of how processors and

computers work, learning topics like data representation on the computer, digital circuits, con-

ceptual composition of a Central Processing Unit (CPU), assembly programming and processor

performance.

However, many students exhibit difficulties understanding various topics on this subject, such

as pipelined processors and calculating processor performance. Teachers and researchers from

FEUP have concluded that these difficulties exist mostly due to the absence of tools on an inte-

grated environment that are geared towards education. More specifically, tools that allow students

to view the composition of a CPU’s datapath1 graphically and consult detailed information about

the data in each functional block, data being transmitted on the buses and control signals for each

instruction on a set of instructions executed by the CPU.

1Datapath: the component of the processor that performs arithmetic and logical operations. [PH05]
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Introduction

There are already many tools created to simulate the operation of a CPU, and even some of

them have graphical interfaces to show the CPU’s datapath. However, most of them are not very

adequate for educational purposes, are difficult to use and understand or are too specific for some

problem and not very flexible.

Due to this lack of educational processor simulators, a versatile and intuitive MIPS simulator

was developed. It aggregates several features that are found scattered through the other exist-

ing tools, aiming to aid both students in learning and teacher in teaching this important subject

that is computer architecture. The simulator was named DrMIPS, a name that was inspired by

DrScheme/DrRacket [PLT13], the programming environment used in the first semester of the first

year of the MIEIC course at FEUP.

1.2 Objectives

The main objective of this dissertation was to create a tool to support computer architecture teach-

ing and learning. This educational tool is, more specifically, a simulator of a processor, the MIPS

processor, which is a well-known processor in the computer architecture academic community

and also one of the most used processors for teaching computer architecture courses in universi-

ties [Per09].

The development of this tool was initially based on the following requirements:

• Allow the configuration of the datapath by allowing the configuration and parametrization of

each individual block, defining their interface, functionality and latency. With this, anoma-

lies can be introduced, simulating faulty processors and showing the consequences.

• Execute the simulation either step-by-step2 or resorting to animations, or both. On each step

the tool should display visually detailed information about the datapath, more specifically:

values of the registers, values of the signals on the buses and at the inputs and outputs of

each block, and values of each memory variable in the Random-Access Memory (RAM).

The values on the datapath are represented in binary, hexadecimal and decimal.

• Simulate both the unicycle and the pipelined versions of the processor. Simulating the

pipelined version also involves simulating the hazards that can occur and the methods used

by the processor to resolve them, like shortcuts and stalls.

• Allow the execution of not only an assembly program but also a single individual instruc-

tion. The execution of a single instruction allows the students to watch and understand the

execution steps of each instruction.

• Identify the critical path and calculate the processor performance though the simulated la-

tency of the datapath components.

2Each execution step is a clock cycle.
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• Be simple to use and easy to understand. This is crucial since the simulator’s objective is to

aid students to learn about computer architecture and not serve as an obstacle for that. The

students shouldn’t need to spend too much time learning how to use the simulator.

The goal of the tool is to help students to learn about computer architectures. By using the tool

the students are expected to better understand:

• The composition and operation of a “simple” datapath.

• How instructions are encoded into machine code and how they are executed.

• The values of the signals in the datapath.

• Relevant blocks and control signals for each instruction.

• Pipelining, hazards, forwarding and stalls.

• Performance measuring and critical path identification.

The tool was developed mainly for personal computers, but a version for touch screen Android

devices, especially tablets, was also created.

1.3 Work Summary

In this dissertation an educational MIPS simulator was developed. The simulator, DrMIPS, can

be executed on most Personal Computer (PC) operating systems and also on Android devices.

The user can load or write an assembly program using the built-in code editor and then see and

understand, step-by-step, how it is executed in the CPU. In each step the simulator presents

detailed information about the state of the processor, namely: the assembled code, the instructions

being executed, the registers, the data memory and the CPU’s datapath and values flowing through

it. The performance of the processor is also simulated and the user can view the components’

latencies and the CPU’s critical path. DrMIPS can simulate several different MIPS unicycle and

pipeline datapaths and these can be completely configured, including their instruction sets, or new

ones can be created.

1.4 Document Structure

Besides this introduction, this document is composed by six more chapters. In Chapter 2 the

State-of-the-Art is discussed and related work and tools are presented, indicating their strengths

and weaknesses. Chapter 3 presents a brief overview of the MIPS architecture and describes the

methodology used for the development of this work. Chapter 4 discusses how the internal simu-

lation logic was implemented and how the CPU and the instruction set is represented. Chapter 5

presents and details the implementation of the graphical user interface of both PC and Android

3
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versions. Chapter 6 discusses some examples of how the tool can be used by students to better

understand several topics of computer architecture. Finally, in Chapter 7 a review of what was

accomplished in this dissertation is made and some suggestions for future work are presented.

4



Chapter 2

Related Work

As mentioned in the previous chapter, various tools to simulate the operation of a CPU already

exist and some of them even display the composition of the datapath visually. Most of them,

however, are not very suitable to teach students of computer architecture courses. They are too

difficult for a student to use, or have a very specific objective and focus only on the unicycle or

the pipeline version of the CPU, among other problems. This chapter presents and describes some

of the most relevant educational simulators of the MIPS processor, mentioning how adequate they

are for educational purposes, if they are open-source, and their problems and strong points.

2.1 SPIM

SPIM [Lar] is an open-source simulator, written in C++ by James Larus, that runs MIPS32 pro-

grams [Lar]. It was widely used, both for education and for the industry [VS06], and supports

a large number of MIPS instructions, including syscalls1 and some floating point2 operations

[Lar90, Lar]. Recently, a new version of the tool using Qt [Dig13] was released with the name Qt-

Spim, allowing the tool to run in all major operating systems with the same code and user interface

[Lar].

When SPIM is executed, a window like the one shown in Figure 2.1 is displayed. The window

can display the registers, including the floating point ones, the text segment3 and the data segment4.

The text segment initially contains initialization code. Besides the main window, another window

representing the console, for input and output, is displayed. SPIM doesn’t provide a code editor, so

1Syscall (or system call): A special instruction that transfers control from user mode to a dedicated location in
supervisor code space, invoking the exception mechanism in the process. [PH05]

2Floating point: Computer arithmetic that represents numbers in which the binary point is not fixed. [PH05]
3Text segment: The segment of a UNIX object file that contains the machine language code for routines in the

source file. [PH05]
4Data segment: the segment of a UNIX object or executable file that contains a binary representation of the initial-

ized data used by the program. [PH05]

5
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the code must be written by an external tool and then loaded. After that, the code can be executed

completely or step-by-step. The user can also set breakpoints, edit the values of the registers and

data memory during the simulation and choose to display these values in either binary, decimal or

hexadecimal formats.

Figure 2.1: QtSpim (SPIM) user interface

The tool is good for debugging MIPS assembly programs and is reasonably intuitive, although

the initialization code shown can confuse the user at first, and it would benefit from an integrated

code editor. SPIM simulates the unicycle version of the processor and doesn’t display any visual

representation of the CPU’s datapath and, thus, only covers computer architecture topics related

to assembly programming and general CPU operation.

2.2 MARS

The MIPS Assembler and Runtime Simulator (MARS) [Uni12] was created by Dr. Pete Sanderson

and Dr. Kenneth Vollmar [VS06] and is used in computer architecture courses in many faculties

all over the world. It simulates the execution of a MIPS assembly program and shows the results

on the screen. It was developed in Java and, therefore, can be executed in most operating systems,

provided they have a Java Runtime Environment (JRE) installed.

The simulation can be executed at once or step-by-step, one instruction at a time. During

the simulation, the tool displays not only the resulting program outputs and inputs but also the

values of each register, the compiled code and the data segment. The values can be displayed in

hexadecimal or decimal bases. The user can edit the values of the registers and the data memory
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Figure 2.2: MARS edit window

Figure 2.3: MARS execution window
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easily during the simulation. Breakpoints can be set in the code and the step-by-step simulation

even allows to undo steps. MARS also simulates the floating-point co-processor and implements

various pseudo-instructions and syscalls.

Besides a simulation tool, MARS is also an Integrated Development Environment (IDE) that

includes an editor with syntax highlighting, help tooltips in the editor and a help window with a

list of MIPS instructions, syscalls, etc. Two screenshots of the MARS edit and execution window

are shown in figures 2.2 and 2.3 respectively.

The tool is very good for simulating and debugging MIPS assembly programs. However, com-

puter architecture courses place a strong emphasis on the conceptual composition of processors

and pipelined architectures. MARS doesn’t display the CPU visually neither allows the simulation

of the pipeline version of the MIPS, executing the instructions like the unicycle version.

MARS is an open-source software licensed under the Massachusetts Institute of Technol-

ogy (MIT) license5. Plugins for MARS can be developed by extending the AbstractMarsToolAn-

dApplication class inside the mars.tools package [SAPJ10]. The plugins can then be started from

the Tools menu of the simulator.

Several plugins have been developed for the MARS simulator. One of these plugins is the

MIPS X-Ray.

Figure 2.4: MIPS X-Ray plugin window during a simulation

MIPS X-Ray displays a window with the datapath of a unicycle MIPS processor [SAPJ10].

During the execution of an assembly program by the MARS simulator an animation is shown by

5MIT license: http://courses.missouristate.edu/kenvollmar/mars/license.htm
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the plugin, displaying what buses and blocks each instruction uses. The type of the instruction and

its machine code are also displayed.

The source code of the plugin was found on a recent Google Code repository at https:

//code.google.com/p/plugin-mips-xray. Figure 2.4 displays the plugin running, com-

piled from the code of that repository.

The plugin only highlights the buses used by each instruction, through an animation with a

fixed speed, without displaying neither the data transmitted in those buses nor the components’

inputs and outputs. Also, the plugin is very CPU intensive.

2.3 ProcSim

ProcSim, or ProcessorSim, is a tool developed by James Garton in 2005 for his Master’s degree

in Software Engineering. The tool simulates a processor’s internal circuits executing a piece of

assembly code as an animation. The simulator is based on the MIPS R2000 unicycle processor,

is aimed for people who want to learn how processors work and is developed in Java, so it should

work on most Operating Systems, if they have a JRE installed. [Gar05]

Figure 2.5: ProcSim simulation window [Gar05]
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The tool includes several different datapaths and the user can create more, either by writing an

eXtensible Markup Language (XML) file or by using the graphical interface provided by the tool

[Gar05]. The simulator executes assembly code from a file and also provides a very simple code

editor to create assembly programs. The MIPS instructions that the tool can simulate are limited

to: add, sub, and, or, slt, lw, sw, beq, addi, andi, ori, j [Gar05].

After selecting a datapath (or processor architecture) and the assembly code the simulation can

be started, being displayed on the simulation window (see Figure 2.5). The window displays the

selected datapath and also other small windows to control the simulation and view the processor

registers and memories. The simulation is done using animations. Each instruction is executed

automatically or step-by-step, displaying for each instruction the buses and components used and

data passed through them, in binary or decimal format.

ProcSim provides a good visualization of the datapath. However, it supports only a small set

of MIPS instructions and only one component can send messages at a time during the simulation,

displaying the animations sequentially by component, whereas in a real processor the components

work concurrently [SCB08]. Furthermore, it doesn’t support pipelined datapaths and the source

code isn’t provided.

2.4 MIPS-Datapath

MIPS-Datapath [GC] was developed by Andrew Gascoyne-Cecil in C++. It is an open-source

software under the GNU General Public License6. The tool simulates a set of MIPS instructions

and displays graphically how the processor datapath executes them. Registers and memory are

also shown. The tool webpage [GC] provides executables for Linux and Windows.

The tool can simulate not only a unicycle datapath but also a pipelined one, with or without

data forwarding (see Figure 2.6). The instructions are executed step-by-step and the buses used by

the selected instruction up to that step are highlighted. The inputs and outputs of each component

can be displayed as a tooltip by hovering the mouse cursor over the desired component. The tool

provides a simple code editor to create the assembly program and the program’s initial data can be

set using a table.

MIPS-Datapath allows a person to see how each instruction is executed by the processor but

not very well how pipelining in processors work, since the simulator highlights the used buses

only for one instruction at a time and not by the whole processor at that time, as the processor can

be executing several instructions in different execution steps at the same time. Although the tool

supports data forwarding, it doesn’t support stalls and can’t detect and solve branch hazards. The

tool supports only 10 MIPS instructions: lw, sw, add, addi, and, or, sub, stl, beq, nop. Also, the

inputs and outputs of each component are not clearly shown and one must hover the cursor over

the component to show its data. Finally, it’s not possible to configure the datapath without editing

the code.

6GNU General Public License http://opensource.org/licenses/GPL-3.0
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Figure 2.6: MIPS-Datapath simulator [GC]

2.5 WebMIPS

WebMIPS is an educational MIPS simulator that can be executed from a Web browser. It was

written in the Active Server Pages (ASP) language and simulates a five-stage pipeline, having been

used in an introductory computer architecture course of the Faculty of Information Engineering in

Italy [BGM04]. A running version of WebMIPS is available here: http://www.maiconsoft.

com.br/webmips/index.asp. The source code is also available online.

Being a web application, WebMIPS can be executed from almost any system, provided it has a

web browser and is connected to the internet, without requiring the download or installation of any

program. The application provides a simple editor to load an assembly program. After loaded,

the program can be executed step-by-step or all at once, displaying the number of clock cycles

used to execute the program. Pipeline hazards are detected and resolved using data forwarding

and stalls, and branch decision is in Instruction Decode phase [BGM04]. Figure 2.7 displays what

the WebMIPS window looks like during the execution of a program.

On the left side of the window the list of instructions, registers and data memory addresses

are displayed. For each instruction, the resulting machine code, instruction type and instruction

fields are shown, and the values of the fields, registers and memory are displayed both in binary

and decimal formats. This part of the window also displays what parts of the pipeline are stalled,
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Figure 2.7: WebMIPS window during execution [BGM04]

if any.

The central part of the window displays the MIPS pipeline. The control and data wires can be

hidden and the user can click on each individual component of the pipeline, including multiplexers,

to view a brief description of the component and its inputs and outputs at that moment. Besides

that, the displayed pipeline is static, not highlighting the wires used by each instruction.

WebMIPS is a good educational MIPS simulator but has some important shortcomings. The

application simulates only the pipeline version of the MIPS processor. The representation of the

pipeline shown is mostly static and, while the user can click on the components to check their

input and output data, it doesn’t display the wires used by the instruction nor the data that passes

through them without requiring a click. It only distinguishes by color the wires that belong to the

data path or to the control path. It also doesn’t support floating point instructions and syscalls.

2.6 EduMIPS64

EduMIPS64 is an educational simulator, targeted for Computer Architecture students and devel-

oped at the University of Catania in Italy [PSP+12], that runs MIPS64 programs [Tea]. The tool

was used in some undergraduate courses to evaluate it and the results were positive, both in terms

of percentage of success [PSP+12] and in terms of appreciation from the students [edu].

EduMIPS64 was initially a port of the WinMIPS64 simulator to Java [Tea, SCB08] and has, in

fact, a very similar interface. WinMIPS64 [Sco12] is, in turn, a replacement for the WinDLX sim-

ulator. Both WinMIPS64 and WinDLX are Windows-only programs, but WinDLX simulates the

DLX architecture. As for source code availability, only EduMIPS64 has the code available online.
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WinMIPS64’s source code, in C++, is available too but only on request [Sco12]. Two screenshots

of WinDLX and WinMIPS64 are presented in figures 2.8 and 2.9 respectively. EduMIPS64 is

described in more detail below since it is more recent, cross-platform and has the source code

available online.

Figure 2.8: WinDLX user interface

Figure 2.9: WinMIPS64 user interface
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EduMIPS64 was, as mentioned before, developed in Java and, thus, can be run in almost any

operating system. It simulates a 5-stage MIPS64 processor [PSP+12] that includes a floating point

unit, and supports a quite reasonable number of assembly instructions, including some syscalls.

It also detects hazards, allows the simulation to run with or without data forwarding and allows

registers and memory to be edited during the execution.

The tool has an intuitive user interface, as shown in Figure 2.10. No editor is provided, so the

program to simulate is loaded from a file created by an external editor. After loaded, the program

can be executed step-by-step and the CPU state is shown in several internal windows. These

windows display the registers, the memory, the instructions, performance statistics including stalls

and Cycles Per Instruction (CPI), a timing diagram of the blocks used by each instruction in each

clock cycle and a simple pipeline diagram composed by the CPU’s main blocks, including the

ones relative to the floating point unit, and displaying the instructions using them. Additionally,

each block is represented by a different color.

Figure 2.10: EduMIPS64 user interface [PSP+12]

EduMIPS64 has a very friendly user interface and, apparently, was successful [edu]. It could

be improved, however. The tool doesn’t provide a code editor and only supports the pipeline

version of the processor. It also doesn’t show a detailed datapath representation.
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2.7 For Android

For the Android platform, only one MIPS simulator was found in the Google Play store: the As-

sembly Emulator [Jim13]. This application is recent and very basic, being in its early development

stages. A MIPS assembly program can be assembled, executed and, after that, the application dis-

plays the last values of the registers. The applications supports a very limited number of instruc-

tions. Currently there is only support for MIPS but more assembly languages will be implemented

[Jim13].

Another simulator was found but for the M32 processor. This simulator, the M32 Assembly

[UG13], allows an M32 assembly program to be executed step-by-step or automatically with a

delay between instructions. During the execution, the user can see the state of the processor

(registers and output) and what it is doing.

2.8 Concluding Remarks

In this chapter some existing relevant educational simulators, related to the solution proposed

in the previous chapter, were discussed, making it clear that, although some of them are great

simulators, none are complete or versatile enough to support alone teaching and learning of many

subjects in computer architecture courses.

SPIM MARS ProcSim MIPS-Datapath WebMIPS EduMIPS64
Open-source Yes Yes No Yes Yes Yes
Code editor No Yes Yes Yes Yes No
Editor syntax-highlighting No Yes No No No No
Unicycle simulation Yes Yes Yes Yes No No
Pipeline simulation No No No Partial Yes Yes
Floating point support Yes Yes No No No Yes
Syscall support Yes Yes No No No Yes
Edit data during execution Yes Yes No No No Yes
Datapath visualization No No Yes Yes Yes Simple
Datapath configuration No No Yes No No No
Timing diagrams No No No No No Yes
Latencies & critical path No No No No No No
Native Android version No No No No No No
Written in C++,Qt Java Java C++ ASP Java

Table 2.1: Comparison of the presented tools

Table 2.1 summarizes the tools presented in this chapter, comparing the features amongst them.

The table shows that the simulators usually cannot simulate both the unicycle and the pipeline

version of the CPU and that the simulated processor datapath is usually not very configurable.

We can also see that the code editors provided by most of them, when provided, are usually very

simple without displaying any sort of syntax highlighting. Furthermore, none of them has an

Android version and none of them simulate the latencies of the CPU’s components and display its

critical path. On the other hand, many of these simulators have their source code available online
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and, additionally, many of them can be executed in all major computer operating systems. One

could use more than one of these simulators together to aggregate more features and cover more

computer architecture topics, but it would be somewhat unintuitive and cumbersome, requiring

students to learn and adapt to several tools. Joining these features in an integrated environment

would solve these problems.

A lot more simulators exist, but only a few were presented in this chapter, namely some of

the most relevant simulators oriented for computer architecture teaching and learning. Some

other simulators not described here are: DIMIPSS [FPC06], EKS-MIPS [Ara10, SAA10], MIP-

Sim [Koc08], MipsIt [Bro02b, Bro02a], WebSimple-MIPS [web08], PS - CAS MIPS [MFN09,

MVP09], R10k [JdSGM07], ViSiMIPS [KBH11] and UCO.MIPSIM [dC06, GLPHB08].

As for Android, only one very basic and recent MIPS simulator was found, and none of the

presented tools has an Android version. As such, and seeing how this tablet is becoming very pop-

ular (see Section 3.2), a version of the developed simulator for Android is something innovative.

The next chapter describes the methodology used in the development of the proposed tool

and presents a very brief introduction about the MIPS processor architecture. It also provides an

introduction to the following chapters, where the implementation is detailed.
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Chapter 3

Requirements and Development
Methodology

This chapter presents the methodology used in the development of this work. First, a very brief

overview of the MIPS processor architecture is presented. Then, the technologies used are dis-

cussed. Next, the development process is detailed. Finally, an overview of the developed tool’s

requirements and features is given, and the general structure of the code is explained.

3.1 MIPS

In this section a small overview of the MIPS processor architecture is presented, focusing on the

details that are important for this dissertation. For a more in-depth description and explanation

of the MIPS architecture it is recommended to read the referenced book “Computer Organization

and Design – The Hardware/Software Interface” by David Patterson and John Hennessy [PH05]

or any other similar book.

MIPS Computer Systems, founded in 1984, was one of the pioneers in Reduced Instruction

Set Computer (RISC) CPU development with the creation of the MIPS microprocessor architec-

ture. The company was bought by Silicon Graphics Inc. in 1992 and is now known as MIPS

Technologies Inc. [Per09].

RISC processors, as opposed to the Complex Instruction Set Computer (CISC) processors,

contain fewer and simpler instructions, all with the same size and, ideally, with a number of CPI

of 1 and a lower amount of addressing modes and formats [Jam95]. They also include a larger

number of registers to avoid frequent accesses to the memory [Per09].

The MIPS processor architecture is widely used for computer architecture teaching by faculties

and universities around the world [Per09], like FEUP. The architecture has several versions. The

most used ones for teaching are the unicycle and the pipelined versions. In the unicycle version,

each instruction is executed in a single clock cycle. This means that, as the clock frequency is

fixed, the clock period must be no shorter that the time of the longest instruction, which usually is
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the load instruction [Per09]. To solve that performance problem a pipeline was introduced. In the

pipelined version, each instruction is divided into five stages [PH05]:

Instruction fetch (IF) Fetch the instruction from memory and compute the address of the next

sequential instruction.

Instruction decode (ID) Determine which instruction it is and read the registers indicated in the

instruction.

Execution (EX) Necessary calculations executed by the Arithmetic and Logic Unit (ALU).

Memory (MEM) The memory can be read from or written to in this step.

Write back (WB) Complete the instruction by writing the result on a register.

Figure 3.1: MIPS basic datapath [PH05, p. 287]

The datapaths of the unicycle and pipeline versions of MIPS are shown in figures 3.1 and

3.2 respectively. These are very simple representations of them with very little detail, omitting

many things like, for example, the control path. A datapath is composed by several components

connected together by buses. The major components, or blocks, of the MIPS CPU can be identified

in both versions of the datapath: the program counter (PC), the instruction memory, the registers,

the ALU and the data memory. The representation of the pipeline datapath (Figure 3.2) also

indicates how the blocks are divided by the five stages mentioned before. The pipelining technique

is briefly explained next.

Pipelining is an implementation technique in which multiple instructions are overlapped in

execution, like an assembly line [PH05]. In the MIPS case, the five execution steps are executed

in different clock cycles and the clock period is set to at least the duration of the longest step, which

usually is the memory access. The sequential instructions are then overlapped when executed: in

the first cycle the first instruction is loaded in the IF stage, in the second cycle the first instruction

advances to the ID stage while the second instruction is loaded in the IF stage, and so on (see
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Figure 3.2: MIPS simplified pipelined datapath [PH05, p. 398]

Figure 3.3). This greatly increases the number of instructions executed per second. However,

some problems arise with the use of a pipeline, like data hazards1 and control hazards2. These

problems are solved by the use of methods like forwarding3 and stalls4.

Figure 3.3: Timing diagram of 5 instructions in an ideal MIPS pipeline (based on [PH05])

1Data hazard: Also called pipeline data hazard. An occurrence in which a planned instruction cannot execute in the
proper clock cycle because data that is needed to execute the instruction is not yet available. [PH05]

2Control hazard: Also called branch hazard. An occurrence in which the proper instruction cannot execute in the
proper clock cycle because the instruction that was fetched is not the one that is needed; that is, the flow of instruction
addresses is not what the pipeline expected. [PH05]

3Forwarding: also called bypassing. A method of resolving a data hazard by retrieving the missing data element
from internal buffers rather than waiting for it to arrive from programmer-visible registers or memory. [PH05]

4Stall: also called bubble. A stall initiated in order to resolve a hazard. [PH05]
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3.2 Technology and Tools

As mentioned in the previous chapters of this document, the objective of this dissertation was to

develop a simulator of the MIPS processor to help students to learn about computer architecture.

A considerable knowledge about this architecture was therefore needed.

The tool was developed for the PC using the Java language. Java [Ora], being a cross-platform

language, allows the tool to run on most operating systems, like Windows, Linux and Mac OS.

The only requirement to run Java applications is the presence of a JRE installed in the computer.

The Graphical User Interface (GUI) was created using Swing and the chosen IDE was NetBeans

[Ora13], as it simplifies the creation of Java graphical interfaces. Some external libraries were

also used for the user interface, namely: RSyntaxTextArea [Fif13b] and AutoComplete [Fif13a]

for the code editor and JTattoo [Hag] for the light and dark themes.

A similar version of the tool was also developed for touch screen Android devices, especially

tablets. The tablet is a device that is gaining a lot of popularity among consumers [Shi12], and

Android [Gooa] is one of the most popular operating systems for not only tablets but also smart-

phones [But11]. Even though the Android version was targeted especially for tablets, it also runs

fairly well on smartphones. It is important to note that Android applications are developed in Java,

so the choice of using Java for the PC version made the creation of the Android version a lot easier.

The IDE used to develop the Android version was Eclipse [Fou13], as it is the one recommended

by Google [Goob]. The Android version was developed because the system is popular and, as dis-

cussed in Section 2.7, almost no MIPS simulators exist for Android platforms. Moreover, Android

applications can be developed on any of the major computer operating systems without any cost.

The different CPUs and their instructions are configurable and stored in JavaScript Object

Notation (JSON) files. JSON [jsoa] is a file format that can be parsed easily in Java through a

library. It is also easy for humans to read and write, and creates smaller files that other formats

like XML. The chosen library to parse the JSON files was the standard json.org library [jsob],

which is already built-in in Android.

As for version control, git [Con13] was used, as it is decentralized, allowing the versioning

to be done offline. The repository containing the project’s source code was hosted in a private

Bitbucket [Atl] repository, as academic users have access to all of Bitbucket features.

3.3 Development Process

The initial work plan was very general and merely indicative. The development would start by the

requirements specifications followed by the interface and interaction specification, then the tool

would be implemented and finally the documentation and the final report would be written. The

implementation part was further divided into smaller tasks: representation of the CPU, execution

simulation, graphical interface for the PC version, CPU graphical editor and graphical interface

for the Android version. This plan was also very ambitious. In reality the followed process was

very different.
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The real development process was very informal and agile. New versions of the simulator

were released for the supervisors to see every week and meetings were made with them every two

or three weeks. No formal requirements or interface specifications were made, thus maximizing

the time available for the implementation of the tool. The progress was tracked using a list of tasks

and their individual progress.

The development started by creating the foundations to represent the CPU, the components

and their inputs and outputs. Not long after that, the GUI for the PC version was started, serving

as a working prototype. By the time the unicycle MIPS CPU was finished, the development of the

Android version had started. The development of the user interfaces was done in parallel with the

development of the simulation logic. However, the development of the simulation logic was given

a higher priority than the development of the GUI until the final weeks, when the user interface

was given more attention and made more user-friendly.

3.4 Requirements and Code Structure

The developed simulator, DrMIPS, lets the user create or load an existing assembly program and

then simulate its execution on the 32 bit MIPS CPU while visualizing what happens inside the

processor. The simulation can be executed step-by-step or the full program at once, and the user

can also undo steps (i.e. back step). In each step, the user can see the contents of the registers, the

data memory and, more importantly, the composition and state of the unicycle or 5-stage pipeline

datapath. It also shows the values at each input and output of each component, which wires are

relevant for the execution of the current instruction and, in the case of the pipelined datapath, what

instructions are in each stage. Besides seeing how the data flows in the datapath, the user can

also view the latencies of the components and the critical path of the CPU using the “performance

mode” and experiment how changes in the latencies can alter the critical path as well.

DrMIPS provides several different MIPS CPU configurations, based on [PH05], including

the unicycle datapath, with some simplified variants, and the pipelined datapath, with or without

hazard detection and resolution. These CPUs can be created and configured by specifying in

a file all the components and their properties and the wires connecting them. But, besides the

datapath, the instruction sets used by them can also be configured and new instructions can be

created, by specifying the properties of the different instruction types, instructions and pseudo-

instructions and what they do. The initial requirements and objectives of this work were presented

in Section 1.2.

The simulator was implemented for the PC and for Android devices. For that reason, and to

ease the development of both versions, the code was divided in two parts: the simulation logic

and the user interface. With this division, only the user interface part is dependent on the platform

(PC or Android), while the simulation logic part is exactly the same on both platforms. Figure 3.4

shows a simplified Unified Modeling Language (UML) class diagram of the simulator.

The code consists of the following Java packages:
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• mips: contains the simulation logic.

– components: inner package that defines all the types of components.

• gui: contains the platform dependent user interface.

• util: contains some utility classes.

• exceptions: contains the exception classes.

The gui package, where the user interface is defined, is the only package that differs from both

platforms. The other packages are all platform independent and are shared by both platforms. The

implementation of the simulation logic and the user interfaces is detailed in chapters 4 and 5.

Figure 3.4: Simulator UML class diagram

3.5 Concluding Remarks

This chapter presented an overview of the MIPS architecture, the requirements and features of

the tool and the methodology used in its development. Next chapter describes how the internal

simulation logic was implemented, while Chapter 5 describes how the graphical interfaces for both

PC and Android were implemented.
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Simulation Logic Implementation

This chapter describes how the MIPS processor was represented and how the simulation logic was

implemented. As discussed in the previous chapters, the simulator, DrMIPS, was developed for

both computers and Android devices and, to ease the development of both versions, the internal

simulation logic was coded in a way that didn’t make it dependent on the platform.

Figure 4.1: UML class diagram of the simulation logic

Figure 4.1 shows a simplified UML class diagram of the simulation logic code. This corre-

sponds to a portion of the UML diagram shown in Figure 3.4 and is in the mips Java package.

As can be seen in the diagram, this package defines the CPU and all its components, inputs, out-

puts, supported instructions and pseudo-instructions and assembler. It also defines the Data class,

which is an abstraction on top of the integer data type where the values have a size in bits. When
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a value is assigned to an instance of this class, all the bits that don’t fit in the specified size are

zeroed. It also provides easy access to the value’s binary, octal and hexadecimal representations.

The bits in the binary representation are grouped in groups of 4 bits to facilitate reading. This class

is used almost everywhere so, to avoid complicating the UML diagram, it appears isolated.

4.1 CPU Definition

Each CPU is defined in a JSON file. A CPU file lists the components and their properties, the

wires connecting the components, the “friendly” names of each register and the used instruction

set (described in the next section). A snippet of the definition of a CPU file is shown in Listing 4.1.

Most components and wires were omitted for brevity and replaced by ellipsis.

1 {

2 "components": {

3 "MUX_DST": {"type": "mux", "x": 205, "y": 260, "size": 5, "sel": "RegDst", "out

": "OUT", "in": ["0", "1"], "desc": {"default": "Selects rt or rd as the

destination register.", "pt": "Selecciona o rt ou rd como registo de

destino."}},

4 ...

5 },

6 "wires": {

7 {"from": "DIST_INST", "out": "15-11", "to": "MUX_DST", "in": "1", "start": {"x

": 185, "y": 270}, "points": [{"x": 195, "y": 270}, {"x": 195, "y": 282}]},

8 {"from": "MUX_DST", "out": "OUT", "to": "REG", "in": "WriteReg", "end": {"x":

250, "y": 277}},

9 ...

10 },

11 "reg_names": ["zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2",

"t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7

", "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"],

12 "instructions": "default.set"

13 }

Listing 4.1: Snippet of the definition of a CPU file

The different sections that compose the CPU file are:

components Defines the properties of each component, such as the type, the graphical position,

the identifiers of the inputs and outputs and possibly a custom description for the various

languages. Most of these properties are different for each type of component and each

component is identified by a unique identifier.

The component in this example (Listing 4.1) is a multiplexer. The properties sel, in and

out define the identifiers of the inputs and outputs of the multiplexer and size defines its

data size in bits. The other properties are common to all components.
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wires Defines all the wires. Each wire connects an output of a component to an input of another

component. The position of the input or output on the component is calculated automatically

but, as it is not always the most adequate, it can be set manually in the definition of the wire.

Intermediate points can also be specified.

reg_names Is optional and defines the “friendly” names of all registers, without including the

dollar sign ($).

instructions Specifies the file that defines the supported instruction set (see Section 4.2.1).

The CPU JSON files are loaded and parsed by the CPU class. The CPU class is the central

part of the simulator (see Figure 4.1), serving as the interface between the MIPS CPU and the

GUI. A CPU contains all its components, instruction set and assembler. Furthermore, it controls

the simulation of assembly programs, calculates the accumulated latencies of the components and

determines the CPU’s critical path and control path.

A CPU is comprised of several components connected together by wires. The Component ab-

stract class is the base class for all the components and declares all the properties that are common

to all components, like the name, position and size. It also provides methods to add and access

the inputs and outputs of the component. Each component must extend from this class, set the

required properties and implement execute(), where its behaviour is defined, using the values

of the inputs to set the correct values of the outputs. The CPU’s specific components are stored in

a map, more specifically a TreeMap, indexing each component by its identifier. The inputs and

outputs of each component are also stored in a TreeMap. Every type of component was defined

in the components package, as show in Figure 4.1.

The components’ inputs and outputs are represented by the Input and Output classes, re-

spectively. These classes are very similar so, to avoid repeating code, the IOPort superclass that

defines this similar behaviour was created. The sizes and values of the inputs and outputs are

defined using the Data class explained earlier. Each output can be, and usually is, connected to

an input, and vice-versa, but only if they both have the same size. This is handled by these classes

and represents a wire. Each input/output holds a reference to the component it belongs to and also

holds a reference to the input/output it is connected to. In other words, each component has access

to every component it is connected to and, therefore, the CPU can be represented as a graph.

The inputs and outputs are “attached” to one of the sides of the component it belongs to. Inputs

are usually shown on the left side of the component while the outputs are usually on the right,

although each type of component can assign each input/output to any of the four sides. Graphically

they must have a position with x and y coordinates. These coordinates can be specified in the CPU

JSON file but, if not specified, the default ones are used. When the default coordinates are used, the

inputs and outputs in each side are spaced evenly and ordered alphabetically by their identifiers1.

The distance between the corner of the component to the default position of an input/output along

the side it is assigned to is shown in Equation 4.1, where L corresponds to the length of that side
1The inputs and outputs are ordered alphabetically because they are stored in a TreeMap, which is a data structure

that keeps its elements ordered.
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of the component, N to the number of inputs and outputs in that side and i to the zero-based index

of the input/output relative to the ordered list of inputs and outputs in that side.

d =
L

(N +1)× (i+1)
(4.1)

Some of the components are synchronous, like the program counter and the register bank.

These components have an internal state that can be changed only during the clock transition. In

terms of code, these components implement the IsSynchronous interface, and must then imple-

ment the executeSynchronous() method, where the synchronous behaviour that changes the

component’s internal state is defined. Furthermore, to allow the user to return to previous states

during execution (i.e. back step), the internal states must be saved in each clock cycle in, for ex-

ample, a stack and some additional methods to save and restore these states must be implemented.

Concerning accumulated latencies and critical path, they are calculated when the CPU is

loaded and when the latency of a component is changed by the user. Each component has its

individual latency, which can be zero, and an accumulated latency2. Each input also stores its

accumulated latency. The accumulated latency of the component corresponds to the highest ac-

cumulated latency of the component’s inputs plus the component’s own latency. The calculation

of the accumulated latencies starts on the synchronous components and ends on the inputs that

are only used by synchronous behaviours (like the WriteData input of the register bank). This

is done by propagating forward the accumulated latencies from each component to its connected

components recursively. The critical path is, finally, calculated backwards from the input or inputs

with the highest accumulated latency. It is worth noting that a CPU can have multiple critical

paths.

Regarding the pipeline version of the MIPS CPU, it must have exactly five stages and, thus,

four pipeline registers that separate them. These registers, and the program counter, are used to

determine what instructions are in each stage of the pipeline by checking their Write and Flush

control signals. This is necessary due to the hazards that can occur. Both an hazard detection unit

and a forwarding unit were implemented, and their behaviours were based on [PH05].

The implemented datapaths are presented in the next subsections. Note that the datapaths

are configurable and more can be created without changing the code, unless more features are

required.

4.1.1 Implemented Unicycle Datapaths

The implemented unicycle version of the MIPS processor is shown in Figure 4.2 and was based

on the reference book [PH05, p. 314]. The datapath is very similar to the one in the book and sup-

ports the instructions that are indicated on the page 285 of the book, plus a few more instructions

and pseudo-instructions. The instructions and pseudo-instructions supported by this datapath’s

instruction set, default, are listed in Subsection 4.2.1.

2The necessary time for the component to produce the correct outputs since the start of a clock cycle.
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Figure 4.2: Most complete unicycle datapath

Two simpler variations of the datapath were also created. One, shown in Figure 4.3 and based

on [PH05, p. 307], which is a version that doesn’t support jumps, and the other, shown in Fig-

ure 4.4, that is even simpler by also not supporting branches. These variations were created so that

the students can start learning with a simpler datapath.

An “extended” datapath was also created. This datapath is very similar to the one in Figure 4.2

but the ALU was replaced by an “extended” ALU3 and the supported instruction set was extended.

This extended instruction set is explained in Subsection 4.2.1. The extended ALU and instruction

set could have been added to the default unicycle datapath (Figure 4.2), but that datapath was made

to be as similar as possible to the one detailed in the book [PH05].

4.1.2 Implemented Pipeline Datapaths

The implemented pipeline version of the MIPS processor is shown in Figure 4.5 and was based

on the reference book [PH05, p. 427]. It has both a forwarding unit and an hazard detection unit.

The datapath is similar to the one in the book but has some differences in the branches and stalls.

The branch decision is in the MEM stage, unlike the final pipeline datapath of the book where it

is in the ID stage. This is because the book doesn’t explain in detail how the implementation of

the branch decision in the ID stage is done and only gives hints. Additional forwarding logic and

3The extended ALU is a synchronous ALU that supports multiplications and divisions and stores the hi and lo

“registers”. In reality, multiplications and divisions are not performed by the ALU but here, for simplicity, they were
aggregated in this “extended” ALU.
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Figure 4.3: Unicycle datapath variant that doesn’t support jumps

Figure 4.4: Unicycle datapath variant that doesn’t support jumps nor branches
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stalls would also be required [PH05, p. 419], but they are also not explained. The hazard detection

unit has only one output and “bubbles” are introduced in the EX stage by setting the Flush input

of the ID/EX pipeline register to 1 instead of zeroing all control signals in the ID stage with a

multiplexer. In the pipeline version of the CPU the register bank includes internal forwarding to

avoid a data hazard when reading and writing to the same register4 as indicated in [PH05, p. 410].

These pipelined datapaths don’t support the j instruction.

Two variations of the pipeline datapath were also created. One, shown in Figure 4.6 and based

on [PH05, p. 416], supports data forwarding but not stalls, while the other, shown in Figure 4.7

and based on [PH05, p. 404], doesn’t detect nor solve any pipeline hazard. These variations allow

students to understand why forwarding and stalls are necessary.

Finally, just like there is an extended unicycle datapath, as explained in the previous subsec-

tion, there is also an extended pipeline datapath that supports a larger number of instructions.

4.2 Instruction Set Definition

The main class that defines the instruction set is InstructionSet, and is accessible from the

CPU (see Figure 4.1). This class loads and parses the instruction set from the file specified in the

CPU file, and grants access to all of the instruction types, instructions, pseudo-instructions and

control definitions.

An instruction set has several different instructions. In the MIPS case, which is a RISC CPU,

all of the instructions have the same size. Each instruction belongs to a type and, on the MIPS, that

means one of R, I or J. The 32 bits that comprise the instruction code are split in fields. The fields

are different for each type, except the op code field, which is always the first field and has always

the same size. InstructionType is the class that represents this information. The instruction

types and their fields are presented in Table 4.1.

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R-type op rs rt rd shamt funct

I-type op rs rt address/immediate
J-type op target address

Table 4.1: The MIPS instruction types (based on [PH05, p. 104])

The individual instructions are represented by the Instruction class. Additionally, the

instruction set can also define pseudo-instructions5, represented by the PseudoInstruction

class. Both instructions and pseudo-instructions have mnemonics, arguments and short symbolic

descriptions that can be view by the user. As both classes are similar in those aspects, they both

4A data hazard can occur in the register bank when the register being read in the ID stage is the same register being
written to in the WB stage and RegWrite is 1. When this happens, and if the register bank is configured to use internal
forwarding in the CPU file, the value of the WriteData input is forwarded to the one of the outputs.

5Pseudo-instructions: These instructions are accepted by the MIPS assembler, even though they are not real instruc-
tions within the MIPS instruction set. Instead, the assembler translates them into sequences of real instructions.
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Figure 4.5: Most complete pipeline datapath
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Figure 4.6: Pipeline datapath variant that implements forwarding but not stalls
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Figure 4.7: Pipeline datapath variant that doesn’t implement hazard detection
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extend from the more general class AbstractInstruction. Each instruction also defines the

type it belongs to and the values of each field, that may either be constant or come from an argu-

ment. Each pseudo-instruction additionally defines the actual instructions it is converted to when

assembled. In the developed simulator, each mnemonic can only belong to one instruction or

pseudo-instruction.

Each argument of an instruction or pseudo-instruction can be of one of several types. These

types are used to validate the arguments of the instructions in the code. They are also used show a

description to the user with what can be used as arguments. The different types are:

reg The argument is a register and will be encoded as the index of the register.

int The argument is an immediate value (an integer) and is encoded as such.

Although not informed in the user interface, the argument can also be a label, which is

encoded as the address of the label. This is allowed so that the la6 pseudo-instruction can

be supported. This pseudo-instruction, in the implemented datapaths, is converted to the

addi instruction, meaning that the integer argument of that instruction can also be a label.

target The argument is a code label or an integer address divided by 4, usually used for the target

of a jump. When the argument is an integer it is encoded as such. When it is a label it is

encoded as the address of the label divided by 4.

offset The argument is an integer offset or a code label, usually used by branches. When the

argument is an integer it is encoded as such. When it is a label it is encoded as the difference

between the address of the label and the address of the next instruction, divided by 4.

data The argument is a reference to a value in the data memory, usually used by loads and stores.

The reference is composed by the base address of the value and an optional offset. The base

of the reference is either an integer address of a data label, while the offset is a register.

label The argument is a label. Technically it is parsed like a int argument, but the description

shown to the user is different.

Another thing that the instruction set defines is how the CPU’s control unit works. This is

defined in the Control class and is associated to the control unit component. The class specifies

the values of all the control signals for each instruction op code. This information is stored in a

TreeMap. Additionally, the sizes of the control signals are determined automatically based on

their possible values.

The instruction set also defines how the ALU and the ALU control unit work. This is defined

in the ControlALU class and is associated to the ALU and ALU control components. An ALU

control unit has two inputs: the ALUOp control signal produced in the control unit and the funct

field from the instruction. The values of these two inputs are used to determine the values of the

output(s). The ALU control has at least one output, which should be connected to the control

6The la pseudo-instructions loads a register with the address of a label.
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input of the ALU, but can have more. This correspondence between input and output values is

specified in this class. The class also specifies the correspondence between each possible ALU

control input and operation to perform. These correspondences are stored in TreeMaps. The

sizes of the outputs are determined automatically, like in the Control class. The ControlALU

class is also responsible for calculating the results of the ALU operations.

The supported ALU functions are shown in Table 4.2 for the standard ALU and the “extended”

ALU mentioned in the previous section. The names of the functions in the 1st column are the

actual names used to reference the functions in the instruction set file.

Function Meaning ALU Extended ALU
and AND 3 3

or OR 3 3

xor XOR 3 3

nor NOR 3 3

add add 3 3

sub subtract 3 3

slt set on less than 3 3

sll shift left logical 3 3

srl shift right logical 3 3

sra shift right arithmetic 3 3

mult multiply 7 3

div divide 7 3

mfhi move from hi 7 3

mflo move from lo 7 3

Table 4.2: Functions supported by the ALU and the extended ALU

Like the CPU, each instruction set is defined in a JSON file. An instruction set file lists the

instruction types, the instructions, the pseudo-instructions and their properties and also specify

how the control unit, the ALU and ALU control work. A snippet of the definition of an instruction

set file is shown in Listing 4.2. Most instructions, pseudo-instructions and control informations

were omitted for brevity and replaced by ellipsis.

1 {

2 "types": {

3 "R": [{"id": "op", "size": 6}, {"id": "rs", "size": 5}, {"id": "rt", "size":

5}, {"id": "rd", "size": 5}, {"id": "shamt", "size": 5}, {"id": "func", "

size": 6}],

4 "I": [{"id": "op", "size": 6}, {"id": "rs", "size": 5}, {"id": "rt", "size":

5}, {"id": "imm", "size": 16}],

5 "J": [{"id": "op", "size": 6}, {"id": "target", "size": 26}]

6 },

7 "instructions": {

34



Simulation Logic Implementation

8 "add": {"type": "R", "args": ["reg", "reg", "reg"], "fields": {"op": 0, "rs":

"#2", "rt": "#3", "rd": "#1", "shamt": 0, "func": 32}, "desc": "$t1 = $t2 +

$t3"},

9 ...

10 },

11 "pseudo": {

12 "move": {"args": ["reg", "reg"], "to": ["add #1, #2, $0"], "desc": "$t1 = $t2

"},

13 ...

14 },

15 "control": {

16 "0": {"RegDst": 1, "RegWrite": 1, "ALUOp": 2, "ALUSrc": 0, "MemToReg": 0},

17 ...

18 },

19 "alu": {

20 "aluop_size": 2,

21 "func_size": 6,

22 "control_size": 3,

23 "control": [

24 {"aluop": 0, "out": {"control": 2}},

25 {"aluop": 2, "func": 32, "out": {"control": 2}},

26 ...

27 ],

28 "operations": {

29 "2": "add",

30 ...

31 }

32 }

33 }

Listing 4.2: Snippet of the definition of an instruction set file

The different sections that compose the instruction set file are:

types Lists the types of instructions that exist and defines the identifiers and sizes of the fields of

each type. The first field is considered to be the op code field and must have the same size

in all types.

instructions Defines the supported instructions and their properties. These properties are:

• The type of the instruction.

• The types of the arguments.

• The values that each field will have when assembled.

• A short symbolic description of the operation it performs.

pseudo Defines the supported pseudo-instructions and their properties. These properties are:

• The types of the arguments.
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• The list of instructions the pseudo-instruction is converted to when assembled.

• A short symbolic description of the operation it performs.

control Defines the behaviour of the processor’s control unit.

The implemented instruction sets are presented in the next subsection. Note that the instruction

sets are configurable and more can be created without changing the code, unless more features are

required. Floating point operations and syscalls are currently not supported.

4.2.1 Provided Instruction Sets

The instructions and pseudo-instructions supported by the different implemented instruction sets

are shown in tables 4.3 and 4.4, respectively. The encoding and operation of the instructions

were based mostly on the reference book [PH05]. The translation of pseudo-instructions to actual

instructions was based on the MARS simulator [Uni12, VS06].

As shown in subsections 4.1.1 and 4.1.2, several variations of the unicycle and pipeline data-

paths were implemented. As such, several variations of the instruction set had to be defined. The

reference instruction set is default, and is used by the default unicycle datapath. The first vari-

ation of this instruction set is default-no-jump, shortened to DNJ in the tables, and doesn’t

support jumps. The second variation default-no-jump-branch, shortened to DNJB in the

tables, additionally doesn’t support branches.

An extended instruction set was also defined. This instruction set supports some additional

instructions, including multiplications and divisions. These instructions are not detailed in the

reference book [PH05] and, for this reason, the extended instruction set was created. The name

of this is instruction set is default-extended and is shortened to DE in the tables. The ex-

tended instruction set also has a variation, called default-extended-no-jump and shortened

to DENJ in the tables, that doesn’t support jumps. This variation is used by the extended pipeline

datapath.

4.3 The Assembler

The assembler is represented by the Assembler class, and is accessible from the CPU, as visible

in Figure 3.4. When the code is to be assembled, the user interface uses the CPU’s Assembler.

To parse the code, the assembler consults the CPU’s InstructionSet and converts the instruc-

tions and pseudo-instructions in the text segment to assembled instructions, represented by the

AssembledInstruction class, which are then loaded into the CPU’s instruction memory. The

assembling process also involves parsing the data segment in the code to initialize the CPU’s data

memory with the specified values.

The syntax of the assembler is based on the MARS simulator [Uni12, VS06]. Comments can

be added to any line and are started by the ’#’ character. A label can be added to any line in the

text and data segments, but only one label is allowed per line. Integer values can be written in
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Default DNJ DNJB DENJ DE
nop 3 3 3 3 3

add 3 3 3 3 3

sub 3 3 3 3 3

and 3 3 3 3 3

or 3 3 3 3 3

nor 3 3 3 3 3

slt 3 3 3 3 3

addi 3 3 3 3 3

lw 3 3 3 3 3

sw 3 3 3 3 3

beq 3 3 7 3 3

j 3 7 7 7 3

xor 7 7 7 3 3

mult 7 7 7 3 3

div 7 7 7 3 3

mfhi 7 7 7 3 3

mflo 7 7 7 3 3

Table 4.3: The instructions supported by each instruction set

Default DNJ DNJB DENJ DE
li 3 3 3 3 3

la 3 3 3 3 3

move 3 3 3 3 3

subi 3 3 3 3 3

sgt 3 3 3 3 3

neg 3 3 3 3 3

not 3 3 3 3 3

bge 3 7 3 3 3

ble 3 7 3 3 3

b 3 7 3 3 3

mul 7 7 7 3 3

rem 7 7 7 3 3

Table 4.4: The pseudo-instructions supported by each instruction set
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decimal format and also in hexadecimal and octal format in C-style7 Some examples of code are

presented in Subsection 4.3.1.

The code entered by the user can have errors, which must be shown to the user. The errors de-

tected include invalid or duplicated labels, invalid instruction arguments and referencing unknown

labels, assembler directives and instructions. When an error is found in an instruction, the assem-

bler throws a SyntaxErrorException. However, instead of stopping the assembler there, the

exception is caught and added to a list of exceptions. The assembler then resumes in the next

instruction. With this technique, all the errors present in the code can be shown to the user.

The syntax errors are shown to the user in the selected language. To do that, and to keep

the SyntaxErrorException class platform-independent, the class defines an enumeration of

the different possible errors. Each type of error may also need some additional arguments that

are shown to the user. The exception has, for that reason, multiple constructors to allow these

arguments (at most 2). Each syntax error also stores the line where it occurred.

The implementation of the assembler is fairly simple, and the assembling process is done in

two steps:

1. In the first step, the assembler parses the data segment and loads the values of the data mem-

ory, while also keeping track of labels and converting the pseudo-instructions into instruc-

tions in the text segment. The addresses of the labels are stored in two separate TreeMaps,

one for the text segment and the other for the data segment. The lines in the code are parsed

one by one and each line can belong either to the data segment or to the text segment. The

code starts by default in the text segment, and the current segment is tracked by a simple

switch. All the resulting instructions are stored in a list, and each of these instructions is

represented by the CodeLine. This class stores both the line of code of the instruction and

the number of the line it was.

2. In the second step, the instructions that resulted from the previous step are parsed, assembled

into machine code and loaded into the CPU’s instruction memory. Each of the resulting

instructions in machine code is represented by the AssembledInstruction class. This

class stores a reference to the respective Instruction class and the machine code using

the Data class. It also stores the original line of code, the number of the line it was and the

labels that referenced the instruction.

In terms of assembler directives, four directives are currently supported:

• .data: starts the data segment, where the data memory is initialized.

• .text: starts the text segment, where the code is defined.

• .word: declares one or more values to be stored in the data memory as 32 bits words.

• .space: reserves some bytes in the data memory.

7In C-style hexadecimal values are preceded by 0x, while octal values are preceded by a 0.
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One detail of importance not yet mentioned is that the addresses of both data segment and text

segment start at zero. This simplifies the assembling process considerably, as the jump target and

load/store addresses will always correspond to the desired addresses when extended to 32 bits,

unless the program is very large. It also makes the resulting machine code somewhat easier to

understand by the students. However, this can deceive them into thinking that the first address is

always zero, which is not correct.

4.3.1 Code Examples

Some examples of code accepted by the simulator are presented in this subsection to better under-

stand the valid syntax. These programs where the most used to test the simulator.

The first example (Listing 4.3) loads a register with the value 1. The register is then added to

himself ten times in a loop. The final value of the register should be 1024. The second example

(Listing 4.4) copies the 10 elements from the “src” array to “dest”. The third example (Listing 4.5)

reverses the 10 elements of “array”. Note that some of the implemented datapaths won’t be able

to run all of the examples. For example, pipeline datapaths cannot run the third example because

it uses the j instruction, which isn’t supported. That instruction can, however, be easily replaced

by the b pseudo-instruction.

1 .data # Data segment

2 one: .word 1

3 ten: .word 10

4 res: .space 4

5

6 .text # Text segment (code)

7 lw $t0, one

8 lw $t1, ten

9 move $t4, $t0

10 loop:

11 add $t0, $t0, $t0

12 subi $t1, $t1, 1

13 bge $t1, $t4, loop

14 sw $t0, res

Listing 4.3: First code example

1 .data # Data segment

2 src: .word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 len: .word 10

4 dest: .space 40

5

6 .text # Text segment

7 # Initialize

8 lw $t0, len
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9 subi $t0, $t0, 1

10 li $t1, 0

11 li $t2, 0

12

13 loop: # Copy loop

14 lw $t3, src($t1)

15 sw $t3, dest($t2)

16 subi $t0, $t0, 1

17 addi $t1, $t1, 4

18 addi $t2, $t2, 4

19 bge $t0, $zero, loop

Listing 4.4: Second code example

1 .data # Data segment

2 array:.word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 len: .word 10

4

5 .text # Text segment (code)

6 # Initialize

7 move $t1, $zero # offset for the 1st element

8 lw $t2, len # determine offset for the last element

9 subi $t2, $t2, 1

10 add $t2, $t2, $t2 # multiply by 4

11 add $t2, $t2, $t2

12

13 loop: # Copy loop

14 bge $t1, $t2, fim

15 lw $t3, array($t1)

16 lw $t4, array($t2)

17 sw $t3, array($t2)

18 sw $t4, array($t1)

19 addi $t1, $t1, 4

20 subi $t2, $t2, 4

21 j loop

22

23 fim:

Listing 4.5: Third code example

4.4 Simulation Execution

To execute a program, the GUI first uses the CPU’s Assembler to assemble the program and

initialize the CPU’s instruction and data memories, as explained in the previous section. If the

program has no errors, the GUI then uses the CPU to run the program, either step-by-step or all
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at once. It is also possible to back step (i.e. return to the previous clock cycle) and to reset the

simulation to the initial cycle.

Internally, each clock cycle starts by executing the synchronous behaviour of the synchronous

components, and then proceeds to execute the “normal” behaviour all of the components, starting

by the synchronous ones. During this process, the outputs of the components usually have their

values changed. When this happens, the new value is propagated to the connected input, which

then executes the “normal” behaviour of the input’s component and, possibly, continues the data

propagation. This only occurs when the new value is changed (i.e. the new value is different

from the previous one), avoiding infinite loops that would have resulted from this solution. This

also means that the synchronous behaviour of synchronous components cannot cause any data

propagation.

In each clock cycle, each wire can be marked as “irrelevant” (gray on the user interface) or

relevant. This decision is made based only on the values in the wires and components, and not on

the instruction, as it would be fairly difficult to determine the relevant wires and components for

each instruction when the CPU and even the instruction set is very generic and configurable. That

said, the conditions to mark a wire as irrelevant are very simple: the wire carries one bit with the

value zero, a stall is occurring, the wire is not selected by a multiplexer, etc.

For the back step function to work, the synchronous components store their internal states in

each clock cycle in a stack. To return to the previous cycle, the CPU simply restores the previous

state of each synchronous component from its stack and then executes the normal behaviours of

all components to propagate the correct values to the rest of the datapath. Resetting state of the

CPU to its first clock cycle is done by first removing all the states from the stacks except the first

and then using the first state to restore the datapath.

The simulator also tracks the instruction or instructions that are being executed in the datapath.

This is easy in unicycle datapaths, as only one instruction is being executed at a time and the

program counter points to that instruction. Pipeline datapaths, however, can have five instructions

being executed in each cycle. There is also no direct way to determine what instruction is in each

stage, except in the first one through the program counter. To solve this problem, the program

counter and the pipeline registers store the index of the instruction in that stage. They also store

all the previous indexes in a stack to allow the back step function. In each clock cycle transition,

the indexes are moved to the next pipeline register, except when the register has the Write input

inactive, where the index is not changed, or the Flush input active, where a -1 index is stored.

This -1 index represents a nop instruction that isn’t in the code, either because of a flush or

because the program has reached the end in that stage. The simulation of a program is considered

finished when the index in the program counter and all pipeline registers is -1.

It is also possible to execute the code all at once. This is done by simply executing the program

cycle-by-cycle until the program is considered finished. However, a limit of 1000 clock cycles has

been implemented. When the limit is reached, an InfiniteLoopException is thrown. This

is to stop infinite loops in the code and warn the user. The limit can be reached without infinite

loops, though, when the program is very large or has a loop with a large number of iterations.
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4.5 Concluding Remarks

This chapter discussed how the internal platform-independent implementation logic, used by the

user interfaces of both PC and Android versions, was implemented. The next chapter discusses

how the graphical user interfaces of the PC and Android versions were implemented.
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Interface Implementation

The simulator was developed for both computers and touch screen Android devices, especially

tablets. This chapter discusses how their user interfaces were implemented. Looking at the UML

class diagram in Figure 3.4, the user interface code is defined in the gui package, and is the only

package that differs between the PC and Android versions.

5.1 PC Version

The PC version is the most complete. The GUI is comprised of one window plus some dialog

boxes. By default, the interface is shown with a light theme and with the contents split in five

tabs, as shown in Figure 5.1. Two tabs can be viewed at once, as the window is split in two

sides horizontally, and the user can move any tab from one side to the other by right clicking on

the tab title and selecting the only option from the pop-up menu. However, the user can choose

to use a dark theme and can also choose to use internal windows instead of tabs, as shown in

Figure 5.2. Using internal windows is useful in large screens, and the windows’ positions and

sizes are remembered on exit. The light and dark themes use the JTattoo look and feel [Hag].

The different tabs or windows, detailed later, are:

• Code: contains the code editor.

• Assembled: displays the assembled instructions and resulting machine code.

• Datapath: displays the datapath and the instruction(s) being executed.

• Registers: lists the registers and their values.

• Data memory: shows the values in the data memory.

The UML class diagram of the GUI of the PC version is shown in Figure 5.3. DrMIPS is

the class that contains the main function. The main function does some initializations, loads the

initial translated strings and launches the simulator’s main window. A loading dialog, defined by

the DlgLoading class, is shown while the main window is not visible. DrMIPS also defines

several parameters used in the interface.

43



Interface Implementation

Figure 5.1: DrMIPS for the PC with the default options, with the tooltip of a component being
shown

Figure 5.2: DrMIPS for the PC using internal windows and dark theme while in “performance
mode”
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Figure 5.3: UML class diagram of the GUI of the PC version

The interface supports multiple languages, Portuguese and English at this stage, and they can

be changed in the menus. The translated strings of each language are stored in a language file with

the lng extension in the lang directory. A small extract of a language file is shown in Listing 5.1.

1 # General

2 ok=OK

3 cancel=Cancel

4 yes=&Yes

5 no=&No

6 close=&Close

7

8 # Errors

9 error_opening_file=Error opening file #1!

10 invalid_file=Invalid file!

11 wrong_no_args=Wrong number of arguments! Expected #1, found #2.

Listing 5.1: Small extract of a language file

Each translatable string is identified by a unique key. The translated strings are defined in

the file in a pair key=string, one per line. Empty lines and comment lines, started by the

# character, are also allowed. If a string is missing for the language, its identifier is shown in

upper case instead. The mnemonic letter1 of the string of a menu or button can be identified by

preceding it with an ampersand (&) character. To include an actual ampersand in the string, a

double ampersand (&&) must be written. A translatable string can also have arguments. Those

are specified in the file using #1 for the first argument, #2 for the second, and so on. In terms of

code, this is handled by the static Lang class. It provides methods to load language files and to

retrieve translated strings and their mnemonics. The translated strings and their keys are stored in

a HashMap to improve speed.

1The mnemonic letter of a menu or button in a GUI is usually underlined and allows the menu or button to be
activated by pressing that button on the keyboard and the ALT key.
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The FrmSimulator class implements the main window of the simulator. The interface was

designed in Netbeans [Ora13] and consists of a menu bar, defined in a JMenuBar, a tool bar,

defined in a JToolBar, and the content area of the window that contains the five tabs or windows

mentioned before. The contents of each tab or window are inside a JPanel. When using the

default tabbed mode, the content area consists of a horizontal JSplitPanewith a JTabbedPane

on both sides. Right-clicking on a tab will show a pop-up menu with one item to move the tab to

the other side of the split pane. This is done by re-adding all the tabs to their corresponding tabbed

pane, including the moved tab, to the other side, so the order of the tabs is kept. The location of

each tab is tracked and handled by the internal Tab class. When the user switches to the internal

windows mode, the JSplitPane is removed and replaced by a JDesktopPane. The JPanel

of each tab is then moved to a JInternalFrame inside the desktop pane.

The location of the tabs, the position of the windows, the language and several other properties

are remembered on exit and restored on start. This is done by using the Preferences class of

the java.util.prefs package, which provides easy and transparent access and storage of the

preferences of the application. The ten most recent code and CPU files opened are also tracked

using this method. Remembering the properties of the interface on exit is very important. It would

be very annoying for the user if he had to reconfigure everything to his liking every time he used

the application, especially if the user prefers to use the internal windows mode.

Figure 5.4: The code tab or window in the PC

DrMIPS provides a code editor with syntax-highlighting, auto-complete, search/replace, line

numbers, undo and redo thanks to the RSyntaxtTextArea component [Fif13b] and AutoComplete

library [Fif13a]. The code editor can be seen in Figure 5.4.
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The syntax-highlighting rules are not “static” and depend on the loaded CPU datapath, more

specifically on the names of the registers and supported instructions and pseudo-instructions.

The rules are implemented in the internal MIPSTokenMaker class, which extends from the

AbstractTokenMaker class of RSyntaxTextArea. The most important method in this class

is getTokenList(), where a line of code is parsed and converted into tokens of several dif-

ferent types. The editor then uses these tokens to display the several elements in the code with

different colors and styles. The different types of elements identified include instructions, pseudo-

instructions, numbers, assembler directives, comments, registers, labels and punctuation. Note

that instructions and pseudo-instructions are highlighted with different colors.

The auto-complete provided is mostly for help and is activated by <Ctrl>+<Space>. Like

the syntax-highlighting, the auto-complete feature is dynamic. The completions provided include

instructions, pseudo-instructions, assembler directives and labels found in the code. Activating the

auto-complete feature displays a list of possible completions for the keyword being written. A help

frame with the description of the completion and how it is used is also displayed (see Figure 5.5).

The help frame for an instruction specifies how it is used, its arguments and the symbolic descrip-

tion defined in the instruction set file, as discussed in Section 4.2. The help frame for a pseudo-

instruction additionally lists the actual instructions it is converted to. This auto-complete func-

tionality is provided by the AutoComplete library, although some adjustments were made to allow

the auto-completion of keywords started by a dot or underscore and to dynamically include the la-

bels in the list of completions. These adjustment were made in the MIPSCompletionProvider

class by extending DefaultCompletionProvider.

Figure 5.5: Auto-complete list and description frame

The undo, redo, copy and paste features are handled by the RSyntaxTextArea component

automatically. The component also provides methods to search and replace in the code. The

search/replace dialog (see Figure 5.6) can be accessed either from the menu or from the <Ctrl>+F

shortcut. Right-clicking the editor also displays the menu. RSyntaxTextArea provides some more

advanced search and replace features, including searches with regular expressions, but they were

not included in the interface to keep it simple. Finally, all of the errors present in the code are
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indicated close to the line numbers as icons when the user assembles the code. Hovering the

mouse cursor over one of these icons display a tooltip describing the error.

Figure 5.6: Search/replace dialog in the PC

Figure 5.7: The assembled code tab or window in the PC

The assembled code table displays the resulting machine code and highlights the instructions

being executed by the CPU (see Figure 5.7). The table has three columns, showing for each

instruction its address, machine code and respective line of code. The number of the line where the

instruction appears is also displayed in the last column. Furthermore, if the instruction results from

a pseudo-instruction, and if it is the first actual instruction of that pseudo-instruction, a comment

with the original pseudo-instruction is added. The instructions currently being executed by the

CPU are highlighted with different colors (if using a pipelined datapath). Hovering the mouse

cursor over each instruction also displays a tooltip with the type of the instruction and the values

of the instruction’s fields. The format that the values are displayed can be changed in the combo

box below the table. The available formats are binary, decimal and hexadecimal. The table is

defined in the AssembledCodeTable class and, to highlight the instructions being executed, a

custom TableCellRenderer was implemented.

The registers table displays the registers, preceded by their indexes, and their values (see Fig-

ure 5.8). It also displays the value of the program counter. Like in the assembled code table,
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Figure 5.8: The registers tab or window in the PC

the values can be shown in several data formats. The registers currently being accessed are high-

lighted in three different colors: green if being read, red if being written and orange if being read

and written and the same time. The values of the registers can be changed by double-clicking them

in the table, except the constant register $zero. The address of the program counter can also be

changed this way, and doing so changes the instruction currently in the unicycle datapath or in the

IF stage of the pipeline datapath. The address must be multiple of 4, though. The table is defined

in the RegistersTable class.

Figure 5.9: The data memory tab or window in the PC

The data memory table is very similar to the registers table. It displays the contents of the

data memory, one 32 bits word per line. Like in the registers table, the values can be displayed

in several data formats and can be changed on double-click. The values being accessed are also

highlighted when accessed in the same conditions of the register table: green when read, red when
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written and orange if both. Note that it’s not possible to read and write to the same memory address

with the default instruction sets, but it’s possible to create a new one with an instruction that does

that.

Figure 5.10: The datapath tab or window in the PC

The datapath is probably the most important part of the simulator. It is implemented in the

DatapathPanel class, which handles all its graphical display. The datapath can be displayed in

the normal data mode, as shown in Figure 5.10, or in performance mode, as shown in Figure 5.11.

In the normal data mode the simulator shows the data that is flowing in the datapath in each step,

while in performance mode the latencies of the components and the critical path of the datapath

are displayed instead. The current mode can be switched in the Datapath menu.

The components of the datapath are all displayed as rectangles and, usually, with their names

in the center of the rectangle. “Auxiliary” components, like forks, concatenators and distributors

are displayed as small filled rectangles without name instead. The components are represented

internally by the DatapathComponent class, which extends from JPanel.

Hovering the mouse cursor over a component displays some information about it in a tooltip.

The tooltip displays the component’s name, identifier, description and if it is synchronous. In

the normal data mode the tooltip also displays the values at the inputs and outputs, while in per-

formance mode the latency of the component and the accumulated latencies at the inputs and

outputs are shown instead. The inputs and outputs that belong to the control path are shown in

light blue. Figures 5.12 and 5.13 show two examples of these tooltips while in the data mode

and performance mode, respectively. Additionally, while in performance mode, double-clicking

a component presents a dialog box that allows the latency of the component to be changed. The
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Figure 5.11: The datapath tab or window in performance mode in the PC

Figure 5.12: Tooltip of a component while in the normal data mode

Figure 5.13: Tooltip of a component while in performance mode
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new latency is only temporary, and the original latencies can be restored in the Datapath menu.

The wires that connect the components are drawn in the background of the datapath. At the

end of the wires an arrow tip is drawn, however the user can hide these arrows tips in the Datapath

menu. The wires are represented by the internal Wire class. Each wire corresponds to an output,

has a start point, an end point and a list of intermediate points. The arrow tips are triangles drawn

as a filled Polygon. The wires are drawn in different colors depending on a few conditions to

better perceive the state of the datapath. A help icon is shown in the bottom right corner of the

datapath tab or window that, when hovered, displays a legend as a tooltips with the meaning of the

colors.

While in the normal data mode, each wire can have one of these colors:

• Black/white if it is a normal wire.

• Light blue if it is in the control path.

• Gray if it is an irrelevant wire (for the instruction(s) being executed).

While in performance mode, the possible colors are:

• Black/white if it is a normal wire.

• Light blue if it is in the control path.

• Red if it is in the critical path of the datapath.

The components and wires that belong to the control path can be hidden in the Datapath menu.

This simplifies the datapath considerably as it becomes less cluttered. The values at the control

inputs and outputs of the visible components can still be viewed in their tooltips. Hiding the

control path allows students to focus on the flow of data in the datapath, hiding the complexities

of the control path.

Some of the components’ inputs and outputs display a small permanent tip with the current

value of the input or output, while in the normal data mode. These data tips are always placed

below the input or output’s point of entry or exit. They are implemented in the IOPortTip class,

which extends from JLabel, and are created and handled in the Wire class. Hovering the mouse

cursor over a tip displays a tooltip with the identifier of the input or output. The identifiers were

not included in the tips themselves because it would make them larger and clutter the datapath.

Showing the tips for all inputs and outputs would also make the datapath cluttered. The datapath is

a JLayeredPane to allow the data tips to be always on top. These tips can also be hidden in the

Datapath menu. Showing the values at the inputs and outputs of the most important components

directly in the datapath is very important, as the user can view the most important values in the

datapath without having to move the mouse.

The instruction or instructions currently being executed are displayed above the datapath in a

table with just one line and no header. Using a table like this means that the columns will probably

not be aligned with the corresponding pipeline registers in the datapath, but it also means that they
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are always visible even if the whole datapath doesn’t fit in the screen, as can be seen in Figure 5.10.

Hovering the mouse cursor over an instruction in the table displays the type of the instruction and

the values of its fields, like in the assembled code table. The instructions are colored with the same

colors used in the assembled code table for consistency.

It was decided to make the graphical datapath as small as possible, but still readable. This way,

a larger portion of the datapath, or even the whole datapath, will be visible. Because of this, some

informations, like the names of the inputs and outputs, must be omitted. Finally, the values in the

datapath can be also displayed in binary, decimal and hexadecimal formats.

5.2 Android Version

The Android version is very similar to the PC version. Like in the PC version, the application

uses a light theme by default, but a dark theme is also available. Figure 5.15 shows the application

running on a tablet with Android 4.0.3 using the light theme, while Figure 5.16 shows it running on

a smartphone with Android 4.1.2 using the dark theme. The application was targeted for tablets,

but it can also be run on smartphones, as seen in the second figure. As the PC and Android versions

are very similar, this section will focus more on discussing their differences and presenting the

Android version’s user interface and features.

The UML class diagram of the the GUI of the Android version is shown in Figure 5.14. The

class diagram of this version is considerably simpler than that of the PC version, as almost all of

the GUI code was written in the main DrMIPSActivity class, except the code that refers to the

datapath and its components.

Figure 5.14: UML class diagram of the GUI of the Android version

DrMIPS is a custom Application class, where the currently loaded CPU is stored and

where some interface parameters are defined. It is also where the CPU and instruction set files are

extracted to the device’s internal or external memory when they don’t exist or when the application

is upgraded. These and the code files are stored in the application’s data directory, preferably in the

external memory. This memory, usually mounted in /mnt/sdcard, is actually in many devices

a partition of the device’s internal memory and not the external memory card. But, in case it is

the external memory card and is not available, the application stores the files on the application’s

private directory in the device’s internal memory. Storing the files in the external memory allows

the user to access them using another application like a file explorer. To know the path to the

loaded CPU or code file, the user can press on the file’s name in the user interface.
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Figure 5.15: DrMIPS for the Android using the light version on a tablet
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Figure 5.16: DrMIPS for the Android using the dark version on a smartphone, displaying the
details of a component while in “performance mode”

The application contains only one activity2, DrMIPSActivity, and its contents are split in

five tabs using a TabHost. These tabs are the same that are in the PC version. The contents

of the different tabs are defined in different layout files which are included in the activity layout,

without using the new Android fragments feature. The interface was designed in Eclipse [Fou13].

Currently, the application can be shown in Portuguese and English. The translation of the strings

is done using the Android’s native resource framework. The strings are stored in XML files and

the system uses automatically the correct strings based on the language selected in the device’s

settings.

The application supports screen rotations and other configuration changes without losing its

state. This is important because in Android by default, when the device is rotated, or when another

device configuration is changed, the running activity is restarted. The state of most graphical

components is retained automatically by Android, but some things have to be done “manually”,

like the index of the selected tab. The current CPU and its state is, as mentioned before, stored in

the DrMIPS application class, so it is usually retained. Finally, most of the dialogs used are created

and updated in the overrided onCreateDialog() and onPrepareDialog() methods. This

way, the dialogs are managed by Android and are not closed when the device is rotated. All

2An activity provides a user interface for a single screen in the application. It could be understood as a maximized
window in Android.
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dialogs are of the type AlertDialog. Alert dialogs are created easily by setting the title, names

and behaviours of the buttons, and content, which can be a text message, list of items, custom

interface or others.

Like in the PC version, several properties like the theme and last code and CPU files used are

remembered on exit and restored on start. This is done by using the native SharedPreferences

class, which works much like the Preferences class of standard Java. This mechanism is also

used to check if the application has been upgraded by storing the version code in the preferences.

Every time the application is started the current version code is compared with the one stored in

the preferences. If it is greater, that means the application has been upgraded. If the old version

code is not in the preferences that means this is the first time the application is executed and, thus,

is considered as upgraded.

The datapath is displayed in the same way as in the PC version, as shown in Figure 5.15.

The datapath, implemented in the Datapath class, uses a RelativeLayout to display the

components in the specified positions and with the specified sizes, all measured using density-

independent pixels. Density-independent pixel (dp) is a unit that makes the graphical components

have approximately the same real size in all devices. The operation that is used to convert the dp

unit into pixels (px), using the screen’s density in dots per inch (dpi), is shown in Equation 5.1.

px = d p× d pi
160

(5.1)

Each component, implemented in the DatapathComponent class, is a TextView and its

name, description, input and output values, or latency can be displayed by pressing the component,

as shown if Figure 5.16. Long-pressing it while in performance mode lets the user change the

latency. The data tips are also displayed in the same way as in the PC version and, because they

are the last user interface components added to the datapath’s RelativeLayout, they are always

shown on top.

The wires are, like in the PC version, defined in the Wire class. The implementation of the

class is very similar to the one of the PC version, including the colors, but arrow tips are drawn

using a filled Path. The Android version also includes the Datapath menu with the same options:

switch between data and performance mode, show or hide control path, data tips and arrow tips,

and reset latencies.

This version also displays the instruction or instructions being executed with different colors.

They are displayed in a one line table implemented as a TableLayout with one TextView per

instruction. Pressing the instruction presents a small temporary message, a “toast”, with the type

of the instruction and the values of its fields. Finally, the values can be shown in binary, decimal

and hexadecimal formats.

The code editor of this version is a simple EditText and not much effort was put into im-

proving it (see Figure 5.17). Touch screens are not very suitable to write code. Furthermore, due

to the fact that MIPS assembly programs rely heavily on the dollar sign ($) to reference registers,

using the default on-screen keyboard may be very annoying, as the dollar sign is usually not on its
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Figure 5.17: The code tab in Android
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first page. Fortunately, alternative on-screen keyboards can be installed. Some of these are very

similar to a physical computer keyboard.

The code tab contains some shortcuts to create, open and save the file. It also includes a help

button that displays the supported instruction set in a dialog (see Figure 5.18). This dialog lists

the instructions, pseudo-instructions and assembler directives that are supported by the currently

loaded CPU and what they do.

Figure 5.18: The code help dialog

The assembled code, registers and data memory tables are similar to the ones in the PC version.

Each table is implemented as a TableLayout. Each row is a TableRow and each cell is a

TextView. The first row is the header, which is fixed and never removed when the table is

cleared. The rows are highlighted by changing directly the colors of the TextView objects in

them. Pressing an instruction in the assembled code table presents a temporary message with the

instruction’s type and field values. Long-pressing a row in the registers or data memory table

displays a dialog to allow the value of the respective register or memory address to be changed.

The tables can be scrolled both vertically and horizontally, so they can fit the screen without
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becoming “deformed” in smaller screens.

The application was targeted for Android 4.2.2 Jelly Bean. The minimum Android version

currently supported is 2.3.3 Gingerbread. According to the Android Dashboards [Goo13], using

Android 2.3.3 as minimum version allows the application to be supported by around 95% of the

devices. Supporting lower versions would require changes to the code so, to save time, the mini-

mum version was kept at 2.3.3. Support for lower versions would be useful though, as the number

of supported Android devices would increase.

5.3 Concluding Remarks

This chapter presented the graphical user interfaces of both PC and Android versions. It also

discussed the differences between the two versions and how they were implemented. The two

versions are very similar, both in terms of features and terms of interface layout, and they both use

the same internal simulator logic, discussed in the previous chapter. Nevertheless, the PC version is

the most complete, containing a complete code editor with syntax-highlighting and auto-complete

and including a mode where the contents are split in internal windows.

The next chapter discusses some examples of how the tool can be used by students to better

understand several topics of computer architecture.
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Usage Examples

The purpose of this tool is to help students to better understand several topics of computer archi-

tecture. Some examples of how this tool can be used in that context are presented and discussed in

this chapter. These examples are typical computer architecture exercises. The processes to solve

them with the simulator and to understand the resolution are explained.

6.1 First Example

For the program in Listing 6.1, determine the values of the registers $3 and $5 after the execution

of line 4 and also of line 7 in the second iteration. Determine the final values of those registers as

well. Consider that the initial value of register $1 is 5.

1 add $2, $0, $0

2 li $3, 3

3 li $4, 1

4 add $5, $1, $2

5 next: beq $3, $0, out

6 sub $3, $3, $4

7 add $5, $5, $5

8 beq $0, $0, next

9 out:

Listing 6.1: Code of the first example

To solve this in the simulator, the user starts by loading the unicycle CPU, inserting the given

code in the code editor and assembling the program. To initialize the register $1 with the value 5,

the user can add an instruction above the given code to do so, like li $1, 5, before assembling.

Another method is to double-click on the $1 register in the registers table and edit the value. This

method doesn’t require any changes to the code, but the edited value is lost every time the program
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is assembled, except if the Reset data before assembling option is disabled in the Execute menu.

The same method could be used to edit values in the data memory. The user can then execute the

program step-by-step, analysing the state of the CPU in each step.

The values of the registers after the execution of the fourth line are shown in Figure 6.1. On

that clock cycle, $3 has the value 3 and $5 has the value 5.

Figure 6.1: Registers after line 4 of the first example

After the execution of the seventh line in the second iteration, registers $3 and $5 have the

values 1 and 20 respectively, as shown in Figure 6.2.

Figure 6.2: Registers after line 7 of the first example in the second iteration

The final values of the registers are displayed in Figure 6.3. Register $3 has the value 0, while

register $5 has the value 40.

Figure 6.3: Registers at the end of the first example
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Obviously, the simulator is more useful in problems of this kind, where the programs are more

extensive or have a loop with a higher number of iterations.

6.2 Second Example

Determine the resulting machine code and the values of all control signals for the following in-

structions:

1. add $4, $9, $14

2. lw $5, 100($2)

3. sw $11, 200($6)

4. beq $2, $5, 100

Finding the resulting machine code of the instructions is easy using the simulator. To do so,

the user must simply insert the instructions in the code editor and assemble them. The assembled

code table will then display the internal machine code for the instructions, as shown in Figure 6.4.

The user may also hover the mouse cursor over any instruction in the table to know of what type

the instruction is and to see the values of its fields, as shown in the figure for the beq instruction,

to better understand the machine code representation.

Figure 6.4: The machine code of the instructions of the second example

The internal representation in machine code of the given instructions is shown in Table 6.1.

The type of each instruction is also displayed. The machine code of each instruction is shown in

hexadecimal format.

Instruction Machine code (hex) Type
add $4, $9, $14 012e2020 R

lw $5, 100($2) 8c450064 I

sw $11, 200($6) accb00c8 I

beq $2, $5, 100 10450064 I

Table 6.1: Machine code and types of the instructions of the second example
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Finding the values of the control signals for the execution of each instruction is also easy.

The user assembles the instructions and then executes them, one at a time. For each instruction,

the user checks the values of the outputs of the control unit by hovering the mouse cursor over

the control unit in the graphical datapath and reading the tooltip that is displayed. The tooltips

displayed for the add, lw, sw and beq instructions are shown in figures 6.5, 6.6, 6.7 and 6.8,

respectively.

Figure 6.5: The values in binary of the control signals for the add instruction

Figure 6.6: The values in binary of the control signals for the lw instruction

Figure 6.7: The values in binary of the control signals for the sw instruction
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Figure 6.8: The values in binary of the control signals for the beq instruction

It is important to note that the values of the control signals depend only on the opcode of

the instruction, so the arguments of the instructions don’t affect them. The values of the control

signals in binary for the given instructions are summarized in Table 6.2.

Signal add lw sw beq

ALUOp 10 00 00 01
ALUSrc 0 1 1 0
Branch 0 0 0 1
Jump 0 0 0 0
MemRead 0 1 0 0
MemToReg 0 1 0 0
MemWrite 0 0 1 0
RegDst 1 0 0 0
RegWrite 1 1 0 0

Table 6.2: Values of the control signals for the instructions of the second example

Besides helping determine the values of the control signals, the simulator can help to under-

stand why the signals have these values and how the execution cycle works. Using the instruction

add $4, $9, $14 to illustrate this, the user would insert this instruction in the code editor

and assemble it. As the instruction accesses registers, the user would also edit the values of these

registers, doing as explained before. Considering that the values for the registers $4, $9 and $14

would be 40, 90 and 140, the datapath would look like Figure 6.9.

The user can now analyse the datapath to understand how the instruction is executed. For ex-

ample, the user can look at the program counter and see that its value increases by four. Following

the path at the top of the datapath, he/she can see that an adder increases the current value of the

program counter, and that this new value is selected by both multiplexers. The user can see how

the register bank reads the correct registers and outputs the correct values. The user can see how

the ALU calculates the correct result and how that result ends up in the WriteData input of the

register bank. He/she can also see that the data memory isn’t used because all inputs and outputs

are gray. Being able to understand how the datapath works is very important for a student.
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Figure 6.9: The datapath for the instruction add $4, $9, $14

6.3 Third Example

Consider the latencies of the components of the unicycle CPU specified in Table 6.3. Determine

the critical path of the datapath and the minimum clock period possible. Additionally, determine

the maximum amount of time the control unit can use to generate the MemRead and ALUOp control

signals without degrading the CPU’s performance.

Inst. Mem. Control Unit Reg. bank ALU ALU Control Data Mem.
Latency (ps) 200 50 100 100 50 200

Table 6.3: Latencies of the components for the third example

To discover the critical path of the datapath in the simulator with the given parameters, the

user starts by loading the unicycle CPU and enabling the Performance Mode in the Datapath

menu. Then the user edits the latencies of the components to comply with the given parameters

by double-clicking on the components and inserting the new latencies. The user should make sure

that the specified components have the given latencies and that the others have zero latency. The

critical path will then be visible in the graphical datapath, as shown in Figure 6.10.

As shown in the figure, the critical path ends in the register bank. So, to discover the minimum

clock period possible, the user hovers the mouse cursor over the register bank and consults the

tooltip (see Figure 6.11). The input with the highest accumulated latency is WriteData, which
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Figure 6.10: Critical path of the datapath in the third example

is where the critical path ends. The value of the accumulated latency at that input, 650 ps, is the

minimum clock period.

Figure 6.11: Tooltip of the register bank in the third example

To determine the maximum amount of time the control unit can use to generate the MemRead

control signal it is necessary to analyse the datapath. That control signal is used by the data mem-

ory. The data memory is in the critical path, so the user must consult the accumulated latencies

at the inputs of the component (see Figure 6.12). The highest value is 450 ps and the value at the
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MemRead input is 250 ps, therefore the answer is 450−250+50 = 250ps, where 50 is the latency

already defined in the control unit.

Figure 6.12: Accumulated latencies at the inputs of the data memory in the third example

Determining the maximum time to generate the ALUOp control signal is trickier. That signal

is used by the ALU control unit, which is not in the critical path. However, it is connected directly

to the ALU, which is in the critical path, so the user can consult the accumulated latencies at the

inputs of that component (see Figure 6.13). The highest value is 350 ps and the value at the input

connected to the ALU control is 300 ps. Remembering the latencies of the control unit and ALU

control, which are both 50 ps, the answer is 350−300+50+50 = 150ps.

Figure 6.13: Accumulated latencies at the inputs of the ALU in the third example

6.4 Fourth Example

For the program in Listing 6.2, identify all the hazards that occur in the pipeline version of the

CPU, indicating which ones are solved by forwarding and which ones are solved by stalling.

1 add $3, $4, $2

2 sub $5, $3, $1

3 lw $6, 200($3)

4 add $7, $3, $6

Listing 6.2: Code of the fourth example

The simulator can help the user to identify the hazards and understand why they occur. The

user starts by loading the pipeline CPU, inserting the given code in the code editor and assembling

the program. Then, he/she executes the program step-by-step, keeping attention to some elements

of the graphical datapath. When one or both of the outputs of the forwarding unit is active (i.e. is

blue), a forwarding is occurring. When the output of the hazard detection unit is active, a stall is

occurring.

The first hazard occurs in the fourth clock cycle and is solved by forwarding. As shown in

Figure 6.14, one of the outputs of the forwarding unit is active. In this case, the value for the first

input of the ALU is forwarded from the EX/MEM pipeline register in the MEM stage. The forwarding
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unit has the value 3 both at an input on the left and at an input on the right, so the hazard is in

register $3. The user can see the instructions that are in the EX and MEM stages by looking at the

top of the datapath tab or window (not visible in the figure). The instructions causing this hazard

are add $3, $4, $2 and sub $5, $3, $1.

Figure 6.14: First hazard in the code of the fourth example

The second hazard occurs in the next clock cycle and is also solved by forwarding. As shown

in Figure 6.15, the hazard is again in register $3. This time, the value for the first input of the ALU

is forwarded from the WB stage, thus the instructions causing the hazard are add $3, $4, $2

and lw $6, 200($3).

Figure 6.15: Second hazard in the code of the fourth example

Another hazard occurs in the same cycle. This one is solved by a stall. As shown in Fig-

ure 6.16, the output of the hazard detection unit is active. The unit has the value 6 both at an input

on the left and at an input on the right, so the hazard is in register $6. The instructions causing the

hazard are lw $6, 200($3) and add $7, $3, $6. By looking at the inputs of some compo-

nents, specifically the program counter and the first two pipeline registers, the user can understand

how the stall is introduced in the pipeline.
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Figure 6.16: Third hazard in the code of the fourth example

The last hazard occurs two clock cycles later and is solved by forwarding. As shown in

Figure 6.17, the hazard is in register $6 and the value for the second input of the ALU is for-

warded from the WB stage. The instructions causing the hazard are lw $6, 200($3) and

add $7, $3, $6.

Figure 6.17: Last hazard in the code of the fourth example

The simulator also includes two variations of the pipeline datapath: one without any sort

of hazard detection and resolution and another that only implements forwarding. Using these

variations, the user can understand what happens without hazard detection and why it is necessary.

Even though the simulator currently doesn’t display timing diagrams, the instructions that are

currently in each stage of the pipeline are shown at the top of the datapath tab or window. The

instructions being executed are also highlighted in the assembled code tab/window. The states of

the pipeline shown in the simulator in each clock cycle are shown in Figure 6.18, condensed into

a single figure. The effect of the stall is very visible in the figure.
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Figure 6.18: State of the pipeline in each clock cycle of the fourth example

6.5 Concluding Remarks

Some examples of how the simulator can be used to help students to better understand several

topics of computer architecture were discussed in this chapter. These examples were demonstrated

using the PC version of the simulator, but the Android version could also be used in a similar way.

As presented, DrMIPS can be used to solve several computer architecture problems and un-

derstand their resolution. Some of these problems could be solved with other simulators, but

each simulator could only be used for a small set of problems. Problems involving processor

performance, discussed in the third example, cannot be solved with any of the tools discussed in

Chapter 2. Other problems, like the ones involving processor pipelining, are harder to solve and

understand with other simulators. Overall, DrMIPS is more versatile than other simulators while

also being easy to use.
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Chapter 7

Conclusion

There are many educational CPU simulators, as discussed in Chapter 2. However, they are not

very versatile. The existing simulators usually can only simulate either the unicycle or the pipeline

version of the CPU, provide very simple code editors and their simulated datapaths are not con-

figurable.

Also important to note is that none of these simulators have a version for Android tablets.

As discussed in Chapter 3, tablets are becoming a very popular platform and Android is one of

the most popular operating systems for both tablets and smartphones. Thus, an Android MIPS

simulator is certainly innovative.

To aid the students and teachers, an educational MIPS simulator, called DrMIPS, was devel-

oped. As discussed in chapters 4 and 5, the simulator is fairly versatile, intuitive and configurable.

It supports both unicycle and pipeline versions of the CPU, displays the datapath graphically and

has a “performance mode” showing the latencies and critical path. It was developed for the PC

and for Android devices, and both versions are very similar. The development of the tool for two

quite different platforms implied additional effort, but the way the code was structured reduced it

considerably.

7.1 Objectives Accomplishment

The main objective of this work, which was to create a MIPS simulator to support computer

architecture teaching and learning, was accomplished. The more specific objectives of the work

were also achieved. The tool simulates both unicycle and pipeline versions of the processor and the

pipeline version includes hazard detection and resolution. It allows the step-by-step execution of

an assembly program while displaying detailed information about the CPU, including a graphical

representation of the datapath. The performance of the processor is simulated and its critical path

can be viewed. The datapaths can be configured and additional ones can be created. And finally,

the tool was developed for both computers and Android tablets, as planned.
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Besides those initial objectives, some additional ones were implemented. The most important

one is that the instruction sets used by the datapaths can also be configured. Other additions include

a dark theme, support for multiple languages and, for the PC version, two different modes to layout

the window contents and a complete code editor. The end result seems to be very positive, but only

real testing with real students can reveal how much the tool is effective in helping students to learn

about computer architecture.

The simulator is, in a way, an integrated environment that aggregates several features that are

found scattered through the other existing tools, plus some additional features. The simulators that

were discussed in Chapter 2 are compared with the developed simulator in Table 7.1. The table

shows that DrMIPS is more versatile than the others. It is one of the few that contains a code

editor with syntax-highlighting (in the PC version), that supports both the unicycle and pipeline

implementations, and that allows the configuration of the datapath. It is also the only one that

provides a version for Android, and that shows the latencies of the components and the critical

path of the CPU.

Syscalls and floating point operations are, at least for the moment, not supported, so simulators

like MARS and SPIM are more adequate to debug real and complete assembly programs, which

is not the focus of this work. Timing diagrams for the pipelined datapaths are also not displayed.

The release of the code as open-source is planned.

SPIM MARS ProcSim MIPS-Datapath WebMIPS EduMIPS64 DrMIPS
Open-source Yes Yes No Yes Yes Yes Planned
Code editor No Yes Yes Yes Yes No Yes
Editor syntax-highlighting No Yes No No No No PC only
Unicycle simulation Yes Yes Yes Yes No No Yes
Pipeline simulation No No No Partial Yes Yes Yes
Floating point support Yes Yes No No No Yes No
Syscall support Yes Yes No No No Yes No
Edit data during execution Yes Yes No No No Yes Yes
Datapath visualization No No Yes Yes Yes Simple Yes
Datapath configuration No No Yes No No No Yes
Timing diagrams No No No No No Yes No
Latencies & critical path No No No No No No Yes
Native Android version No No No No No No Yes
Written in C++,Qt Java Java C++ ASP Java Java

Table 7.1: Comparison of the related tools with DrMIPS

In terms of performance, the simulator runs fairly well. The PC version of the simulator starts

in a few seconds and the simulation is executed without any considerable delays in the computers

of today. The Android version is a bit slower, and on lower-end devices some small delays can

be experienced, especially when using a pipelined CPU. But the application is still very usable in

those cases.
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7.2 Future Work

The simulator can be improved in several ways. One useful improvement would be the inclusion

of timing diagrams when simulating pipelined datapaths. These diagrams help to understand how

pipelining works and how hazards affect it. The different stages could be represented by simple

colored rectangles or squares. However, the number of clock cycles displayed in the diagram

should be limited to avoid slowing the interface, especially on Android and when running all the

instructions at once. Some additional performance statistics, like CPI, time and number of cycles

spent to execute the program would also be useful, as the calculation of these statistics is also

taught in computer architecture courses.

Another useful improvement would be the inclusion of a graphical interface to create and edit

CPU files. The CPUs are defined in JSON files and, at the moment, must be created and edited

manually with a text editor. The most difficult part of creating the graphical editor would probably

be the interface to create/edit components. Each type of component has different properties and

there are quite a few different types of components.

The simulator supports the instructions detailed in the reference book [PH05] for the presented

datapaths, plus some additional instructions. The supported instruction set could be expanded with

more instructions. Two important ones are jal and jr, which allow the creation of subroutines.

Shift instructions are another example of important instructions. These, and some other instruc-

tions, can be added by creating new CPU and instruction set files without changing the code.

As mentioned in the end of Section 5.2, the minimum Android version supported by the An-

droid application is 2.3.3. Even though most devices are already supported, it would be useful to

support as many devices as possible by lowering the minimum supported version. The code would

have to suffer changes, though. Other improvements include optimizing the code, improving the

descriptions of the components and changing the latencies of the components in the provided

datapaths to more realistic values.
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