## Week 5

## Activity 1:

Students study the linear association between variables by analyzing two sets of data. They learn to analyze data in a spreadsheet as well as in a graph, and to generalize patterns of positive and negative linear association based on the shape of the graph. Students also learn how to represent data in a spreadsheet and relate the "slope" of their graphs to the association between two sets of data.

|  | A | B | c |
| :---: | :---: | :---: | :---: |
| 1 | Name | Height | Shoe Size |
| 2 | Sasha | 63 | 6 |
| 3 | Hector | 68 | 9 |
| 4 | Kayla | 67 | 8 |
| 5 | Adriana | 65 | 7 |
| 6 | Sean | 64 | 7 |
| 7 | Kay | 61 | 3 |
| 8 | Hillary | 69 | 9 |
| 9 | Thomas | 68 | 9 |
| 10 | Luis | 64 | 8 |
| 11 | Mayra | 66 | 6 |
| 12 | Michael | 68 | 10 |
| 13 | Tonya | 64 | 8 |
| 14 | Philip | 65 | 8 |
| 15 | Raymond | 66 | 9 |
| 16 | Jalen | 70 | 10 |
| 17 | Samantha | 62 | 4 |

## 1: Create a scatter plot and analyze data

## Activity:

Have students create a scatter plot chart to visualize the collected data like the one below. Ask them the following

questions:

Q1: What piece of information can we get from the spreadsheet that we cannot from the graph?
Q2: Describe any advantages of representing the data graphically.
Q3: Describe any patterns in the trends between height and shoe size.
Q4: What term do we use to describe trends represented by graphs with "positive slope"?

## 2: Comparing data patterns

Activity Overview: In this activity, students will represent data in an additional graph. Students will compare two patterns and their graphical representations to strengthen their understanding of positive and negative association.

| Breed | Lifespan (years) | Male Weight (lbs) |
| :---: | :---: | :---: |
| Afghan Hound | 12 | 60 |
| Airedale Terrier | 11 | 60 |
| American Stafford. Terrier | 12 | 62 |
| Basset Hound | 13 | 42 |
| Beagle | 13 | 23 |
| Bearded Collie | 12 | 42 |
| Bedlington Terrier | 14 | 20 |
| Bernese Mountain Dog | 7 | 92 |
| Border Collie | 13 | 37 |
| Border Terrier | 13 | 14 |
| Boxer | 10 | 65 |
| Bull Terrier | 13 | 62 |
| Bullmastiff | 9 | 120 |
| Cairn Terrier | 13 | 16 |
| Cav. King Charles Spaniel | 11 | 14 |
| Chihuahua | 13 | 4 |
| Chow Chow | 14 | 57 |
| Cocker Spaniel | 13 | 23 |
| Dachshund | 12 | 15 |
| Dalmatian | 13 | 68 |
| Doberman Pinscher | 10 | 78 |
| English Cocker Spaniel | 12 | 33 |
| English Setter | 11 | 67 |
| English Springer Spaniel | 13 | 50 |
| English Toy Spaniel | 10 | 11 |
| Flat-Coated Retriever | 10 | 65 |
| German Shepherd | 10 | 80 |
| German Shorthaired Pointer | 12 | 63 |
| Golden Retrievers | 12 | 70 |
| Gordon Setter | 11 | 68 |


| Great Dane | 8 | 160 |
| :---: | :---: | :---: |
| Greyhound | 13 | 68 |
| Irish Setter | 12 | 70 |
| Irish Wolfhound | 6 | 110 |
| Jack Russell Terrier | 14 | 16 |
| Labrador Retriever | 13 | 72 |
| Miniature Poodle | 15 | 16 |
| Norfolk Terrier | 10 | 11 |
| Old English Sheepdog | 12 | 62 |
| Pekingese | 13 | 8 |
| Pomeranian | 15 | 5 |
| Rhodesian Ridgeback | 9 | 110 |
| Rottweiler | 10 | 115 |
| Samoyed | 11 | 55 |
| Scottish Deerhound | 10 | 100 |
| Scottish Terrier | 12 | 21 |
| Shetland Sheepdog | 13 | 18 |
| Shiba Inu | 14 | 25 |
| Shih Tzu | 13 | 13 |
| Siberian Husky | 14 | 47 |
| Soft Coated Wheaten Terrier | 13 | 40 |
| Staffordshire Bull Terrier | 14 | 35 |
| Standard Poodle | 12 | 40 |
| Tibetan Terrier | 14 | 24 |
| Toy Poodle | 14 | 7 |
| Vizsla | 12 | 53 |
| Weimaraner | 10 | 63 |
| Welsh Springer Spaniel | 12 | 40 |
| West Highland White Terrier | 13 | 18 |
| Wire Fox Terrier | 13 | 18 |

## Activity:

Present students with the sample data on the average weight of various breeds of dogs compared to the average lifespan of those breeds. Ask them to repeat the process of creating a scatter plot from Activity 1. Ask your students the following questions:

Q1: Compare the trend in the graph in weight vs. lifespan to that in the graph of shoe size vs. height. Describe the difference between the two trends.

Q2: Do bigger breeds tend to live longer or shorter lives than smaller breeds?

Activity:

Ask your students the following questions to encourage thinking about the relationship between hard data and graphical representations:

Q3: If we draw a straight line that passes through the "middle" of the plotted data, would the line have a positive slope or a negative slope?

Q4: What term do we use to describe trends represented by graphs with negative slope?

## Application and Modeling of Standard Deviation

## Lesson Overview

When looking for patterns in data, it is helpful to look at the central tendency to see if patterns can be discovered. Students will be able to examine graphs of data using the measures of central tendency to determine when to use each in order to get a true overview of the data. Students will use the data collection to gather data, decomposition to regroup collected data, abstraction and data analysis to make real world insights based on the calculation of statistics about a population or data set. Finally they will simulate a dice-throwing game and alter the algorithm design to reflect changes to the game.

Activity Overview: Grades alone can be given to the students or they could be asked to generate the grades. Then, the students can be asked to group the data and find the average and standard deviation, similar to how it is done below:

| Grades | Results | Totals |
| ---: | :--- | :--- |
| 69 | $<60 \%$ | 13 |
| 97 | $61-70 \%$ | 1 |
| 37 | $71-80 \%$ | 3 |
| 87 | $81-90 \%$ | 6 |
| 79 | $91-100 \%$ | 7 |
| 80 |  |  |
| 88 |  |  |
| 50 |  |  |
| 85 |  |  |
| 91 |  |  |
| 20 |  |  |
| 30 |  |  |
| 99 |  |  |
| 17 |  |  |
| 81 |  |  |
| 88 | Average |  |
| 97 |  |  |
| 31 | Standard Deviation | 32.65688629 |
| 16 |  |  |
| 92 |  |  |


| 34 |  |  |
| ---: | :--- | :--- |
| 80 |  |  |
| 24 |  |  |
| 0 |  |  |
| 85 |  |  |
| 94 |  |  |
| 10 |  |  |
| 94 |  |  |
| 59 |  |  |
| 11 |  |  |

## Activity 1: Measuring distribution ( 30 to 45 minutes)

Activity Overview: In this activity, students will analyze collected data to calculate various statistics and make meaningful insights about the data or population. Students abstract the data to make real world insights using data analysis. Students decompose the data into ranges to more easily determine the most effective drug. This activity engages students through student-teacher interaction.

## Activity:

Have your students go through the following scenarios and questions:

1. Standard deviation is used to show how spread out the data is from the mean, which is useful for understanding how closely related the data are.
2. In the sheet given above, a teacher is looking at the results of the most recent test.
3. The average in the class is $\mathbf{6 1 \%}$, but very few students actually received a $61 \%$.

Q1: What is the standard deviation for this data?

Q2: Would it be helpful to grade this assessment on a curve, that is, adjust the scores so that a $100 \%$ is based on the highest grade in the class?
4. The "Drug Trials" sheet given below gives data from a fictional drug trial to cure persistent hiccuping. The data records how many hours it took for the drug to cure the hiccups.

| Drug 1 | Results | Totals | Drug 2 | Results | Totals | Drug 3 | Results | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0-1 | 1 | 0 | 0-1 | 34 | 2 | 0-1 | 12 |
| 5 | 2-3 | 17 | 0 | 2-3 | 31 | 6 | 2-3 | 64 |
| 5 | 4-5 | 57 | 5 | 4-5 | 34 | 3 | 4-5 | 0 |
| 5 | 6-7 | 25 | 4 | 6-7 | 1 | 6 | 6-7 | 24 |
| 6 |  |  | 1 |  |  | 2 |  |  |
| 6 |  |  | 1 |  |  | 6 |  |  |
| 5 |  |  | 3 |  |  | 3 |  |  |
| 3 |  |  | 5 |  |  | 6 |  |  |
| 4 |  |  | 2 |  |  | 6 |  |  |
| 5 |  |  | 5 |  |  | 6 |  |  |
| 6 |  |  | 3 |  |  | 2 |  |  |
| 5 | 4.54 |  | 4 |  | 1.516 | 0 |  | 1.3872 |
| 5 |  |  | 3 |  |  | 2 |  |  |
| 6 | 1.20349491066643 |  | 1 |  | 1.720465053 | 2 |  | 1.810497169 |



| 6 |
| :---: |
| 3 |
| 3 |
| 6 |
| 6 |
| 2 |
| 6 |
| 3 |
| 3 |
| 6 |
| 6 |
| 6 |
| 6 |
| 2 |
| 0 |
| 3 |
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 6 |
| 6 |
| 3 |
| 6 |
| 6 |
| 1 |
| 6 |
| 2 |
| 6 |
| 3 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 2 |


| 5 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |

Q3: What is the mean and standard deviation for each drug?
A placebo (http://wikipedia.org/wiki/Placebo) is a pill that does nothing. It is given to some patients in a drug trial (the "control group") to make sure that the drug has more effect than no treatment at all.

Q4: Which of the three drugs would likely be the placebo?

Q5: What might be an effective way to advertise Drug 2 over Drug 3? Most people do not understand "standard deviation," so you will need to convey your recommendation in non-mathematical terms.

