
Front Controller Pattern
UNIT III

Front Controller

• A front controller is a software

design pattern that handles all

requests for a website.

• It is a useful structure for web

application developers to

achieve flexibility and reuse

without code redundancy.

Front Controller
• Front controllers are often used in web applications to implement

workflows.
• While not strictly required, it is much easier to control navigation across a

set of related pages (for instance, multiple pages used in an online
purchase) from a front controller than it is to assign individual pages
responsibility for navigation.

• Front controller may be implemented as a Java object or as a script in a scripting
language such as PHP, Raku, Python or Ruby

• It is called for every request of a web session
• The script handles the tasks that are common to the application or the framework

– session handling, caching and input filtering
• Based on the specific request, it would then instantiate further objects and

call methods to handle the required tasks.

Alternate for front controller

• The alternative to a front controller is the usage of page

controllers mapped to each site page or path. Although this may

cause each individual controller to contain duplicate code, the

page-controller approach delivers a high degree of

specialization.

Application frameworks that implement
the front controller pattern
• Apache Struts

• ASP.NET MVC

• Cairngorm framework in Adobe Flex

• Bailador framework in Raku

• Drupal

• MVC framework in PHP

• Spring framework

• Yesod in Haskell

Components of FCs

• Front controllers is divided into three components:

• XML mapping: files that map requests to the class that will handle the

request processing.

• Request processor: used for request processing and modifying or

retrieving the appropriate model.

• Flow manager: determines what will be shown on the next page.

Participants

•Controller

•Dispatcher

•Helper

•View

Controller

• The controller is an entrance for users to handle requests in the

system.

• It realizes authentication by playing the role of delegating helper

or initiating contact retrieval.

Dispatcher

• Dispatchers can be used for navigation and managing the view

output.

• Users will receive the next view that is determined by the dispatcher.

• Dispatchers are also flexible; they can be encapsulated within the

controller directly or separated into another component.

• The dispatcher provides a static view along with the dynamic

mechanism

Helper

• Helpers assist in the processing of views or controllers.

• On the view side, the helper collects data and sometimes stores data as an
intermediate station.

• Helpers do certain preprocess such as formatting of the data to web content or
providing direct access to the raw data.

• Multiple helpers can collaborate with one view for most conditions.

• Additionally, a helper works as a transformer that adapts and converts the model
into a suitable format.

View

• With the collaboration of helpers, views display information to

the client by processing data from a model.

• The view will display if the processing succeeds, and vice versa

Java Implementation - FC

Benefits of FC
• Centralized control

• The front controller handles all the requests to the web application.
• This implementation of centralized control that avoids using multiple

controllers is desirable for enforcing application-wide policies such as user
tracking and security.

• Thread safety
• A new command object arises when receiving a new request, and the

command objects are not meant to be thread-safe.
• Thus, it will be safe in the command classes.
• Though safety is not guaranteed when threading issues are gathered, code

that interacts with commands is still thread-safe.
• Configurability

• As only one front controller is employed in a web application, the application
configuration may be greatly simplified.

• Because the handler shares the responsibility of dispatching, new commands
may be added without changes needed to the code.

Drawback of FC

• The front controller pattern may incur performance issues because the

single controller is performing a great deal of work, and handlers may

introduce bottlenecks if they involve database or document queries.

• The front controller approach is also more complex than that of page

controllers.

Relationship with MVC
(Model-View-Controller)
• In order to improve system reliability and maintainability,
duplicate code should be avoided and centralized when it
involves common logic used throughout the system.

• The data for the application is best handled in a single location,
obviating the need for duplicate data-retrieval code.

• Different roles in the MVC pattern should be separated to
increase testability, which is also true for the controller part in
the MVC pattern.

Features Page Controller Front Controller

Base Class

A base class is needed and will
grow simultaneously with the
development of the
application.

The centralization of requests is
easier to modify than is a base
class.

Security
Low security because various
objects react differently
without consistency.

High, because the controller is
implemented in a coordinated
fashion.

Logical Page Single object on each logical
page.

Only one controller handles all
requests.

Complexity Low High

CONTENT MODELING

What is content model?

• A content model documents all the different kinds of content you have on your

website.

• It breaks content types down into their component parts, describes them in detail,

and maps out how they relate to one another.

• A content model is an important step in working out the finer details and

practicalities of how you write and manage your content, and how you will present

it on the page.

How to create a content model?

• Content types
• A content type is like a template you follow to make multiple pieces of content in the

same vein.
• For example, a university might have a content type ‘template’ for course pages,

subject areas, and academic bios.
• Reuse the ‘template’ to create multiple pieces of content in the same format.

• Content attributes
• Content attributes are the different elements that come together to make up the

content type ‘template’.
• For example, your course page content type might consist of attributes like course

name, description, modules, fees, etc.

Content Model

• A content model should contain:

• detailed definitions of each type of content (blog, web page, draft, etc.),

• the components needed for each of these content types (fields like H1, meta

description, body text, etc.),

• and the relationship (hierarchy, internal linking, etc.) between all the different

content types.

How content is modeled?

How content is modeled?
• An effective content model encourages collaboration among designers, developers, and content producers while definitively

conveying project requirements and goals.

• Information Architects and Designers

• A content model tells information architects and designers what kinds of content and how much of it each section needs to display.

• With it, they may also be able to establish module “templates” to ensure a consistent user experience throughout the site.

• CMS Developers

• Development team to have a content model that carefully details your content needs and goals.

• Content Producers

• A detailed content model is a helpful outline for the authors and producers who will eventually create and upload content into the

CMS..

3 Steps to Creating Your Own Content
Model
1. Create a Content Map

2. Take Stock of What You Have (Or Need)

3. Determine Your Content Types and Components

4. Define Relationships to Bring the Whole Thing Together

Create a Content Map

• List out the content types and break them into attributes

• Add lines and labels to show relationship between them

Take Stock of What You Have (Or Need)

• Redefine the infrastructure of your content, first you have to know
what content you have.

• After gathering all your content in one place, review it to decide what
to keep and what to eliminate.

• Next, develop a taxonomy that will inform the content model and help
you port existing content into the final CMS.

• If you’re starting from scratch, during this first phase of content
modeling you will want to create a master outline, complete with
taxonomy, for content to be created in the future.

Determine Your Content Types and
Components
• With your outline in place, it’s time to determine what kinds of content

you’ll eventually need.
• Types of content could include an author bio, a blog post, a call to action, an

image gallery, a testimonial showcase, a navigational menu, and so on.
• Within each of these types are the components (which may also be called

“fields,” “elements,” etc.) which a content creator or manager will
eventually fill in with live content.

• These component fields are usually labeled with things like “title,” “date,”
“body,” etc.

• Don’t forget invisible components like metadata and tags that consumers
may not see but that play a vital role in your content’s scalability and search
engine ranking.

Determine Your Content Types and
Components
• The point of this step is to create a blueprint for the reusable,

customizable content modules that designers and developers will bring

to life in the CMS.

• Here, you may design a rough sketch or wireframe so content

managers can get an idea of how the content will be organized,

developers can clarify questions about functionality, and you can

gather feedback on how the content plan will be implemented.

Define Relationships to Bring the Whole
Thing Together
• You know what content you want and how you want to display it.

• Now, it is time to flesh out the final content model by defining how all of these
elements function in relation to each other.

• This is when you’ll finally draw out a content model to help designers create
consistent templates and developers ensure they’re building out connections and
functionality correctly.

• The relationships you define in the content model will determine the workflow of
the final CMS.

CONTENT AGGREGATION

What is content aggregation?

• A content aggregator is an entity that pulls together web or media content,
applications or both from online sources for reuse or resale. It’s a means of
curating content.

• Two types of content aggregators exist:
• those who gather news and other materials from various sources for publication on

their own Web sites

• those who syndicate content, gathering and distributing material that suits their
customers’ needs

What is content aggregation?

• Content aggregation involves collecting materials in one place, such

as:

• blogs

• newsletters

• newspaper and magazine articles

• social media posts

Why use a content aggregator?

• Content aggregator tool can:

• Enhance marketing efforts as part of a content marketing strategy

• power your business applications

• drive your corporate intranet

• empower you to add value to customers

• keep you up to date on industry information

Types of content aggregators
• Aggregators differ based on the type of content they work with and the sources they gather content

from.

• Some of the types of content where an aggregator may be used include the following six:

1. Blogs. Blog aggregators gather niche blog posts from multiple sources and present them on a central

site. Blog Engage is an example of a blog aggregator.

2. News. These aggregators gather news from multiple sources. Examples include Google News and

Apple News.

3. Social media. Social media aggregators, such as Curator, take information from various social sites

like Facebook and Twitter and display that information as a live feed.

Types of content aggregators
4. Research Research aggregators gather information from research
journals to answer questions from specialists or to keep up with trends
in various industries. Feedly can be used to aggregate research
articles.
5. Services. Service aggregators gather multiple service providers and
categorize them to make it easier for users to browse through the
choices and select one. For example, Airbnb presents all the possible
places a user could stay in a particular location.
6. Video. Video aggregators bring together recently published videos
on specific topics from a variety of sites. YouTube is an example of a
video aggregator.

Examples of content aggregators
• Content aggregators are usually web-based tools or
applications.

• Some tools can aggregate different content types and are often
customizable to enable users to focus on specific types of
content.

• Google News aggregates news content
• Apple Podcasts aggregates podcasts.
• Rotten Tomatoes aggregates movie reviews.
• Reddit is a news and social content aggregator.

How to start with content aggregation?

• Sites – WordPress

• Requirements:

• A domain name

• Web hosting service

• Access to RSS feed plugin or feature

Best Practices

1. Add value. Posting content from another source should be part of a
broader context that enhances the user experience. There should be
a good reason why the user is getting the content from the
aggregator as opposed to using the original source.

2. Diversity is important. If the goal of the aggregator is to present
users with a selection of content from the web, make sure all of the
content doesn't come from the same source. Having different content
sources adds value.

Best Practices

3. Link to the original. Give users the option to access the
original source of the aggregated content, especially in the case
of news stories and blogs. This benefits both the creator and the
user.

4. Quality is more important than quantity. It is important to
present only valuable information to readers because the point of
aggregation is to organize information and do some of the
screening for the user. This is why curation to complement
aggregation is often a good idea.

Benefits

• Faster learning
• Automation opportunities
• Increased traffic
• Low cost
• Customization
• Improved user engagement
• Trend identification
• Diversified information
• Search Engine Optimization

Tools

• Octoparse
• Google News
• Taggbox
• Castbox
• Alltop
• Flockler
• Feedly

PLUG-IN

What are Plug-ins?

• plug-in, also called add-on or extension, computer software that

adds new functions to a host program without altering the host

program itself.

• Widely used in digital audio, video, and Web browsing, plug-ins

enable programmers to update a host program while keeping

the user within the program’s environment.

History of Plugins

• Plug-ins first gained popularity in the 1990s as software
and microprocessors became more powerful.

• One of the first programs to make extensive use of plug-ins
was Adobe Photoshop, an image-processing and editing
program.

• Early plug-ins provided enhanced functions such as special
effects, filters, and other options for manipulating images within
Photoshop.

Why are plugins used?

• Plugins are software additions that are used to add or extend functionality to

your website.

• For instance, you have required a plugin to handle everything if you are

going to take donations or sell products on our site.

• There are also some other plugins that are mainly useful

for WordPress websites, such as a WordPress SEO plugin, a WordPress

forms plugin, a WordPress security plugin, a WordPress backup plugin.

Types

• Custom language support.

• Framework integration.

• Tool integration.

• User interface add-ons.

• Themes

Plugins

• Plugins are also known as ‘add-ons’ or extensions

• WordPress Plugins

• Adobe Acrobat Reader

• Bukkit Plugins

• HP Print Service

