
Bubble Sort

Aims
• Give you deeper understanding of core topics

– Sort algorithms including bubble sort

– Efficiency of algorithms

– Computational thinking

• Give you practical ways to teach computing in
a fun, thought provoking way
– away from computers, focus on concepts

• Linked activity sheets and booklets can be
downloaded from our website:

Sort Algorithms
• A sort algorithm takes an array of data and puts

it into order (either ascending order or
descending order)

• eg

• [5, 7, 2, 99, 4] -> [2, 4, 5, 7, 99]

• [“cat”, “hat”, “ant”] -> [“ant”, “cat”, “hat”]

• Often used as a way of making things easier to
find (eg in a telephone directory)

• There are many sort algorithms some more
efficient than others

Towards bubble sort

Compare adjacent entries
We can compare entries at a given position and swap them

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

Towards bubble sort
We can scan down the array doing that on adjacent pairs

FOR position = 0 TO 3

{

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

}

Is that enough to guarantee the array is sorted?

How many times do we do this
• We need to stop just before the end as the end

entry has nothing to compare with

• So for an array of length 5, the last
comparison is at position 4, to compare the
4th and 5th entries.

• However positions in arrays in many
languages are numbered from 0 not 1

• So that means it finishes comparing array[3]
with array[4]

Towards bubble sort

Multiple passes
We need multiple passes i.e. to do that repeatedly

FOR pass = 0 TO 3

{

FOR position = 0 TO 3

{

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

}

}

How many passes
• How many passes do we need to do to

guarantee it is sorted?

• What is the worst situation we could be in?

How many passes

• On the first pass, the biggest value has ended up
in the right place

• We took it with us, where ever it started.

• On the next pass the next biggest is in the right
place…and so on

• When the second last one is in the right place there
is no where else for the last one to go so it is right
too.

• So if there are 10 entries in the array we will need
9 passes or more generally n entries need n-1
passes

A naive version of bubble sort

bubblesort (array, n):

FOR pass = 0 TO (n-2)

{

FOR position = 0 TO (n-2)

{

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

}

}

Can we do better?

Can we do better?

• We have already seen that after the first pass
that the biggest value is in the right place

• So why waste time comparing against
something that we know isn't going to move?

• Similarly after 2 passes 2 entries are right (and
so on)

• So on each pass there is one less thing to
compare

• We need to stop the inner loop one place earlier
on each pass

Can we do better?

FOR position = 0 TO (n-2) …

• On pass 0 we make no change

• On pass 1 we subtract 1 from the stop point

• On pass 2 we subtract 2 from the stop point

• …

We can do this just by subtracting pass

FOR position = 0 TO (n-2) - pass …

A more efficient version of

bubble sort
bubblesort (array, n):

FOR pass = 0 TO (n-2)

{

FOR position = 0 TO (n-2-pass)

{

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

}

}

Can we do better?

Can we do better still?
• What happens if the array is already sorted?

• Over and over again we do comparisons,
never changing anything

Observation

• If we do a whole pass and nothing changes
then it never will - the array is sorted

• Add a flag to detect when this happens and
stop

A more efficient version of

bubble sort
bubblesort (array, n):

changed := true

pass := 0

WHILE (pass <= n-2) AND (changed = true)

{ changed := false

FOR position = 0 TO (n-2-pass)

{

IF (array[position] > array [position+1])

THEN

swap (array, position, position+1)

changed := true

}

pass := pass + 1

}

