Bubble Sort

Bubble Sorting

First Pass Second Pass Third Pass

%z«\\swapping . (Do swap)

1

5 4|12|8

— sWapping

2|8

_
\
4
‘Z»\swapping
)

¥\ W W
¥ VW W W

¥ YW ¥ ¥

AIMS
« Give you deeper understanding of core topics
— Sort algorithms including bubble sort

— Efficiency of algorithms
— Computational thinking

* Give you practical ways to teach computing Iin
a fun, thought provoking way
— away from computers, focus on concepts

* Linked activity sheets and booklets can be
downloaded from our website:

Sort Algorithms

A sort algorithm takes an array of data and puts
It Into order (either ascending order or
descending order)

€9

e [5,7,2,99,4] ->[2,4,5, 7, 99]

* [‘cat’, "hat”, "ant”] -> ["ant”, “cat”, "hat]
Often used as a way of making things easier to
find (eg in a telephone directory)

There are many sort algorithms some more
efficient than others

Towards bubble sort
Compare adjacent entries

We can compare entries at a given position and swap them

IF (array[position] > array [position+1])
THEN
swap (array, position, position+1)

Towards bubble sort

We can scan down the array doing that on adjacent pairs
FOR position=0TO 3
{
IF (array[position] > array [position+1])
THEN
swap (array, position, position+1)

}

|s that enough to guarantee the array is sorted?

How many times do we do this

* We need to stop just before the end as the end
entry has nothing to compare with

« So for an array of length 5, the last
comparison is at position 4, to compare the
4th and 5th entries.

* However positions in arrays in many
languages are numbered from O not 1

e SO0 that means it finishes comparing array|3]
with array[4]

Towards bubble sort
Multiple passes

We need multiple passes i.e. to do that repeatedly
FOR pass=0TO 3

{
FOR position =0 TO 3

{

|F (array[position] > array [position+1])
THEN
swap (array, position, position+1)

How many passes

 How many passes do we need to do to
guarantee it is sorted?

 What Is the worst situation we could be In?

How many passes

On the first pass, the biggest value has ended up
In the right place

 We took it with us, where ever It started.

On the next pass the next biggest is in the right
place...and so on

When the second last one is in the right place there
IS no where else for the last one to go so it is right
too.

So if there are 10 entries in the array we will need
O passes or more generally n entries need n-1
passes

A naive version of bubble sort

bubblesort (array, n):
FOR pass =0 TO (n-2)
{
FOR position =0 TO (n-2)
{
IF (array[position] > array [position+1])
THEN
swap (array, position, position+1)

Can we do better?

Can we do better?

« We have already seen that after the first pass
that the biggest value is in the right place

* S0 why waste time comparing against
something that we know isn't going to move?

« Similarly after 2 passes 2 entries are right (and
SO on)

* S0 on each pass there is one less thing to
compare

* We need to stop the inner loop one place earlier
on each pass

Can we do better?
FOR position =0 TO (n-2) ...

* On pass 0 we make no change
* On pass 1 we subtract 1 from the stop point
* On pass 2 we subtract 2 from the stop point

We can do this just by subtracting pass
FOR position =0 TO (n-2) - pass ...

A more efficient version of
bubble sort

bubblesort (array, n):
FOR pass =0 TO (n-2)
{
FOR position = 0 TO (n-2-pass)
{
IF (array[position] > array [position+1])
THEN
swap (array, position, position+1)

Can we do better?

Can we do better still?

« What happens if the array Is already sorted?

« Over and over again we do comparisons,
never changing anything

Observation

 If we do a whole pass and nothing changes
then it never will - the array Is sorted

« Add a flag to detect when this happens and
stop

A more efficient version of
bubble sort

bubblesort (array, n):
changed := true
pass =0
WHILE (pass <= n-2) AND (changed = true)
{ changed .= false
FOR position =0 TO (n-2-pass)
{
IF (array[position] > array [position+1])
THEN
swap (array, position, position+1)
changed := true

}

pass .= pass + 1

