
Package Diagram 

 
Package diagram is used to simplify complex class diagrams, you can group classes into 

packages. A package is a collection of logically related UML elements. 

The diagram below is a business model in which the classes are grouped into packages: 

● Packages appear as rectangles with small tabs at the top. 

● The package name is on the tab or inside the rectangle. 

● The dotted arrows are dependencies. 

● One package depends on another if changes in the other could possibly force changes in 

the first. 

 
 

Package Diagram Namespace 

Packages contain different elements (packages too). A UML package establishes a namespace 

for specifying the context of a UML. A package defines what is known as an encapsulated 

namespace. When an element in one space needs to refer to an element in a different namespace, 



it has to specify both the name of the element it wants and the qualified name or pathname of the 

element. You provide the fully scoped name, for example, 

packageName::className 

In Java, a fully-scoped name corresponds to specify the Java package. It is possible to specify 

visibility for owned and imported elements, such as, public or private as well. 

● Qualified name of the class Librarian in the figure below is 

Library::Users::Librarian 
 

 
 

 

System and SubSystem 

 

A system is represented as a package with the stereotype of <<system>> as shown in Figure 

below. The system represents all the model elements that pertain to the particular project. You 

can also break a system into <<business systems>> and <<application systems>> when building 

more detailed models to make them smaller and more workable. In the UML, packages are 

represented as folders. 

 
A subsystem is a grouping of model elements that are part of the overall system. Subsystems, 

like systems, are stereotyped packages with the stereotype of <<subsystem>> as shown in the 

Figure below. 



 
 

Packages for Software Structure 

Because a system or subsystem is a stereotyped package, it has all the properties and rules of a 

package. This means those model elements that are contained by the system and subsystem are 

owned by that package and can only be part of them and no other. 

The subsystem gives the project team an easy way to partition the system. Since a system 

contains multiple subsystems, everything contained within the subsystems is owned by the 

system that they roll up into. A diagram can display the logical architecture of a system. 

 

 



 
 

 

 


