NS2 Tutorial

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

What we need

- Linux (e.g., RedHat 8.0) installed with full options
- Tcl/Tk (version 8.4.14)
- otcl (version 1.12)
- TclCL (version 1.18)
- ns-2 (version 2.30)
- nam (version 1.11)
- Xgraph (version 12.1)
- Get all of them (piece by piece) from <u>www.isi.nsnam/ns</u> (click "Download and Build ns)

Step 1: Tcl/Tk install

1. Already done!

Step 2: otcl install

- 1. Decompress
 - tar zxvf otcl-src-1.12.tar.gz
- 2. Configure
 - cd otcl-1.12
 - ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6
 - If it complains that "tclInt.h" doesn't exist", copy tclInt*.h from tcl8.4.14/generic to /usr/X11R6/include
- 3. Make
 - cd otcl-1.12
 - make (this will creat otclsh, owish, libotcl.a, libotcl.so)
- 4. Test
 - cd otcl-1.12
 - make test (skip!)
- 5. Install (be the super user first)
 - cd otcl-1.12
 - make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

Step 3: TclCL install

- 1. Decompress
 - tar zxvf tclcl-src-1.18.tar.gz
- 2. Configure
 - cd tclcl-1.18
 - ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-ver=8.4
- 3. Make
 - cd tclcl-1.18
 - make (this will creat tcl2c++, libtclcl.a)
- 4. Install (be the super user first)
 - cd tclcl-1.18
 - make install (this will copy files to /usr/local/bin, /usr/local/lib, /usr/local/include)

Step 4: NS-2 install

- 1. Decompress
 - tar zxvf ns-src-2.30.tar.gz
- 2. Configure
 - cd ns-2.30
 - ./configure --with-tcl=/usr/X11R6 --with-tcl-ver=8.4 --with-tk=/usr/X11R6 --with-tk-ver=8.4
- 3. Make
 - cd ns-2.30
 - make
- 4. Test
 - cd ns-2.30
 - ./validate
 - Note: if it complains that "Cannot load libotcl8.4.so", copy otcl-1.12/libotcl.so to /usr/local/lib and add "usr/local/lib" to LD_LIBRARY_PATH by editing .bashrc
- 5. Install
 - Copy ns to /usr/local/bin

Step 5: nam install

- 1. Get the binary release nam-1.11-linux-i386.tar.gz from http://www.isi.edu/nsnam/nam/index.html
- 2. Decompress
 - tar xzvf nam-1.11-linux-i386.tar.gz
- 3. Install
 - copy nam /usr/local/bin

Step 6: Xgraph install

- 1. Decompress
 - tar xzvf xgraph-12.1.tar.gz
- 2. Configure
 - cd xgraph-12.1
 - ./configure
- 3. Make
 - cd xgraph-12.1
 - make
- 4. Install (be the super user)
 - cd xgraph-12.1
 - make install (this will copy xgraph to /usr/local/bin)

NS-2 Tutorial (1)

- Two nodes connected through a duplex link
 - Source node send CBR traffic over UDP during the time interval [0.5 sec, 4.5 sec]
 - Destination node receive it
- What we program
 - example1.tcl: specify node topology and simulation scenario
- What we have to do
 - ns example1.tcl
- What to learn
 - How to define node and their connections
 - How to use the existing protocol agents (e.g., UDP)
 - How to use the application agents (e.g., CBR)
 - How to run "nam" in the tcl script to view the simulation

example1.tcl

#Create a simulator object set ns [new Simulator]

#Open the nam trace file set nf [open out.nam w] \$ns namtrace-all \$nf

#Define a 'finish' procedure
proc finish { }
global ns nf
\$ns flush-trace
#Close the trace file
close \$nf
#Execute nam on the trace file
exec nam out.nam &
exit 0

#Create two nodes

set n0 [\$ns node] set n1 [\$ns node]

#Create a duplex link between the nodes \$ns duplex-link \$n0 \$n1 1Mb 10ms DropTail #Create a UDP agent and attach it to node n0 set udp0 [new Agent/UDP] \$ns attach-agent \$n0 \$udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

#Create a Null agent (a traffic sink) and attach it to node n1 set null0 [new Agent/Null] \$ns attach-agent \$n1 \$null0

#Connect the traffic source with the traffic sink \$ns connect \$udp0 \$null0

#Schedule events for the CBR agent
\$ns at 0.5 "\$cbr0 start"
\$ns at 4.5 "\$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation
time
\$ns at 5.0 "finish"

#Run the simulation \$ns run

NS-2 Tutorial (2)

- Three nodes connected through duplex links
 - Source node (Node 0) sends CBR traffic over UDP during the time interval [0.5 sec, 4.5 sec] via Node 2 toward the final destination Node 3
 - Source node (Node 1) sends CBR traffic over UDP during the time interval [1.0 sec, 4.0 sec] via Node 2 toward the final destination Node 3
 - Router (Node 2) routes the traffic
 - Destination node (Node 3) receive it
- How to run
 - ns example2.tcl
- What to learn
 - How to classify flows (visualize them with different colors)
 - How to monitor a queue
 - Observe unfair drop by DropTail queue
 - Observe if SFQ (Stochastic Fair Queueing) can solve the unfairness

example2.tcl

#Create a simulator object set ns [new Simulator]

#Define different colors for data flows\$ns color 1 Blue\$ns color 2 Red

#Open the nam trace file set nf [open out.nam w] \$ns namtrace-all \$nf

```
#Define a 'finish' procedure
proc finish { } {
    .... same as before ....
```

}

#Create four nodes set n0 [\$ns node] set n1 [\$ns node] set n2 [\$ns node] set n3 [\$ns node]

#Create links between the nodes
\$ns duplex-link \$n0 \$n2 1Mb 10ms DropTail
\$ns duplex-link \$n1 \$n2 1Mb 10ms DropTail
\$ns duplex-link \$n3 \$n2 1Mb 10ms SFQ

\$ns duplex-link-op \$n0 \$n2 orient right-down \$ns duplex-link-op \$n1 \$n2 orient right-up \$ns duplex-link-op \$n2 \$n3 orient right

#Monitor the queue for the link between node 2 and node 3
\$ns duplex-link-op \$n2 \$n3 queuePos 0.5

#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
\$udp0 set class_1
\$ns attach-agent \$n0 \$udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500 // byte
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

#Create a UDP agent and attach it to node n1
set udp1 [new Agent/UDP]
\$udp1 set class_ 2
\$ns attach-agent \$n1 \$udp1

example2.tcl

Create a CBR traffic source and attach it to udp1 set cbr1 [new Application/Traffic/CBR] \$cbr1 set packetSize_ 500 \$cbr1 set interval_ 0.005 \$cbr1 attach-agent \$udp1

#Create a Null agent (a traffic sink) and attach it to node n3 set null0 [new Agent/Null] \$ns attach-agent \$n3 \$null0

#Connect the traffic sources with the traffic sink \$ns connect \$udp0 \$null0 \$ns connect \$udp1 \$null0

#Schedule events for the CBR agents \$ns at 0.5 "\$cbr0 start" \$ns at 1.0 "\$cbr1 start" \$ns at 4.0 "\$cbr1 stop" \$ns at 4.5 "\$cbr0 stop" #Call the finish procedure after 5 seconds of simulation time \$ns at 5.0 "finish"

#Run the simulation \$ns run

NS-2 Tutorial (3)

- A ring topology with 7 nodes
 - Source node (Node 0) send CBR traffic over UDP during [0.5 sec, 4.5 sec] toward Node 3
 - Destination node (Node 3) receives it
 - All other nodes work as routers
 - Link between Node 1 and Node 2 downs at 1.0 sec and recovers at 2.0 sec
- How to run
 - ns example3.tcl
- What to learn
 - How to use node "array" and for loop in tcl script to model many nodes
 - How to simulate link failure
 - Observe all packets drop while the link fails
 - How to use DV (Distance Vector) routing
 - Observe if DV finds another path detouring the failed link

example3.tcl

#Create a simulator object set ns [new Simulator]

#Tell the simulator to use dynamic routing \$ns rtproto DV

#Open the nam trace file
set nf [open out.nam w]
\$ns namtrace-all \$nf
#Define a 'finish' procedure
proc finish {} {
... same as before

```
#Create seven nodes
for {set i 0} {$i < 7} {incr i} {
    set n($i) [$ns node]</pre>
```

#Create a UDP agent and attach it to node n(0)
set udp0 [new Agent/UDP]
\$ns attach-agent \$n(0) \$udp0

Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

#Create a Null agent (a traffic sink) and attach it to node n(3) set null0 [new Agent/Null] \$ns attach-agent \$n(3) \$null0

#Connect the traffic source with the traffic sink \$ns connect \$udp0 \$null0

#Schedule events for the CBR agent and the network
dynamics
\$ns at 0.5 "\$cbr0 start"
\$ns rtmodel-at 1.0 down \$n(1) \$n(2)
\$ns rtmodel-at 2.0 up \$n(1) \$n(2)
\$ns at 4.5 "\$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation
time
\$ns at 5.0 "finish"

#Run the simulation \$ns run

NS-2 Tutorial (4)

- Three source nodes (Nodes 0, 1, 2) send burst traffic via a router (Node 3) toward the final destination (Node 4)
 - Source nodes (Nodes 0, 1, 2) start and stop the burst traffic at 10 sec and 50 sec, respetively.
 - Three sinks at the Destination node (Node 4) records the bandwidth of three flows at every 0.5 sec.
 - The recorded bandwidth (out0.tr, out1.tr, and out2.tr) is displayed by Xgraph
- How to run
 - ns example4.tcl
- What to learn
 - How to generate burst traffic
 - How to record the simulated data into files
 - How to run Xgraph to visualize the recorded data

example4.tcl

#Create a simulator object set ns [new Simulator] #Open the output files set f0 [open out0.tr w] set f1 [open out1.tr w] set f2 [open out2.tr w] #Create 5 nodes set n0 [\$ns node] set n1 [\$ns node] set n2 [\$ns node] set n3 [\$ns node] set n4 [\$ns node] #Connect the nodes \$ns duplex-link \$n0 \$n3 1Mb 100ms DropTail \$ns duplex-link \$n1 \$n3 1Mb 100ms DropTail \$ns duplex-link \$n2 \$n3 1Mb 100ms DropTail \$ns duplex-link \$n3 \$n4 1Mb 100ms DropTail #Define a 'finish' procedure

proc finish {} {
 global f0 f1 f2
 close \$f0
 close \$f1
 close \$f2
 exec xgraph out0.tr out1.tr out2.tr -geometry 800x400 &
 exit 0

#Define a procedure that attaches a UDP agent to a previously created node #'node' and attaches an Expoo traffic generator to the agent with the #characteristic values 'size' for packet size 'burst' for burst time, #'idle' for idle time and 'rate' for burst peak rate. The procedure connects #the source with the previously defined traffic sink 'sink' and returns the #source object.

proc attach-expoo-traffic { node sink size burst idle rate }

#Get an instance of the simulator set ns [Simulator instance]

#Create a UDP agent and attach it to the node set source [new Agent/UDP] \$ns attach-agent \$node \$source

#Create an Expoo traffic agent and set its configuration
parameters
set traffic [new Application/Traffic/Exponential]
\$traffic set packetSize_ \$size
\$traffic set burst_time_ \$burst
\$traffic set idle_time_ \$idle
\$traffic set rate_ \$rate

Attach traffic source to the traffic generator
\$traffic attach-agent \$source
#Connect the source and the sink
\$ns connect \$source \$sink
return \$traffic

example4.tcl

<pre>#Define a procedure which periodically records the bandwidth received by the #three traffic sinks sink0/1/2 and writes it to the three files f0/1/2. proc record {} { global sink0 sink1 sink2 f0 f1 f2 #Get an instance of the simulator set ns [Simulator instance] #Set the time after which the procedure should be called again set time 0.5 #How many bytes have been received by the traffic sinks? set bw0 [\$sink0 set bytes_] set bw1 [\$sink1 set bytes_] set bw2 [\$sink2 set bytes_]</pre>	<pre>#Create three traffic sinks and attach them to the node n4 set sink0 [new Agent/LossMonitor] set sink1 [new Agent/LossMonitor] set sink2 [new Agent/LossMonitor] \$ns attach-agent \$n4 \$sink0 \$ns attach-agent \$n4 \$sink1 \$ns attach-agent \$n4 \$sink1 \$ns attach-agent \$n4 \$sink2 #Create three traffic sources set source0 [attach-expoo-traffic \$n0 \$sink0 200 2s 1s 100k] set source1 [attach-expoo-traffic \$n1 \$sink1 200 2s 1s 200k] set source2 [attach-expoo-traffic \$n2 \$sink2 200 2s 1s 300k] #Start logging the received bandwidth</pre>
#Get the current time set now [\$ns now]	\$ns at 0.0 "record"
#Calculate the bandwidth (in MBit/s) and write it to	#Start the traffic sources \$ns at 10.0 "\$source0 start"
the files	\$ns at 10.0 "\$source1 start"
puts \$f0 ''\$now [expr \$bw0/\$time*8/1000000]''	\$ns at 10.0 "\$source2 start"
puts \$f1 ''\$now [expr \$bw1/\$time*8/1000000]''	#Stop the traffic sources
puts \$f2 ''\$now [expr \$bw2/\$time*8/1000000]''	\$ns at 50.0 "\$source0 stop"
#Reset the bytes_ values on the traffic sinks	\$ns at 50.0 "\$source1 stop"
\$sink0 set bytes_ 0	\$ns at 50.0 "\$source2 stop"
\$sink1 set bytes_0	#Call the finish procedure after 60 seconds
\$sink2 set bytes_ 0	\$ns at 60.0 ''finish''
#Re-schedule the procedure	
<pre>\$ns at [expr \$now+\$time] ''record''</pre>	#Run the simulation
}	\$ns run