
LAB 3 – SOCKET PROGRAMMING – UDP

DATE : 16.08.2024

BATCH : N,P,Q

Exercise 1

Design a client-server application using connection less protocol. A typical communication

between the client and server in the application is as follows:

 client sends the server the number of commands to be executed

for as many times as the number sent,

o client sends a command to the server

o client sends an input for the command

o server processes the input based on the command and sends the output to the client

A few sample commands and the corresponding action to be taken are listed below:

Command Action Sample Input Sample Server

Response

CASE

CONVERSION

Convert lower case to

upper case and upper

case to lower case

Anna University aNNA uNIVESITY

welcome

WELCOME

WELCOME

welcome

PRIME Checks if prime or

even number

17 prime number

24 Not prime number

hi Invalid Input

STRING ab Number of a ‘s and b ‘s aabba 3 2

bbbaabbb 2 6

cdezhi Invalid Input

123 Invalid Input

<Any other> None <any> Invalid Command

As indicated above, the server gives an error message in case it receives an invalid command /

input from the client.

Exercise 2

Write a UDP Client-Server socket program for the following scenario:

The UDP server has a lookup table consisting of domain names (Eg., annauniv.edu, google.com,

ieee.org, yahoo.co.in,) and their respective IP addresses. The UDP client contacts the UDP server

to get the IP address for an application server by specifying its domain name. The server in turn,

retrieves the IP address from the lookup table and sends the same to the client.

UDP

Use of the User Datagram Protocol, also known as UDP, is widespread on the Internet for time-

sensitive transmissions like DNS lookups and video playback. By not explicitly establishing a

connection before data is sent, it speeds up communications. This enables the delivery of data

incredibly quickly, but it can also result in packets being lost in transit, opening up the potential

for DDoS assaults and other forms of exploitation. UDP is a defined procedure for transferring

data between two computers connected by a network, like all networking protocols. In contrast to

other protocols, UDP completes this task in a straightforward manner: it delivers packets (units of

data transmission) straight to the destination computer without first establishing a connection,

specifying the order of such packets, or verifying that they arrived as intended. The term

"datagram" is used to describe UDP packets.

As a more popular transport protocol, UDP is quicker but less dependable than TCP. Through an

automatic procedure known as a "handshake," the two computers in a TCP communication first

create a connection. The actual transfer of data packets between the two computers won't happen

until after this handshake is complete. This procedure is skipped during UDP communications.

Alternatively, two computers can just start communicating by exchanging data.

TCP communications also validate that data packets arrive in the intended order and specify the

order in which they should be received. TCP mandates that a packet is resent if it is not received,

such as when there is network congestion in the intermediary network. None of these features are

present in UDP communications.

Some advantages are produced by these distinctions. Data can be transferred significantly more

quickly using UDP than using TCP since it doesn't require a "handshake" or check to see whether

the data is correct.

This rapidity, nevertheless, results in compromises. A UDP datagram will not be sent again if it is

lost in transit. Therefore, UDP-using applications need to be able to endure errors, loss, and

duplication.

Technically speaking, such packet loss is less of a problem with UDP as it is a result of how the

Internet is designed. Due to the impractical amount of additional memory required, the majority

of network routers do not by default conduct packet sequencing and arrival confirmation. When

an application needs it, TCP is a technique to close this gap.)

In connections that must be completed quickly, UDP is frequently employed since it is preferable

to wait than to infrequently lose packets. Due to the fact that both voice and video communications

are time-sensitive and built to withstand some degree of loss, they are both sent via this protocol.

For instance, UDP is utilized by many internet-based telephone services that use VOIP (voice over

IP), which is a type of communication. This is due to the fact that staticky phone conversations are

better than crystal-clear but choppy ones.

The best protocol for online gaming is UDP because of this. In a similar way, DNS servers function

using UDP since they must be both quick and effective.

Implementation of UDP Client Server Program

There are some fundamental differences between TCP and UDP sockets. UDP is a connection-

less, unreliable, datagram protocol (TCP is instead connection-oriented, reliable and stream based).

There are some instances when it makes to use UDP instead of TCP. Some popular applications

built around UDP are DNS, NFS, SNMP and for example, some Skype services and streaming

media.

In UDP, the client does not form a connection with the server like in TCP and instead, It just

sends a datagram. Similarly, the server need not to accept a connection and just waits for

datagrams to arrive. We can call a function called connect() in UDP but it does not result

anything like it does in TCP. There is no 3 way handshake. It just checks for any immediate

errors and store the peer’s IP address and port number. connect() is storing peers address

so no need to pass server address and server address length arguments in sendto().

Figure 4 shows the interaction between a UDP client and server. First of all, the client does not

establish a connection with the server. Instead, the client just sends a datagram to the server using

the sendto function which requires the address of the destination as a parameter. Similarly, the

server does not accept a connection from a client. Instead, the server just calls

the recvfrom function, which waits until data arrives from some client. recvfrom returns the IP

address of the client, along with the datagram, so the server can send a response to the client.

As shown in the Figure, the steps of establishing a UDP socket communication on the client side

are as follows:

 Create a socket using the socket() function;

 Send and receive data by means of the recvfrom() and sendto() functions.

The steps of establishing a UDP socket communication on the server side are as follows:

 Create a socket with the socket() function;

 Bind the socket to an address using the bind() function;

 Send and receive data by means of recvfrom() and sendto().

https://www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html#x1-110014

The recvfrom() Function

This function is similar to the read() function, but three additional arguments are required.

The recvfrom() function is defined as follows:

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void* buff, size_t nbytes,

 int flags, struct sockaddr* from,

 socklen_t *addrlen);

The first three arguments sockfd, buff, and nbytes, are identical to the first three arguments

of read and write. sockfd is the socket descriptor, buff is the pointer to read into, and nbytes is

number of bytes to read. In our examples we will set all the values of the flags argument to 0.

The recvfrom function fills in the socket address structure pointed to by from with the protocol

address of who sent the datagram. The number of bytes stored in the socket address structure is

returned in the integer pointed by addrlen.

The function returns the number of bytes read if it succeeds, -1 on error.

The sendto() Function

This function is similar to the send() function, but three additional arguments are required.

The sendto() function is defined as follows:

#include <sys/socket.h>

ssize_t sendto(int sockfd, const void *buff, size_t nbytes,

 int flags, const struct sockaddr *to,

 socklen_t addrlen);

The first three arguments sockfd, buff, and nbytes, are identical to the first three arguments

of recv. sockfd is the socket descriptor, buff is the pointer to write from, and nbytes is number of

bytes to write. In our examples we will set all the values of the flags argument to 0.

The to argument is a socket address structure containing the protocol address (e.g., IP address and

port number) of where the data is sent. addlen specified the size of this socket.

The function returns the number of bytes written if it succeeds, -1 on error.

Necessary Functions

int socket(int domain, int type, int protocol)

Creates an unbound socket in the specified domain.

Returns socket file descriptor.

Arguments:

 type - the kind of socket that should be generated (SOCK STREAM for TCP and SOCK

DGRAM for UDP).

 protocol - The socket will use this protocol.

 0 indicates to use of the address family's default protocol.

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)

Assigns the address to the unbound socket.

Arguments:

 sockfd, which is the file descriptor for a socket that will be bonded

 Structure, where the address to be tied to, is supplied (addr)

 the size of the addr structure in addrlen

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,

 const struct sockaddr *dest_addr, socklen_t addrlen)

Send a message on the socket

Arguments:

 Arguments: sockfd - the socket's file descriptor;

 buf - the application buffer containing the data to be transferred

 Size of the application buffer (len)

 flags - Bitwise OR of socket behavior flags

 Structure called dest addr that contains the destination's address

 the dest addr structure's addrlen value

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,

 struct sockaddr *src_addr, socklen_t *addrlen)

Receive a message from the socket.

Arguments:

 the socket's file descriptor (sockfd),

 the application buffer (buf),

 the size of the application buffer (len),

 flags - Bitwise OR of flags to change the behavior of the socket

 the structure src addr, which contains the source address, is returned.

 the variable addrlen returns the size of the src addr structure.

int close(int fd)

Close a file descriptor

Arguments:

 File descriptor (fd)

