
Introduction to Socket Programming

1

Why Socket Programming?

 To build any network application

 Web browser

 FTP

2

Client – Server model

 Server – provider of information

 Client – seeker of information

 Eg. Apache server – web browser

3

Socket functions for
connection-oriented
communication

4

data (reply)

data (request)

Connection

establishment

blocks until connection

from client

process request

TCP Client

TCP Server

socket()

socket()

bind()

listen()

accept()

read()write()

read()

write()

close()

close()

conect()

Data structures

5

struct sockaddr
{
unsigned short sa_family;
// address family, AF_xxx

char sa_data[14];
// 14 bytes of protocol
address
};

// IPv4 AF_INET sockets:

struct sockaddr_in
{
short sin_family;
// e.g. AF_INET, AF_INET6
unsigned short sin_port;
// e.g. htons(3490)
struct in_addr sin_addr;
// see struct in_addr, below
char sin_zero[8];
// zero this if you want to

};

struct in_addr
{
unsigned long s_addr;
// load with inet_pton()
};

Defined by including the <netinet/in.h>

header

Choice of Port number

 Choose a port number that is registered
for general use, from 1024 to 49151

 Do not use ports 1 to 1023. These ports
are reserved for use by the Internet
Assigned Numbers Authority (IANA)

 Avoid using ports 49152 through 65535.
These are dynamic ports that operating
systems use randomly. If you choose one
of these ports, you risk a potential port
conflict 6

Byte ordering

7

Other functions

8

Socket()

 int s = socket(domain, type, protocol);

where
 s: socket descriptor, an integer (like a file-handle)

 domain: integer, communication domain
 e.g., AF_INET (IPv4 protocol)

 Note. We’ll use AF_INET

 type: communication type
 SOCK_STREAM: reliable, 2-way, connection-based service

 SOCK_DGRAM: unreliable, connectionless

 Note. We’ll use SOCK_STREAM

 protocol: We’ll set to 0

9

Bind()
 The bind function assigns a local protocol address to a socket.

 The protocol address is the combination of either a 32-bit
IPV4 address or a 128-bit IPV6 address, along with a 16-bit
port number

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *address, int addr_len)

 sockfd: a socket descriptor returned by the socket()

 *address: a pointer to a protocol-specific address.

 addrlen: the size of the socket address structure

 Returns on success: 0, on error: -1
10

Listen()

 The listen function is called only by a TCP server to
converts an unconnected socket into a passive socket.

#include <sys/socket.h>

int listen (int sockfd, int backlog);

 sockfd: a socket descriptor

 backlog: maximum number of connections that the
kernel should queue for this socket

 Returns on success: 0, on error: -1

11

Accept()

 The accept function is called by the TCP server to return
the next completed connection

#include<sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, int *addrlen);

 sockfd: socket descriptor

 *cliaddr: used to return the protocol address of the
connected peer process

 *addrlen: length of the address

 Returns on success: a new (connected)socket descriptor,
on error:-1

12

Connect()

 The connect function is used by a TCP client to establish a
connection with a TCP server

#include<sys/socket.h>

int connect(int sockfd, struct sockaddr *servaddr, int
addrlen);

 sockfd: a socket descriptor

 *servaddr: a pointer to a socket address structure

 addrlen: the size of the socket address structure

 Returns on success: 0, on error: -1

13

Read()

 The read function is used to receive data from the
specified socket

#include <unistd.h>

int read(int sockfd, const void * buf, int nbytes);

 sockfd: a socket descriptor

 buf: buffer to store the data.

 nbytes: size of the buffer

 Returns: number of bytes read if OK,0 on EOF, -1 on error

14

Write()

 The write function is used to send the data through the
specified socket

#include <unistd.h>

int write(int sockfd, const void * buf, int nbytes);

 sockfd: a socket descriptor

 buf: buffer to store the data.

 nbytes: size of the buffer

 Returns: number of bytes written if OK,0 on EOF, -1 on
error

15

Close()

 The close function is used to close a socket and
terminate a connection

#include <unistd.h>

int close (int sockfd);

 sockfd: This socket descriptor is no longer useable

 Returns on success: 0, on error: -1

16

