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Preface

NS2 is an open-source event-driven simulator designed specifically for research
in computer communication networks. Since its inception in 1989, NS2 has
continuously gained tremendous interest from industry, academia, and govern-
ment. Having been under constant investigation and enhancement for years,
NS2 now contains modules for numerous network components such as routing,
transport layer protocol, application, etc. To investigate network performance,
researchers can simply use an easy-to-use scripting language to configure a net-
work, and observe results generated by NS2. Undoubtedly, NS2 has become
the most widely used open source network simulator, and one of the most
widely used network simulators.

Unfortunately, most research needs simulation modules which are beyond
the scope of the built-in NS2 modules. Incorporating these modules into NS2
requires profound understanding of NS2 architecture. Currently, most NS2
beginners rely on online tutorials. Most of the available information mainly
explains how to configure a network and collect results, but does not include
sufficient information for building additional modules in NS2. Despite its de-
tails about NS2 modules, the formal documentation of NS2 is mainly written
as a reference book, and does not provide much information for beginners. The
lack of guidelines for extending NS2 is perhaps the greatest obstacle, which
discourages numerous researchers from using NS2. At this moment, there is
no guide book which can help the beginners understand the architecture of
NS2 in depth.

The objective of this textbook is to act as a primer for NS2 beginners.
The book provides information required to install NS2, run simple examples,
modify the existing NS2 modules, and create as well as incorporate new mod-
ules into NS2. To this end, the details of several built-in NS2 modules are
explained in a comprehensive manner.

NS2 by itself contains numerous modules. As time elapses, researchers keep
developing new NS2 modules. This book does not include the details of all NS2
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modules, but does so for selected modules necessary to understand the basics
of NS2. For example, it leaves out the widely used modules such as wireless
node or web caching. We believe that once the basics of NS2 are grasped,
the readers can go through other documentations, and readily understand the
details of other NS2 components. The details of Network AniMator (NAM)
and Xgraph are also omitted here. We understand that these two tools are
nice to have and could greatly facilitate simulation and analysis of computer
networks. However, we believe that they are not essential to the understanding
of the NS2 concept, and their information are widely available through most
of the online tutorials.

This textbook can be used by researchers who need to use NS2 for commu-
nication network performance evaluation based on simulation. Also, it can be
used as a reference textbook for laboratory works for a senior undergraduate
level course or a graduate level course on telecommunication networks offered
in Electrical and Computer Engineering and Computer Science Programs.
Potential courses include “Network Simulation and Modeling”, “Computer
Networks”, “Data Communications”, “Wireless Communications and Net-
working”, “Special Topics on Telecommunications”. In a fifteen-class course,
we suggest the first class for an introduction to programming (Appendix A),
and other 14 classes for each of the 14 chapters. Alternately, the instruc-
tor may allocate 10 classes for teaching and 5 classes for term projects. In
this case, we suggest that the materials presented in this book are taught
in the following order: Chapters 1–2, 3, 12, 4–5, 6, 7–8, 9–11, 13 and 14.
When the schedule is really tight, we suggest the readers to go through Chap-
ters 2, 4–7, and 9–10. The readers may start by getting to know NS2 in Chap-
ter 2, and learn the main concepts of NS2 in Chapters 4–5. Chapters 6–7 and
9–10 present the details of most widely used NS2 modules. From time to time,
the readers may need to visit Chapter 3, 8, and 12 for further information.
If tracing is required, the readers may also have to go through Chapter 13.
Finally, Chapter 14 would be useful for those who need to extend NS2 beyond
it scopes.

We recommend the readers who intend to go through the entire book to
proceed chapter by chapter. A summary of all the chapters in this book is
provided below.

As the opening chapter, Chapter 1 gives an introduction to computer
networks and network simulation. The emphasis is on event-driven simulation
from which NS2 is developed.

An overview of Network Simulator 2 (NS2) is discussed in Chapter 2.
Here, we briefly show the two-language NS2 architecture, NS2 directory and
the conventions used in this book, and NS2 installation guidelines for UNIX
and Windows systems. We also present a three-step simulation formulation
as well as a simple example of NS2 simulation. Finally, we demonstrate how
to use the make utility to incorporate new modules into NS2.

Chapter 3 explains the details of the NS2 two language structure, which
consists of the following six main C++ classes: Tcl, Instvar, TclObject,
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TclClass, TclCommand, and EmbeddedTcl. Chapters 4–5 present the very
main simulation concept of NS2. While Chapter 4 explains implementation of
event-driven simulation in NS2, Chapter 5 focuses on network objects as well
as packet forwarding mechanism.

Chapters 6–11 present the following six most widely used NS2 modules.
First, nodes (Chapter 6) act as routers and computer hosts. Secondly, links,
particularly SimpleLink objects (Chapter 7), deliver packets from one net-
work object to another. They model packet transmission time as well as packet
buffering. Thirdly, packets (Chapter 8) contain necessary information in its
header. Fourthly, agents (Chapters 9–10) are responsible for generating pack-
ets. NS2 has two main transport-layer agents: TCP and UDP agents. Finally,
applications (Chapter 11) model the user demand for data transmission.

Chapter 12 presents three helper modules: timers, random number gen-
erators, and error models. It also discusses the concepts of two bit-wise op-
erations, namely, bit masking and bit shifting, which are used throughout
NS2.

Chapter 13 summarizes the post-simulation process, which consists of
three main parts: debugging, variable and packet tracing, and result compila-
tion.

After discussing all the NS components, Chapter 14 demonstrates how
a new module is developed and integrated into NS2 through two following
examples: Automatic Repeat reQuest (ARQ) and packet schedulers.

Appendices A and B provide programming details which could be useful
for the beginners. These details include an introduction to Tcl, OTcl, and
AWK programming languages as well as a review of the polymorphism OOP
concept.

As the final words, we would like to express sincere gratitude to our col-
leagues, especially, Surachai Chieochan, at the University of Manitoba, and
the colleagues at TOT Public Company Limited, Bangkok, Thailand, for their
continuous support. Last but not the least, we would like to acknowledge our
families as well as our partners – Wannasorn and Rumana – for their incessant
moral support and patient understanding throughout this endeavor.

TOT Public Company Limited Teerawat Issariyakul
University of Manitoba Ekram Hossain
July 2008
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1

Simulation of Computer Networks

People communicate. One way or another, they exchange some information
among themselves all the times. In the past several decades, many electronic
technologies have been invented to aid this process of exchanging informa-
tion in an efficient and creative way. Among these are the creation of fixed
telephone networks, the broadcasting of television and radio, the advent of
computers, and the emergence of wireless sensation. Originally, these tech-
nologies existed and operated independently, serving their very own purposes.
Not until recently that these technological wonders seem to converge, and it
is a well-known fact that a computer communication network is a result of
this convergence.

This chapter presents an overview of computer communication networks,
and the basics of simulation of such a network. Section 1.1 introduces a com-
puter network along with the reference model which is used for describing
the architecture of a computer communication network. A brief discussion
on designing and modeling a complex system such as a computer network
is then given in Section 1.2. In Section 1.3, the basics of computer network
simulation are discussed. Section 1.4 presents one of the most common type
of network simulation-time-dependent simulation. An example simulation is
given in Section 1.5. Finally, Section 1.6 summarizes the chapter.

1.1 Computer Networks and the Layering Concept

A computer network is usually defined as a collection of computers intercon-
nected for gathering, processing, and distributing information. Computer is
used as a broad term here to include devices such as workstations, servers,
routers, modems, base stations, wireless extension points, etc. These com-
puters are connected by communications links such as copper cables, fiber
optic cables, and microwave/satellite/radio links. A computer network can be
built as a nesting and/or interconnection of several networks. The Internet is
a good example of computer networks. In fact, it is a network of networks,
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2 1 Simulation of Computer Networks

within which, tens of thousands of networks interconnect millions of comput-
ers worldwide.

1.1.1 Layering Concept

A computer network is a complex system. To facilitate design and flexible im-
plementation of such a system, the concept of layering is introduced. Using a
layered structure, the functionalities of a computer network can be organized
as a stack of layers. There is a peer-to-peer relationship (or virtual link) be-
tween the corresponding layers in two communicating nodes. However, actual
data flow occurs in a vertical fashion – from the highest layer to the lowest
layer in a node, and then through the physical link to reach the lowest layer
at the other node, and then following upwards to reach the highest layer in
the stack. Each layer represents a well-defined and specific part of the system
and provides certain services to the above layer. Accessible (by the upper
layers) through so-called interfaces, these services usually define what should
be done in terms of network operations or primitives, but does not specifically
define how such things are implemented. The details of how a service is im-
plemented is defined in a so-called protocol. For example, the transmitter at
a source computer can use a specific protocol (e.g., a data encoding scheme)
at the physical layer to transmit information bits to the receiving computer,
which should be able to decode the received information based on the protocol
rules. The beauty of this layering concept is the layer independency. That is,
a change in a protocol of a certain layer does not affect the rest of the sys-
tem as long as the interfaces remain unchanged. Here, we highlight the words
services, protocol, and interface to emphasize that it is the interaction among
these components that makes up the layering concept.

Figure 1.1 graphically shows an overall view of the layering concept
used for communication between two computer hosts: a source host and a
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Fig. 1.1. Data flow in a layered network architecture.



1.1 Computer Networks and the Layering Concept 3

destination host. In this figure, the functionality of each computer host is
divided into four layers.1 When virtually linked with the same layer on an-
other host, these layers are called peers.2 Although not directly connected
to each other, these peers virtually communicate with one another using a
protocol represented by an arrow. As has already been mentioned, the actual
communication needs to propagate down the stack and use the above layering
concept.

Suppose an application process running on Layer 4 of the source gener-
ates data or messages destined for the destination. The communication starts
by passing a generated message M down to Layer 3, where the data are seg-
mented into two chunks (M1 and M2), and control information called header
(H3) specific to Layer 3 is appended to M1 and M2. The control information
are, for example, sequence numbers, packet sizes, and error checking infor-
mation. These information are understandable and used only by the peering
layer on the destination to recover the data (M). The resulting data (e.g.,
H3+M1) is handed to the next lower layer, where some protocol-specific con-
trol information are again added to the message. This process continues until
the message reaches the lowest layer, where transmission of information is
actually performed over a physical medium. Note that, along the line of these
processes, it might be necessary to further segment the data from upper lay-
ers into smaller segments for various purposes. When the message reaches the
destination, the reverse process takes place. That is, as the message is mov-
ing up the stack, its headers are ripped off layer by layer. If necessary, several
messages are put together before being passed to the upper layer. The process
continues until the original message (M) is recovered at Layer 4.

1.1.2 OSI and TCP/IP Reference Models

The OSI (Open Systems Interconnection) model was the first reference model
developed by ISO (International Standards Organization) to provide a stan-
dard framework in order to describe the protocol stacks in a computer net-
work. Its consists of seven layers where each layer is intended to perform a
well-defined function [1]. These are physical layer, data link layer, network
layer, transport layer, session layer, presentation layer, and application layer.
The OSI model only specifies what each layer should do; it does not spec-
ify the exact services and protocols to be used in each layer. Although not
implemented in current systems, the OSI model philosophy (i.e., the layer-
ing concept) lays a strong foundation for further developement in computer
networking.

1 For the sake of illustration only four layers are shown. In the real world systems,
the number of layers may vary, depending on the functionality and objectives of
the networks.

2 A peering host of a source and a destination are the destination and the source,
respectively.
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The TCP (Transmission Control Protocol)/IP (Internet Protocol) refer-
ence model, which is based on the two primary protocols, namely, TCP and
IP, is used in the current Internet. These protocols have proven very power-
ful, and as a result, have experienced widespread use and implementation in
the existing computer networks. It was developed for ARPANET, a research
network sponsored by the U.S. Department of Defense, which is considered as
the grandparent of all computer networks. In the TCP/IP model, the proto-
col stack consists of five layers – physical, data link, network, transport, and
application – each of which is responsible for certain services as will be dis-
cussed shortly. Note that the application layer in the TCP/IP model can be
considered as the combination of session, presentation, and application layers
of the OSI model.

Application Layer

The application layer sits on top of the stack, and uses services from the trans-
port layer (discussed below). This layer supports several higher-level protocols
such as HTTP (Hypertext Transfer Protocol) for World Wide Web applica-
tions, SMTP (Simple Mail Transfer Protocol) for electronic mail, TELNET
for remote virtual terminal, DNS (Domain Name Service) for mapping com-
prehensible host names to their network addresses, and FTP (File Transfer
Protocol) for file transfer.

Transport Layer

The objective of a transport layer is to transport the messages from the appli-
cation layer of the source host to that of the destination host. To accomplish
this goal, two well-known protocols, namely, TCP and UDP (User Datagram
Protocol), are defined in this layer. While TCP is responsible for a reliable and
connection-oriented communication between the two hosts, UDP supports an
unreliable connectionless transport. TCP is ideal for applications that prefer
accuracy over prompt delivery and the reverse is true for UDP.

Generally, control information related to flow control and error control
need to be embedded into the messages. Also, before adding any header,
fragmentation is usually performed to break a long message into segments. For
this reason, the protocol data units in this layer are normally called segments.

Network Layer

This layer provides routing services to the transport layer. Network layer is
designed to deliver the data units, usually called packets, along the paths
they are meant to traverse from a source host to a destination host. Again,
to facilitate routing, headers containing information such as source and des-
tination network addresses are added to the transport protocol data units to
formulates network-layer data unit.
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Link Layer

The packets are generally routed through several communication links and
nodes before they actually reach the destination node. To successfully route
these packets all the way to the destination, a mechanism is required for node-
to-node delivery across each of the communication links. A link layer protocol
is responsible for data delivery across a communication link.

A link layer protocol has three main responsibilities. First, flow control
regulates the transmission speed in a communication link. Secondly, error
control ensures the integrity of data transmission. Thirdly, flow multiplex-
ing/demultiplexing combines multiple data flows into and extracts data flows
from a communication link. Choices of link layer protocols may vary from
host to host and network to network. Examples of widely-used link layer pro-
tocols/technologies include Ethernet, Point-to-Point Protocol (PPP), IEEE
802.11 (i.e., WiFi), and Asynchronous Transfer Mode (ATM).

Physical Layer

The physical layer deals with the transmission of data bits across a commu-
nication link. Its primary goal is to ensure that the transmission parameters
(e.g., transmission power, modulation scheme) are set appropriately to achieve
the required transmission performance (e.g., to achieve the target bit error rate
performance).

Finally, we point out that the five layers discussed above are common to the
OSI layer. As has already been mentioned, the OSI model contains two other
layers sitting on top of the transport layer, namely, session and presentation
layers. The session layer simply allows users on different computers to create
communication sessions among themselves. The presentation layer basically
takes care of different data presentations existing across the network. For
example, a unified network management system gathers data with different
format from different computers and converts their format into a uniform
format.

1.2 System Modeling

System modeling refers to an act of representing an actual system in a simply
way. System modeling is extremely important in system design and develop-
ment, since it gives an idea of how the system would perform if actually imple-
mented. With modeling, the parameters of the system can be changed, tested,
and analyzed. More importantly, modeling, if properly handled, can save costs
in system development. To model a system, some simplifying assumptions are
often required. It is important to note that too many assumptions would
simplify the modeling but may lead to an inaccurate representation of the
system.
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Traditionally, there are two modeling approaches: analytical approach and
simulation approach.

1.2.1 Analytical Approach

The general concept of analytical modeling approach is to first come up with a
way to describe a system mathematically with the help of applied mathemat-
ical tools such as queuing and probability theories, and then apply numerical
methods to gain insight from the developed mathematical model. When the
system is simple and relatively small, analytical modeling would be prefer-
able (over simulation). In this case, the model tends to be mathematically
tractable. The numerical solutions to this model in effect require lightweight
computational efforts.

If properly employed, analytical modeling can be cost-effective and can
provide an abstract view of the components interacting with one another
in the system. However, if many simplifying assumptions on the system are
made during the modeling process, analytical models may not give an accurate
representation of the real system.

1.2.2 Simulation Approach

Simulation is widely-used in system modeling for applications ranging from en-
gineering research, business analysis, manufacturing planning, and biological
science experimentation, just to name a few. Compared to analytical model-
ing, simulation usually requires less abstraction in the model (i.e., fewer sim-
plifying assumptions) since almost every possible detail of the specifications
of the system can be put into the simulation model to best describe the ac-
tual system. When the system is rather large and complex, a straightforward
mathematical formulation may not be feasible. In this case, the simulation
approach is usually preferred to the analytical approach.

In common with analytical modeling, simulation modeling may leave out
some details, since too much details may result in an unmanageable simula-
tion and substantial computation effort. It is important to carefully consider
a measure under consideration and not to include irrelevant detail into the
simulation.

In the next section, we describe the basic concepts of simulation in more
detail with particular emphasis on simulation of a computer network.

1.3 Basics of Computer Network Simulation

A simulation is, more or less, a combination of art and science. That is, while
the expertise in computer programming and the applied mathematical tools
account for the science part, the very skill in analysis and conceptual model
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formulation usually represents the art portion. A long list of steps in execut-
ing a simulation process, as given in [2], seems to reflect this popular claim.
Basically, all these steps can be put into three main tasks each of which carries
different degrees of importance.

According to Shannon [2], it is recommended that 40 percent of time and
effort be spent on defining a problem, designing a corresponding model, and
devising a set of experiments to be performed on the simulation model. Fur-
ther, it was pointed out that a portion of 20 percent should be used to program
the conceptual elements obtained during the first step. Finally, the remaining
40 percent should be utilized in verifying/validating the simulation model, ex-
perimenting with designed inputs (and possibly fine-tuning the experiments
themeselves), and analyzing the results. We note that this formula is in no
way a strict one. Any actual simulation may require more or less time and
effort, depending on the context of interest and, definitely, on the modeler
himself/herself.

A simulation can be thought of as a flow process of network entities (e.g.,
nodes, packets). As these entities move through the system, they interact with
other entities, join certain activities, trigger events, cause some changes to the
state of the system, and leave the process. From time to time, they contend
or wait for some type of resources. This implies that there must be a logical
execution sequence to cause all these actions to happen in a comprehensi-
ble and manageable way. An execution sequence plays an important role in
supervising a simulation and is sometimes used to characterize the types of
simulation (see Section 1.4).

1.3.1 Simulation: The Formal Definition

According to Shannon [2], simulation is “the process of designing a model of
a real system and conducting experiments with this model for the purpose of
understanding the behavior of the system and/or evaluating various strategies
for the operation of the system.” With the dynamic nature of computer net-
works, we thus actually deal with a dynamic model of a real dynamic system.

1.3.2 Elements of Simulation

According to Ingalls [3], the structural components of a simulation consist of
the following:

Entities

Entities are objects which interact with one another in a simulation program
to cause some changes to the state of the system. In the context of a computer
network, entities may include computer nodes, packets, flows of packets, or
non-physical objects such as simulation clocks. To distinguish the different
entities, unique attributes are assigned to each of them. For instance, a packet
entity may have attributes such as packet length, sequence number, priority,
and the header.
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Resources

Resources are a part of complex systems. In general, a limited supply of re-
sources has to be shared among a certain set of entities. This is usually the
case for computer networks, where bandwidth, air time, the number of servers,
for instance, represent network resources which have to be shared among the
network entities.

Activities and Events

From time to time, entities engage in some activities. This engaging creates
events and triggers changes in the system states. Common examples of ac-
tivities include delay and queuing. When a computer needs to send a packet
but find the medium busy, it waits until the medium is free. In this case, the
packet is to be sent over the air but the medium is busy, the packet is said to
be engaged in a waiting activity.

Scheduler

A scheduler maintains the list of events and their execution time. During a
simulation, it runs a simulation clock creates events, and executes them.

Global Variables

In simulation, a global variable is accessible by any function or entity in the
system, and basically keeps track of some common values of the simulation. In
the context of computer networks, such variables might represent, for example,
the length of the packet queue in a single-server network, the total busy air
time of the wireless network, or the total number of packets transmitted.

Random Number Generator

A Random number generator (RNG) is required to introduce randomness in
a simulation model. Random numbers are generated by sequentially picking
numbers from a deterministic sequence of psudo-random number [4], yet the
numbers picked from this sequence appear to be random. In most case, a
psudo-random sequence is predefined and is used by every RNG.

In many situations, several statistically results are required. An RNG needs
to start picking numbers from different location (i.e., seed) in the (same)
predefined psudo-random sequence. Otherwise, the results for every run would
be the same. In an actual implementation, an RNG is initialized with a seed.
A seed identifies the starting location in a psudo-random sequence, where an
RNG starts picking numbers. Different simulation initialized with different
seeds therefore generates different results (but statistically identical).

In a computer network simulation, for example, a packet arrival process,
waiting process, and service process are usually modeled as random processes.
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A random process is expressed by sequences of random variables. These ran-
dom process are usually implemented with the aids of an RNG. For a com-
prehensive treatment on random process implementation (e.g., those having
the uniform, exponential, Gaussian, Poisson, Binomial distribution functions),
the readers are referred to [5, 6].

Statistics Gatherer

The main responsibility of a statistics gatherer is to collect data generated by
the simulation so that meaningful inferences can be drawn from such data.

1.4 Time-Dependent Simulation

A main type of simulation is time dependent simulation which proceeds
chronologically. This type of simulation maintains a simulation clock which
keeps track of the current simulation time. In most cases, the simulation is
run until the clock reaches a predefined threshold.

Time-dependent simulation can be further divided into time-driven sim-
ulation and event-driven simulation. A time-driven simulation induces and
executes events for every fixed time interval. In other words, the simulation
advances from one time interval to another, and executes events (if any) un-
til it reaches a certain limit. An event-driven simulation, on the other hand,
induces events at arbitrary time. The simulation moves from one event to an-
other, and again executes the event (if any) until the simulation terminates.

There is an important note for time-dependent simulation: The simulation
must progress in a chronological order. While this note is fairly straightfor-
ward for a time-driven simulation, [7] specifies two important points for an
implementation of event-driven simulation. First, every new event scheduled
into the event list must be tagged with a timestamp equal to or greater than
that of the current event. In other words, no outdated events can be scheduled.
Secondly, the next event the simulation always executes is that event with the
smallest timestamp in the event list. It will never jump over chronologically
ordered events or Jump back to the past event.

1.4.1 Time-Driven Simulation

In time-driven simulations, the simulation clock is advanced exactly by a fixed
interval of ∆ time units. After each advancement of the clock, the simulation
looks for events that may have occurred during this fixed interval. If so, such
events are treated as if they occurred at the end of this interval.

Figure 1.2 shows the basic idea behind time advancement in a time-driven
simulation. The curved arrows here represent such advances, and a, b, and c

mark the occurrences of particular events. During the first interval, no event
occurs, whereas the second interval contains event a, which is not handled
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until the end of the interval. One disadvantage of time-driven simulation is
illustrated in the fifth interval, where events b and c are considered to occur
exactly at the end of the interval (at time 5∆). This calls for a procedure
that determines which event should be handled first. One solution to get
around this situation is to narrow down a simulation time interval such that
every interval contains only one event. This, however, puts substantial com-
putational burden on the simulator. Time-driven simulation is therefore not
recommended for system models whose events tend to occur over a random
period of time.

2

3

4

5

6a

b c
time

0

Fig. 1.2. Clock advancement in a time-driven simulation.

Example 1.1. Program 1.1 shows time-driven simulation pseudo codes. Lines 1
and 2 initializes the system state variables and the simulation clock, respec-
tively. Line 3 specifies the stopping criterion. Here, Lines 4-7 are run as long
as the simulation clock (i.e., simClock) is less than a predefined threshold
(i.e., stopTime). These lines collect statistics, executes events, and advance
the simulation to the current event time.

Program 1.1 Skeleton of the event-processing loop in a time-driven simula-
tion.

1 initialize {system states}

2 SimClock := startTime;

3 while {SimClock < stopTime}

4 collect statistics from current state;

5 execute all events that occurred during

6 [SimClock, SimClock + step];

7 SimClock := SimClock + step;

8 end while

1.4.2 Event-Driven Simulation

As the name suggests, an event-driven simulation is initiated and run by a set
of events. A list of all scheduled events are usually maintained and updated
throughout the simulation process. Technically speaking, the main loop in the
simulation program actually has to sequence through this list, and handle one
event after another until either the list is empty or the stopping criterion is
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a
time

0 b c

To the next event

Fig. 1.3. Clock advancement in an event-driven simulation.

satisfied. The mechanism of handling events is shown graphically in Fig. 1.3,
where events a, b, and c are executed in order. The time gap between two
events is not fixed. The simulation advance from one event to another, as
opposed to one interval to another in a time-driven simulation. Except for the
time advancing mechanism, the event-driven simulation is quite similar to the
time-driven mechanism.

In an event-driven simulation, all the events in an entire simulation may
not be created at the initialization. As the simulation advances, one event
may induce one or more events. The new event is usually inserted into the
chain (i.e., list) of events arranged chronologically. An event-driven simulation
ignores the intervals of inactivity by advancing the simulation clock from one
event time to another. This process goes on and on until all the events are
executed, or until the system reaches a specific state (e.g., the simulation time
reaches a predefined value). Along the way, we certainly need a way to gather
some statistics or states of the system for analysis purposes. This process
of gathering information can take place right after every event execution.
Alternatively, it can be done using a specialized entity which gathers statistics
during the simulation.

Example 1.2. Program 1.2 shows the skeleton of a typical event-driven simu-
lation program. Lines 1 and 2 initializes the system state variables and the list
of events, respectively. Line 3 specifies the stopping criterion. Lines 4–6 are
executed as along as Line 3 returns true. Here, the previously executed event
is removed from the list, the simulation clock is set to the scheduled time of
the current event, and the current event is executed. Within such a loop, the
system state variables may be modified to capture those changes that occur
in the system according to the executed event.

Program 1.2 Skeleton of the event-processing loop in an event-driven simu-
lation.

1 initialize {system states}

2 initialize {list of events}

3 while {state != finalState} % or while {this.event != Null}

4 expunge the previous event from list of events;

5 set SimClock := time of current event;

6 execute this.event

7 end while
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1.5 A Simulation Example: A Single-Channel Queuing
System

This section demonstrates a simulation of a single-channel queuing system,
as an example. Consider a point-to-point wired communication link as shown
in Fig. 1.4. For simplicity, we consider only a one-way communication from
node A to node B. In particular, we are interested in an intra-station packet
queuing system at node A, where a packet is retrieved from the queue and
transmitted (or served) one at a time – the transmission time depends on the
bandwidth or capacity of the link.

Futhermore, we assume that packets, whose inter-arrival time follows some
probability distribution, are unlimited and randomly generated from a set of
applications. Since a packet can be of any random length and the conditions
of the channel may vary, the service time of each packet is also random and
follows some probability distribution. In our case, it is defined as the elapsed
time from the moment a packet is transmitted to the moment it is successfully
received by node B.

Next, the queuing discipline employed at node A is First-In-First-Out
(FIFO), i.e., packets are enqueued and transmitted (served) in the order of
their arrival. For simplicity, the queuing mechanism at node B is ignored. Ad-
ditionally, for the system to be stable, we assume that the arrival rate is less
than the service rate. Otherwise, the queue will build up with no bound.

Entities

The primary entities in this simulation include the following:

• Server (medium availability) with idle and busy attributes,

APP

APP APP

Buffer

FIFO

NODE A NODE B

Channel

Fig. 1.4. Illustration of a single-channel queuing system.
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• Packets with arrival time and service time attributes, and
• Queue with empty and non-empty attributes.

Resource

Obviously, the only resource in this example is the transmission time in the
channel.

System State Variables and Events

• Two system state variables:
(i) num_system is the number of packets in the system, i.e., the one being

served and those waiting in the queue.
(ii) channel_free is the status of the channel (server) which is either idle

or busy.
• Two events:

(i) pkt_arrival corresponds to a packet arrival event. This event occurs
when a packet arrives at the queue. As shown in Fig. 1.5, once en-
tered, the packet may either go directly to service or wait in the queue,
depending on whether the channel is busy or idle.

(ii) pkt_complete corresponds to a successful packet transmission event.
This event indicates that a packet has been received successfully by
node B. At the completion, node A begins to transmit (serve) another
packet waiting in the queue. If there is no more packet to be sent, the
channel becomes idle. The flow diagram of such a process is shown in
Fig. 1.6.

yes

Packet Arrival Event

Channel
Idle?

Transmit
Packet

Enqueue
Packet

no

Fig. 1.5. Packet arrival event.

yes

Successful Packet 
Transmission

Queue
Empty?

Begin Channel 
Idle Time

Dequeue and 
transmit a packet
from the buffer

no

Fig. 1.6. Successful packet transmission (service completion) event.
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Two other important elements in an event-driven simulation are a simu-
lation clock and an event list. A simulation clock maintains the current simu-
lation time, as the simulation advances. An event list is a chain of scheduled
events (e.g., packet arrival and successful packet transmission) connecting in
a chronological order. Again, the simulation executes an event after another
down the event list, and updates the simulation clock based on the time spec-
ified in the executed event.

Simulation Performance Measures

Here, we consider three following performance measures are:

• Mean waiting time is the average time that a packet spends in the queue.
In the simulation, we define a global variable which keeps track of the
total time all the transmitted packets spent in the queue. At the end
of the simulation, we divide this value by the total number of packets
transmitted to obtain the mean waiting time.

• Mean packet transmission latency is the average time that a packet spends
(from its arrival to its departure) in the system. It is the total time of all
the packets spend the system divided with the total number of transmitted
packets.

• Mean server utilization is the percentage time where the server is busy.
During the simulation we measure the time where the server is busy. At
the end of the simulation, we divide this busy time by the total simulation
time, and obtain the mean server utilization.

It is important to note that all the above measures are the average values
taken over time, implying that the longer the simulation, the more accurate
the statistics.

Program 1.3 shows a skeleton of the simulation program that can be used
to implement the single-channel queuing system described above.

The program starts with the initialization of system state variables as
defined above. Additionally, we define num_queue (Line 3) and num_system

(Line 4) to store the number of waiting packets and the number of all packets
currently in the system (i.e., both the queue and the channel), respectively.
The variable SimClock is also initialized to zero at the beginning of the
simulation. Next, Line 7 creates an event list by invoking the procedure
create_list(). We assume that this function automatically generates pack-
ets and associates each packet with the random inter-arrival and service times.
Further we assume that the event_list here is implemented using some
appropriate data structure that usually indicates the event type (arrival or
completion) and the associated timestamp (i.e., either inter-arrival time and
service time). Initially, only the arrival events are put into the event_list.

Now we define a main loop which continuously checks whether the simula-
tion should be terminated. The stopping criteria in Line 9 are (1) the event list
is exhausted and (2) the simulation clock has reached a predefined threshold.
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Program 1.3 Simulation skeleton of a single-channel queuing system.

1 % Initialize system states

2 channel_free = true; %Channel is idle

3 num_queue = 0; %Number of packets in queue

4 num_system = 0; %Number of packets in system

5 SimClock = 0; %Current time of simulation

6 %Generate packets and schedule their arrivals

7 event_list = create_list();

8 % Main loop

9 while {event_list != empty} & {SimClock < stopTime}

10 expunge the previous event from event list;

11 set SimClock := time of current event;

12 call current event;

13 end while

14 %Define events

15 pkt_arrival(){

16 if(channel_free)

17 channel_free = false;

18 num_system = num_system + 1;

19 % Update "event_list": Put "successful packet tx event"

20 % into "event_list," T is random service time.

21 schedule event "pkt_complete" at SimClock + T;

22 else

23 num_queue = num_queue + 1; %Place packet in queue

24 num_system = num_queue + 1;

25 }

26 pkt_complete(){

27 num_system = num_system - 1;

28 num_queue = num_queue - 1;

29 if(num_queue > 0)

30 schedule event "pkt_complete" at SimClock + T;

31 else

32 channel_free = true;

33 num_system = 0;

34 num_queue = 0;

35 }

If not, Lines 10–12 keep on executing the next event by invoking either the
procedure pkt_arrival() in Lines 15–25 or the procedure pkt_complete()

in Lines 26–35.
The procedure pkt_arrival() (Lines 15–25) checks whether the channel

(server) is idle when a packet arrives. If it is idle, the channel is set to busy,
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and a successful packet transmission event is inserted into the event_list

for future execution. The timestamp associated with the event is equal to the
current clock time (SimClock) plus the packet’s randomly generated service
time (T). If the channel is busy, on the other hand, the packet is simply put in
the queue whose counter (num_queue) is incremented by one unit. The number
of packets in the system is also updated accordingly.

When SimClock advances to a successful packet transmission event, the
procedure pkt_complete() is executed (Lines 26–35). Here, the number of
packets in the system (num_system) is updated. The queue counter num_queue
is decremented by one unit. Upon any successful packet transmission, it is also
necessary to check whether the queue is empty. If not, the head-of-the-line
packet will be served. This is done by feeding the packet to the channel and
scheduling it for transmission completion at time SimClock + T. However, if
the queue is empty, the channel is set to idle and the numbers of packets in
the queue and system are set to zero.

Suppose that the inter-arrival time and the service time comply with the
probability mass functions specified in Table 1.1. Table 1.2 shows the simu-
lation results for 10 packets. The inter-arrival time and service time of each
packet are shown in the first and second columns, respectively. The third and
fourth columns specify the time where the packet arrives and starts to be
served. The fifth column represents the packet waiting time, the time that
a packet spends in the queue. It is computed as the time difference between
when the service starts and when the packet arrives. Finally, the sixth column
represents the packet transmission latency, the time that a packet spends in
both the queue and the channel. It is computed as the summation of the
waiting time and the service time.

Based on the result in Table 1.2, we compute the average waiting time and
the average packet transmission latency by averaging the sixth and seventh
columns (i.e., adding all the values and dividing the result by 10). The average
waiting time and the average packet transmission latency are therefore 1.0 and
3.5 time units, respectively.

Table 1.1. Probability mass functions of inter-arrival time and service time.

Time unit Inter-arrival Service
(probability mass) (probability mass)

1 0.2 0.5
2 0.2 0.3
3 0.2 0.1
4 0.2 0.05
5 0.1 0.05
6 0.05
7 0.05
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Table 1.2. Simulation of a single-channel queuing system.

Packet Interarr.
time

Service
time

Arrival
time

Service
starts

Time
spent
in-queue

Packet
trans-
mission
latency

1 - 5 0 0 0 5
2 2 4 2 5 3 7
3 4 1 6 9 3 4
4 1 1 7 10 3 4
5 6 3 13 13 0 3
6 7 1 20 20 0 1
7 2 1 22 22 0 1
8 1 4 23 23 0 4
9 3 3 26 27 1 4
10 5 2 31 31 0 2

10 3.5

Table 1.3. Evolution of number of packets in the queue over time.

Event Packet No. Simulation clock

Arrival 1 0
Arrival 2 2
Completion 1 5
Arrival 3 6
Arrival 4 7
Completion 2 9
Completion 3 10
Completion 4 11
Arrival 5 13
Completion 5 16

Based on the information in Table 1.2, we also show in Table 1.3 how each
event for the first five packets occurs in a chronological order with respect to
the Simulation Clock (SimClock).

Figure 1.7 depicts the evolution of the number of packets in the queue
over time, which is also shown in Table 1.3. As shown in Fig. 1.7, at various
instances, the number of packets in the system differs. When the first packet is
being transmitted, another packet arrives in the queue at time 2. The number
of packets in the system becomes 2. That is, it includes the one that has been
served plus the one just arrived. In Fig. 1.7, this event causes a jump in the
graph at time 2. At time 5, when the first packet is successfully received at



18 1 Simulation of Computer Networks

1

2

3

Simulation 
time

Number of
Packets in the
System

161412108642

Fig. 1.7. Number of packets in the system at various instances.

node B, the next packet in queue is transmitted. Therefore, the graph drops to
level 1, indicating that there is only one packet in the system. This dynamics
continues until all the packets are transmitted. Based on Fig. 1.7, the mean
server utilization can be computed from the ratio of the time where the server
is in use and the simulation time, which is 14/16 = 0.875 in this case.

1.6 Chapter Summary

A computer network is a complex system that requires a careful treatment in
design and implementation. Simulation, regarded as one of the most powerful
performance analysis tools, is usually used in carrying out such a treatment
to complement the analytical tools.

This chapter focuses mainly on time-dependent simulation, which advances
in a time domain. The time-dependent simulation can be divided into two cat-
egories. Time-driven simulation advances the simulation by fixed time inter-
vals, while event-driven simulation proceeds from one event to another. NS2
is an event-driven simulation tool. Designing event-driven simulation models
using NS2 is the theme of the rest of the book.
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Introduction to Network Simulator 2 (NS2)

2.1 Introduction

Network Simulator (Version 2), widely known as NS2, is simply an event-
driven simulation tool that has proved useful in studying the dynamic nature
of communication networks. Simulation of wired as well as wireless network
functions and protocols (e.g., routing algorithms, TCP, UDP) can be done us-
ing NS2. In general, NS2 provides users with a way of specifying such network
protocols and simulating their corresponding behaviors.

Due to its flexibility and modular nature, NS2 has gained constant pop-
ularity in the networking research community since its birth in 1989. Ever
since, several revolutions and revisions have marked the growing maturity of
the tool, thanks to substantial contributions from the players in the field.
Among these are the University of California and Cornell University who de-
veloped the REAL network simulator,1 the foundation which NS is based on.
Since 1995 the Defense Advanced Research Projects Agency (DARPA) sup-
ported development of NS through the Virtual InterNetwork Testbed (VINT)
project [9].2 Currently the National Science Foundation (NSF) has joined the
ride in development. Last but not the least, the group of researchers and de-
velopers in the community are constantly working to keep NS2 strong and
versatile.

Again, the main objective of this book is to provide the readers with in-
sights into the NS2 architecture. This chapter gives a brief introduction to
NS2. NS2 Beginners are recommended to go thorough the detailed introduc-
tory online resources. For example, NS2 official website [10] provides NS2
source code as well as detailed installation instruction. The web pages in
[11] and [12] are among highly recommended ones which provide tutorial and

1 REAL was originally implemented as a tool for studying the dynamic behavior
of flow and congestion control schemes in packet-switched data networks.

2 Funded by DARPA, the VINT project aimed at creating a network simulator
that will initiate the study of different protocols for communication networking.
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examples for setting up basic NS2 simulation. A comprehensive list of NS2
codes contributed by researchers can be found in [13]. These introductory
online resources would be helpful in understanding the material presented in
this book.

In this chapter an introduction to NS2 is provided. In particular, Sec-
tion 2.2 presents the basic architecture of NS2. The information on NS2
installation is given in Section 2.3. Section 2.4 shows NS2 directories and
conventions. Section 2.5 shows the main steps in NS2 simulation. A simple
simulation example is given in Section 2.6. Section 2.7 describes how to include
C++ modules in NS2. Finally, Section 2.8 concludes the chapter.

2.2 Basic Architecture

Figure 2.1 shows the basic architecture of NS2. NS2 provides users with an
executable command ns which takes on input argument, the name of a Tcl
simulation scripting file. Users are feeding the name of a Tcl simulation script
(which sets up a simulation) as an input argument of an NS2 executable
command ns. In most cases, a simulation trace file is created, and is used to
plot graph and/or to create animation.

NS2 consists of two key languages: C++ and Object-oriented Tool Com-
mand Language (OTcl). While the C++ defines the internal mechanism (i.e.,
a backend) of the simulation objects, the OTcl sets up simulation by assem-
bling and configuring the objects as well as scheduling discrete events (i.e., a
frontend). The C++ and the OTcl are linked together using TclCL. Mapped
to a C++ object, variables in the OTcl domains are sometimes referred to as
handles. Conceptually, a handle (e.g., n as a Node handle) is just a string (e.g.,
_o10) in the OTcl domain, and does not contain any functionality. Instead, the
functionality (e.g., receiving a packet) is defined in the mapped C++ object
(e.g., of class Connector). In the OTcl domain, a handle acts as a frontend
which interacts with users and other OTcl objects. It may defines its own
procedures and variables to facilitate the interaction. Note that the member
procedures and variables in the OTcl domain are called instance procedures

Simulation
Objects

Simulation 
Objects

TclCL

C++ OTcl

NS2 Shell Executable Command (ns)

Tcl
Simulation

Script

Simulation
Trace
File

NAM
(Animation)

Xgraph
(Plotting)

Fig. 2.1. Basic architecture of NS.
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(instprocs) and instance variables (instvars), respectively. Before proceeding
further, the readers are encouraged to learn C++ and OTcl languages. We
refer the readers to [14] for the detail of C++, while a brief tutorial of Tcl
and OTcl tutorial are given in Appendices A.1 and A.2, respectively.

NS2 provides a large number of built-in C++ objects. It is advisable to
use these C++ objects to set up a simulation using a Tcl simulation script.
However, advance users may find these objects insufficient. They need to de-
velop their own C++ objects, and use a OTcl configuration interface to put
together these objects.

After simulation, NS2 outputs either text-based or animation-based sim-
ulation results. To interpret these results graphically and interactively, tools
such as NAM (Network AniMator) and XGraph are used. To analyze a partic-
ular behavior of the network, users can extract a relevant subset of text-based
data and transform it to a more conceivable presentation.

2.3 Installation

NS2 is a free simulation tool, which can be obtained from [9]. It runs on
various platforms including UNIX (or Linux), Windows, and Mac systems.
Being developed in the Unix environment, with no surprise, NS2 has the
smoothest ride there, and so does its installation. Unless otherwise specified,
the discussion in this book is based on a Cygwin (UNIX emulator) activated
Windows system.

NS2 source codes are distributed in two forms: the all-in-one suite and
the component-wise. With the all-in-one package, users get all the required
components along with some optional components. This is basically a recom-
mended choice for the beginners. This package provides an “install” script
which configures the NS2 environment and creates NS2 executable file using
the “make” utility.

The current all-in-one suite consists of the following main components:

• NS release 2.30,
• Tcl/Tk release 8.4.13,
• OTcl release 1.12, and
• TclCL release 1.18.

and the following are the optional components:

• NAM release 1.12: NAM is an animation tool for viewing network simula-
tion traces and packet traces.

• Zlib version 1.2.3: This is the required library for NAM.
• Xgraph version 12.1: This is a data plotter with interactive buttons for

panning, zooming, printing, and selecting display options.

The idea of the component-wise approach is to obtain the above pieces and
install them individually. This option save considerable amount of downloading
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time and memory space. However, it could be troublesome for the beginners,
and is therefore recommended only for experienced users.

2.3.1 Installing an All-In-One NS2 Suite on Unix-Based Systems

The all-in-one suite can be installed in the Unix-based machines by simply
running the install script and following the instructions therein. The only
requirement is a computer with a C++ compiler installed. The following com-
mands show how the all-in-one NS2 suite can be installed and validated, re-
spectively:

shell>./install

shell>./validate

Validating NS2 involves simply running a number of working scripts that
verify the essential functionalities of the installed components.

2.3.2 Installing an All-In-One NS2 Suite on Windows-Based
Systems

To run NS2 on Windows-based operating systems, a bit of tweaking is re-
quired. Basically, the idea is to make Windows-based machines emulate the
functionality of the Unix-like environment. A popular program that performs
this job is Cygwin.3 After getting Cygwin to work, the same procedure as
that of Unix-based installation can be followed. For ease of installation, it is
recommended that the all-in-one package be used. The detailed description of
Windows-based installation can be found online at NS2’s Wiki site [9], where
the information on post-installation troubles can also be found.

Note that by default Cygwin does not install all packages neccessary to
run NS2. A user needs to manually install the addition packages shown in
Table 2.14.

Table 2.1. Additional Cygwin packages required to run NS2.

Category Packages

Development gcc, gcc-objc, gcc-g++, make
Utils patch

X11 xorg-x11-base, xorg-x11-devel

3 Cygwin is available online and comes free. Information such as how to obtain and
install Cygwin is available online at the Cygwin website (www.cygwin.com).

4 Different versions may install different default packages. Users may need to install
more or less packages depending on the version of Cygwin.
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2.4 Directories and Convention

2.4.1 Directories

Suppose that NS2 is installed in directory nsallinone-2.30. Figure 2.2
shows the directory structure under directory nsallinone-2.30. Here, di-
rectory nsallinone-2.30 is on the Level 1. On the Level 2, directory
tclcl-1.18 contains classes in TclCL (e.g., Tcl, TclObject, TclClass).
All NS2 simulation modules are in directory ns-2.30 on the Level 2. Here-
after, we will refer to directories ns-2.30 and tclcl-1.18 as ˜ns/ and ˜tclcl/,
respectively.

nsallinone-2.30

ns-2.30 tclcl-1.18

common tcl

lib rtglib

tools tcp queue trace

...

...

...

All NS2
simulation

modules

TclCL
classes

Modules in
the
interpreted
hierarchy

Commonly-used
modules in the

interpreted hierarchy

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

tcl8.4.13

Fig. 2.2. Directory structure of NS2 [12].

On Level 3, the modules in the interpreted hierarchy are under direc-
tory tcl. Among these modules, the frequently-used ones (e.g., ns-lib.tcl,
ns-node.tcl, ns-link.tcl) are stored under directory lib on Level 4. Sim-
ulation modules in the compiled hierarchy are classified in directories on Level
2. For example, directory tools contains various helper classes such as ran-
dom variable generators. Directory common contains basic modules related to
packet forwarding such as the simulator, the scheduler, connector, packet.
Directories queue, tcp, and trace contain modules for queue, TCP (Trans-
mission Control Protocol), and tracing, respectively.

2.4.2 Convention

The terminologies and formats which are used in NS2 and in this book here-
after are shown below:
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Terminology

• An NS2 simulation script (e.g., myfirst_ns.tcl) is referred to as a Tcl
simulation script .

• C++ and OTcl class hierarchies, which have one-to-one correspondence,
are referred to as the compiled hierarchy and the interpreted hierarchy, re-
spectively. Class (or member) variables and class (or member) functions
are the variables and functions which belong to a class. In the compiled hi-
erarchy, they are referred to simply as variables and functions, respectively.
Those in the interpreted hierarchy are referred to as instance variables (in-
stvars) and instance procedures (instprocs), respectively. As we will see in
Section 3.4.4, command, is a special instance procedure, whose implemen-
tation is in the compiled hierarchy (i.e., written in C++). An OTcl object
is, therefore, associated with instance variables, instance procedures, and
commands, while a C++ object is associated with variables and functions.

• Despite their minor differences, the terms “OTcl” and “interpreted” are
used interchangeably throughout the book. Likewise, “C++” and “com-
piled” are used interchangeably. These terms can be used as adjectives to
indicate the domain under consideration. For example, both OTcl variables
and interpreted variables refer to variables in the interpreted hierarchy.
Similarly, both C++ functions and compiled functions refer to functions
in the compiled hierarchy. Also, we will refer to the C++ compiler and the
OTcl interpreter simply as the compiler and the interpreter, respectively.

• A “MyClass” object is a shorthand for an object of class MyClass. A
“MyClass” pointer is a shorthand for a pointer which points to an object
of class MyClass. For example, based on the statements “Queue q” and
“Packet* p”, “q” and “p” are said to be a “Queue” object and a “Packet
pointer”, respectively. Also, suppose further that class DerivedClass and
AnotherClass derive from class MyClass. Then, the term a MyClass object
refers to any object which is instantiated from class MyClass or its derived
classes (i.e., DerivedClass or AnotherClass).

• Objects and instances are instantiated from a C++ class and an OTcl class,
respectively. However, the book uses these two terms interchangeably.

• NS2 consists of two languages. Suppose that objects “A” and “B” are writ-
ten in each language and correspond to one another. Then, “A” is said to
be the shadow object of “B”. Similarly “B” is said to be the shadow object
of “A”.

• Consider two consecutive nodes in Fig. 3.2. In this configuration, an object
(i.e., node) on the left always sends packets to the object on the right. The
object on the right is referred to as a downstream object or a target, while
the object on the right is referred to as an upstream object. In a general
case, an object can have more than one target. However, a packet must
be forwarded to one of these targets. From the perspective of an upstream
object, a downstream object which receive the packet is also referred to as
a forwarding object.
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Notations

• As in C++, we use “::” to indicate the scope of functions and instprocs
(e.g., TcpAgent::send(...)).

• Most of the texts in this book are written in regular letters. NS2 codes
are written in “this font type”. The quotation marks are omitted if it
is clear from the context. For example, the Simulator is a general term for
the simulating module in NS2, while a Simulator object is an object of
class Simulator.

• A value contained in a variable is embraced with <>. For example, if a
variable var stores an integer 7, <var> will be 7.

• A command prompt or an NS2 prompt is denoted by “>>” at the beginning
of a line.

• In this book, codes shown in figures are partially excerpted from NS2 file.
The file name from which the codes is excerpted is shown in the first
line of the figure. For example, the codes in Program 2.1 are from file
“myfirst_ns.tcl”.

• A class name may consist of several words. All the words in a class name
are capitalized. In the interpreted hierarchy, a derived class is named by
having the name of its parent class and a slash character (“/”) as a prefix,
while that in the compiled hierarchy is named by having the name of its
base class as a suffix. Examples of NS2 naming convention are given in
Table 2.2.

• In the interpreted hierarchy, an instproc name is written in lower-case.
If the instproc name consists of more than one word, each word except
for the first one will be capitalized. In the compiled hierarchy, all the
words are written in lower case and separated by an underscore “_” (see
Table 2.2).

• The naming convention for variables is similar to that for functions and
instprocs. However, the last character of the names of class variables in
both the hierarchies is always an underscore (“_”; see Table 2.2). Note
that this convention is only a guideline that a programmer should (but
does not have to) follow.

Table 2.2. Examples of NS2 naming convention

The interpreted hierarchy The compiled hierarchy

Base class Agent Agent

Derived class Agent/TCP TcpAgent

Derived class (2nd level) Agent/Tcp/Reno RenoTcpAgent

Class functions installNext install_next

Class variables windowOption_ wnd_option_
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Exercise 2.1. Design C++ and OTcl classes (e.g., Class My TCP). Derive
this class from the TCP Reno classes shown in Table 2.2. Use the conven-
tion defined above to name the class names, variables/instvars, and func-
tions/instprocs in both the domain.

2.5 Running NS2 Simulation

2.5.1 NS2 Program Invocation

After the installation and/or recompilation (see Section 2.7), an executable
file ns is created in the NS2 home directory. NS2 can be invoked by executing
the following statement from the shell environment:

>>ns [<file>] [<args>]

where <file> and <args> are optional input argument. If no argument is
given, the command will bring up an NS2 environment, where NS2 waits
to interpret commands from the standard input (i.e., keyboard) line-by-line.
If the first input argument <file> is given, NS2 will interpreted the input
scripting <file> (i.e., a so-called Tcl simulation script) according to the Tcl
syntax. The detail for writing a Tcl scripting file is given in Appendix A.1.
Finally, the input arguments <args>, each separated by a white space, are
fed to the Tcl file <file>. From within the file <file>, the input argument
is stored in the built-in variable argv (see Appendix A.1.1).

2.5.2 Main NS2 Simulation Steps

The followings show the three key step guideline in defining a simulation
scenario in a NS2:

Step 1: Simulation Design

The first step in simulating a network is to design the simulation. In this step,
the users should determine the simulation purposes, network configuration and
assumptions, the performance measures, and the type of expected results.

Step 2: Configuring and Running Simulation

This step implements the design in the first step. It consists of two phases:

• Network configuration phase: In this phase network components (e.g.,
node, TCP and UDP) are created and configured according to the simu-
lation design. Also, the events such as data transfer are scheduled to start
at a certain time.
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• Simulation Phase: This phase starts the simulation which was configured
in the Network Configuration Phase. It maintains the simulation clock and
executes events chronologically. This phase usually runs until the simula-
tion clock reached a threshold value specified in the Network Configuration
Phase.

In most cases, it is convenient to define a simulation scenario in a Tcl
scripting file (e.g., <file>) and feed the file as an input argument of an NS2
invocation (e.g., executing “ns <file>”).

Step 3: Post Simulation Processing

The main tasks in this steps include verifying the integrity of the program
and evaluating the performance of the simulated network. While the first task
is referred to as debugging, the second one is achieved by properly collecting
and compiling simulation results (see Chapter 13).

2.6 A Simulation Example

We demonstrate a network simulation through a simple example. Again, a
simulation process consists of three steps.

Step 1: Simulation Design

Figure 2.3 shows the configuration of a network under consideration. The net-
work consists of five nodes n0 to n4. In this scenario, node n0 sends constant-
bit-rate (CBR) traffic to node n3, and node n1 transfers data to node n4 using

n0

n1
n3

n4

100 Mbps
5 ms Delay

54 Mbps
10 ms Delay

10 Mbps
15 ms Delay

54 Mbps
10 ms Delay

100 Mbps
5 ms Delay

CBR

FTP

TCPAgent

TCPSinkUDPAgent

NullAgent

node

Transport agent

Application

UDP Flow

n2

TCP Flow

Fig. 2.3. A sample network topology.



28 2 Introduction to Network Simulator 2

a file transfer protocol (FTP). These two carried traffic sources are carried by
transport layer protocols User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP), respectively. In NS2, the transmitting object of these
two protocols are a UDP agent and a TCP agent, while the receivers are a
Null agent and a TCP sink agent, respectively.

Step 2: Configuring and Running Simulation

Programs 2.1–2.2 show two portions of a Tcl simulation script which imple-
ments the scenario in Fig. 2.3.

Consider Program 2.1. This program creates a simulator instance in Line 1.
It creates a trace file and a NAM trace file in Lines 2–3 and 4–5, respectively.
It defines procedure finish{} in Lines 6–13. Finally, it creates nodes and
links them together in Lines 14–18 and 19–24, respectively.

The Simulator is created in Line 1 by executing “new Simulator”. The
returned Simulator handle is stored in a variable ns. Lines 2 and 4 open
files out.tr and out.nam, respectively, for writing. The variables myTrace

and myNAM are the file handles for these two files, respectively. Lines 3 and
5 inform NS2 to collect all trace information for a regular trace and a NAM
trace, respectively.

The procedure finish{} is invoked immediately before the simulation ter-
minates. The keyword global informs the Tcl interpreter that the variables
ns, myTrace, myNAM are those defined in the global scope (i.e., defined outside
the procedure). Line 8 flushes the buffer of the packet tracing variables. Lines
9–10 close the file associated with handles myTrace and myNAM. Line 11 ex-
ecutes the statement “nam out.nam &” from the shell environment. Finally,
Line 12 tells NS2 to exit with code 0.

Lines 14–18 creates Nodes using the instproc node of the Simulator whose
handle is ns. Lines 19–23 connects each pair of nodes with a bi-directional
link using an instproc duplex-link {src dst bw delay qtype} of class
Simulator, where src is a beginning node, dst is an terminating node, bw is
the link bandwidth, delay is the link propagation delay, and qtype is the type
of the queues between the node src and the node dst. Similar to the instproc
duplex-link{...}, Line 23 create a uni-directional link using an instproc
simplex-link{...} of class Simulator. Finally, Line 24 sets the queue size
of the queue between node n2 and node n3 to be 40 packets.

Next, consider the second portion of the Tcl simulation script in Pro-
gram 2.2. A UDP connection, a CBR traffic source, a TCP connection, and
an FTP session are created and configured in Lines 25–30, 31–34, 35–40, and
41–42, respectively. Lines 43–47 schedules discrete events. Finally, the simula-
tor is started in Line 48 using the instproc run{} associated with the simulator
handle ns.

To create a UDP connection, a sender udp and a receiver null are cre-
ated in Lines 25 and 27, respectively. Taking a node and an agent as input
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Program 2.1 First NS2 Program
# myfirst_ns.tcl

# Create a Simulator

1 set ns [new Simulator]

# Create a trace file

2 set mytrace [open out.tr w]

3 $ns trace-all $mytrace

# Create a NAM trace file

4 set myNAM [open out.nam w]

5 $ns namtrace-all $myNAM

# Define a procedure finish

6 proc finish { } {

7 global ns mytrace myNAM

8 $ns flush-trace

9 close $mytrace

10 close $myNAM

11 exec nam out.nam &

12 exit 0

13 }

# Create Nodes

14 set n0 [$ns node]

15 set n1 [$ns node]

16 set n2 [$ns node]

17 set n3 [$ns node]

18 set n4 [$ns node]

# Connect Nodes with Links

19 $ns duplex-link $n0 $n2 100Mb 5ms DropTail

20 $ns duplex-link $n1 $n2 100Mb 5ms DropTail

21 $ns duplex-link $n2 $n4 54Mb 10ms DropTail

22 $ns duplex-link $n2 $n3 54Mb 10ms DropTail

23 $ns simplex-link $n3 $n4 10Mb 15ms DropTail

24 $ns queue-limit $n2 $n3 40

argument, an instproc attach-agent{...} of class Simulator in Line 26 at-
taches a UDP agent udp and a node n0 together. Similarly, Line 28 attaches
a Null agent null to a node n3. The instproc connect{from_agt to_agt} in
Line 29 informs an agent from_agt to send the generated traffic to an agent
to_agt. Finally, Line 30 sets the UDP flow ID to be 1. The construction of
a TCP connection in Lines 35–40 is similar to that of a UDP connection in
Lines 25–30.



30 2 Introduction to Network Simulator 2

Program 2.2 First NS2 Program (Continued)
# Create a UDP agent

25 set udp [new Agent/UDP]

26 $ns attach-agent $n0 $udp

27 set null [new Agent/Null]

28 $ns attach-agent $n3 $null

29 $ns connect $udp $null

30 $udp set fid_ 1

# Create a CBR traffic source

31 set cbr [new Application/Traffic/CBR]

32 $cbr attach-agent $udp

33 $cbr set packetSize_ 1000

34 $cbr set rate_ 2Mb

# Create a TCP agent

35 set tcp [new Agent/TCP]

36 $ns attach-agent $n1 $tcp

37 set sink [new Agent/TCPSink]

38 $ns attach-agent $n4 $sink

39 $ns connect $tcp $sink

40 $tcp set fid_ 2

# Create an FTP session

41 set ftp [new Application/FTP]

42 $ftp attach-agent $tcp

# Schedule events

43 $ns at 0.05 "$ftp start"

44 $ns at 0.1 "$cbr start"

45 $ns at 60.0 "$ftp stop"

46 $ns at 60.5 "$cbr stop"

47 $ns at 61 "finish"

# Start the simulation

48 $ns run

A CBR traffic source is created in Line 31. It is attached to a UDP agent
udp in Line 32. The packet size and generation rate of the CBR connection are
set to 1000 bytes and 2 Mbps, respectively. Similarly, an FTP session handle
is created in Line 41 and is attached to a TCP agent tcp in Line 42.

In NS2, discrete events can be scheduled using an instproc at of class
Simulator, which takes two input arguments: time and str. This instproc
schedules an execution of str when the simulation time is time. Lines 43
and 44 start the FTP and CBR traffic at 0.05th second and 1st second,
respectively. Lines 45 and 46 stop the FTP and CBR traffic at 60.0th second
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and 60.5th second, respectively. Line 47 terminates the simulation by invoking
the procedure finish{} at 61st second. Note that the FTP and CBR traffic
source can be started and stopped by invoking its commands start{} and
stop{}, respectively.

We run the above simulation script by executing

>>ns myfirst_ns.tcl

from the shell environment. At the end of simulation, the trace files should
be created and NAM should be running (since it is invoked from within the
procedure finish{}).

Step 3: Post Simulation Processing–Packet Tracing

Packet tracing records the detail of packet flow during a simulation. It can be
classified into a text-based packet tracing and a NAM packet tracing.

Text-Based Packet Tracing

Text-based packet tracing records the detail of packets passing through net-
work checkpoints (e.g., nodes and queues). A part of the text-based trace
obtained by running the above simulation (myfirst_ns.tcl) is shown below.

...

+ 0.110419 1 2 tcp 1040 ------- 2 1.0 4.0 5 12

+ 0.110419 1 2 tcp 1040 ------- 2 1.0 4.0 6 13

- 0.110431 1 2 tcp 1040 ------- 2 1.0 4.0 5 12

- 0.110514 1 2 tcp 1040 ------- 2 1.0 4.0 6 13

r 0.11308 0 2 cbr 1000 ------- 1 0.0 3.0 2 8

+ 0.11308 2 3 cbr 1000 ------- 1 0.0 3.0 2 8

- 0.11308 2 3 cbr 1000 ------- 1 0.0 3.0 2 8

r 0.11316 0 2 cbr 1000 ------- 1 0.0 3.0 3 9

+ 0.11316 2 3 cbr 1000 ------- 1 0.0 3.0 3 9

- 0.113228 2 3 cbr 1000 ------- 1 0.0 3.0 3 9

r 0.115228 2 3 cbr 1000 ------- 1 0.0 3.0 0 6

r 0.115348 1 2 tcp 1040 ------- 2 1.0 4.0 3 10

+ 0.115348 2 4 tcp 1040 ------- 2 1.0 4.0 3 10

- 0.115348 2 4 tcp 1040 ------- 2 1.0 4.0 3 10

r 0.115376 2 3 cbr 1000 ------- 1 0.0 3.0 1 7

r 0.115431 1 2 tcp 1040 ------- 2 1.0 4.0 4 11

...

Figure 2.4 shows the format of each trace line, which consists of 12 columns.
The general format of each trace line is shown in Fig. 2.4, where 12 columns

make up a complete trace line. The type identifier field corresponds to four
possible event types that a packet has experienced: r (received), + (enqueued),
- (dequeued), and d (dropped). The time field denotes the time at which
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Fig. 2.4. Format of each line in a normal trace file.

such event occurs. Fields 3 and 4 are the starting and the terminating nodes,
respectively, of the link at which a certain event takes place. Fields 5 and
6 are packet type and packet size, respectively. The next field is a series of
flags, indicating any abnormal behavior. Note the output "-------" denotes
no flag. Following the flags is a packet flow ID. Fields 9 and 10 mark the
source and the destination addresses, respectively, in the form of node.port.
For correct packet assembly at the destination node, NS also specifies a packet
sequence number in the second last field. Finally, to keep track of all packets,
a packet unique ID is recorded in the last field.

Now, having this trace at hand would not be useful unless meaningful
analysis is performed on the data. In post-simulation analysis, one usually
extracts a subset of the data of interest and further analyzes it. For example,
the average throughput associated with a specific link can be computed by
extracting only the columns and fields associated to that link from the trace
file. Two of the most popular languages that facilitate this process are AWK
and Perl. The basic structures and usage of these languages are described in
Appendix A.

Text-based packet tracing is activated by executing “$ns trace-all

$file”, where ns is the Simulator handle and file is a handle associated with
the file which stores the tracing text. This statement simply informs NS2 of
the need to trace packets. When an object is created, a tracing object is also
created to collect the detail of traversing packets. Hence, the “trace-all”
statement must be executed prior to object creation. We shall discuss the
detail of text-based packet tracing later in Chapter 13.

Network AniMation (NAM) Trace

NAM trace is records simulation detail in a text file, and uses the text file
the play back the simulation using animation. NAM trace is activated by the
command “$ns namtrace-all $file”, where ns is the Simulator handle and
file is a handle associated with the file (e.g., out.nam in the above example)
which stores the NAM trace information. After obtaining a NAM trace file,
the animation can be initiated directly at the command prompt through the
following command (See Line 11 in Program 2.2):

>>nam filename.nam

Many visualization features are available in NAM. These features are for
example animating colored packet flows, dragging and dropping nodes (posi-
tioning), labeling nodes at a specified instant, shaping the nodes, coloring a
specific link, and monitoring a queue.
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2.7 Including C++ Modules into NS2 and the make

Utility

In developing an NS2 simulation, very often it is necessary to create the cus-
tomized C++ modules to complement the existing libraries. As such, the
developer is faced with the task of keeping track of all the created files as a
part of NS2. When a change is made to one file, usually it requires recompi-
lation of some other files that depend on it. Manual recompilation of each of
such files may not be practical. In Unix, a utility tool called make is available
to overcome such difficulties. In this section we introduce this tool and discuss
how to use it in the context of NS2 simulation development.

As a Unix utility tool make is very useful for managing the development
of software written in any compilable programming language including C++.
Generally, the make program automatically keeps track of all the files created
throughout the development process. By keeping track, we mean recompiling
or relinking wherever interdependencies exist among these files, which may
have been modified as a part of the development process.

2.7.1 An Invocation of a Make Utility

A “make” utility can be invoked form a UNIX shell with the following com-
mand:

>>make [-f mydescriptor]

where “make” is mandatory, while the text inside the bracket is optional. By
default (i.e., without optional input arguments), the make utility recompiles
and relinks the source codes according to what specified in the default de-
scriptor file Makefile. If the descriptor file mydescriptor is specified, the
utility is use this file in place of the default file Makefile.

2.7.2 A Make Descriptor File

A descriptor file contains an instructor of how the codes should be recompiled
and relinked. Again, the default descriptor file is the file named “Makefile”.
A descriptor file contains the names of the files that make up the executable,
their interdependencies, and how each file should be rebuilt or recompiled.
Such descriptions are specified through a series of so-called “dependency
rules”. Each rule takes three components, i.e., targets, dependencies, and com-
mands. The following is the format of the dependency rule:

<target1> [<target2> ...] : [<dependency1> ...]

[<command>]

A target with a colon sign is mandatory. Everything else inside the brackets
are optional. A target is usually the name of the file which needs to be remade
if any modification is done to dependency files specified after the mandatory
colon (:). If any change is noticed, the second line executes to regenerate
the target file.
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Example 2.2 (Example of a Descriptor File). Assume that we have a main
executable file channel consisting of three separate source files named main.c,
fade.c, and model.c. Also assume that model.c depends on model.h. The
Makefile corresponding to this example is shown below.

# makefile of channel

channel : main.o fade.o model.o

cc -o channel main.o fade.o model.o

main.o : main.c

cc -c main.c

fade.o : fade.c

cc -c fade.c

model.o : model.c model.h

cc -c model.c

clean :

rm main.o fade.o model.o

The first line is a comment beginning with a pound (“#”) sign. When make is
invoked, it starts checking the targets one by one. The target channel is ex-
amined first, and make finds that channel depends on the object files main.o,
fade.o, and model.o. The make utility next checks to see if any of these object
files is designated as a target file. If this is the case, make further checks the
main.o object file’s dependency, and finds that it depends on main.c. Again,
make proceeds to check whether main.c is listed as a target. If not, the com-
mand under the main.o target is executed if any change is made to main.c.
In the command line “cc -c main.c”,5 main.c is simply compiled to obtain
the main.o object. Next, make proceeds in a similar manner with the fade.o

and model.o targets. Once any of these object files is updated, make returns
to the channel target and executes its command, which merely compiles all
of its dependent objects. Finally, we note a special target known as phony
target which is not really the name of any file in the dependency hierarchy.
This target is “clean”, and usually performs a housekeeping function such
as cleaning up all the object files no longer needed after the compilation and
linking.

In Example 2.2 we notice several occurrences of certain sequences such as
main.o fade.o model.o. To avoid a repetitive typing, which may introduce
typos or omissions, a macro can be defined to represent such a long sequence.

5 The UNIX command “cc -c file.c” compiles the file file.c and creates an ob-
ject file file.o, while the command “cc -o file.o” links the object file file.o

and create an executable file file.
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For example, we may define a macro to represent main.o fade.o model.o

as follows:

OBJS = main.o fade.o model.o

After defining the macro, we refer to “main.o fade.o model.o” by either
parentheses or curly brackets and precede that with a dollar sign (e.g.,
$(OBJS) or ${OBJS}). With this macro, Example 2.2 becomes a bit more
handy as shown in Example 2.3.

Example 2.3 (Example of makefile/Makefile with Macros.).

# makefile of channel

OBJS = main.o fade.o model.o

COM = cc

channel : ${OBJS}

${COM} -o channel ${OBJS}

main.o : main.c

${COM} -c main.c

fade.o : fade.c

${COM} -c fade.c

model.o : model.c model.h

${COM} -c model.c

clean :

rm ${OBJS}

2.7.3 NS2 Descriptor File

The NS2 descriptor file is defined in a file Makefile located in the home
directiory of NS2. It contains the details needed to recompile and relink NS2.
The key relevant details are those beginning with the following keywords.

• INCLUDES = : The items behind this keyword are the directory which
should be included into the NS2 environment.

• OBJ_CC = and OBJ_STL = : The items behind these two keywords consti-
tute the entire NS2 object files. When a new C++ module is developed,
its corresponding object file name should be added here.

• NS_TCL_LIB = : The items bind this keywords are the Tcl file of NS2.
Again, when a new OTcl module is developed, its corresponding Tcl file
name should be added here.

Suppose a module consisting of C++ files myc.cc and myc.h and a Tcl file
mytcl.tcl. Suppose further that these files are created in a directory myfiles
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under the NS2 home directory. Then this module can be incorporated into NS2
using the following steps:

(i) Include a string “-I./myfiles” into the Line beginning with INCLUDES

= in the Makefile.
(ii) Include a string “myfile/myc.o” into the Line beginning with OBJ_CC =

or OBJ_STL = in the Makefile.
(iii) Include a string “myfile/mytcl.tcl” into the Line beginning with

NS_TCL_LIB = in the Makefile.
(iv) Run make from the shell.

After running “make”, an executable file ns is created. We can now use
this file ns to run simuation.

2.8 Chapter Summary

This chapter introduces Network Simulator (Version 2), NS2. In particular,
information on the installation of NS2 in both Unix and Windows-based sys-
tems is provided. The basic architecture of NS2 is described. These materials
are essential for understanding NS2 as a whole and would help to get one
started working with NS2.

NS2 consists of OTcl and C++. The C++ objects are mapped to OTcl
handles using TclCl. To run a simulation, a user needs to define a network
scenario in a Tcl Simulation script, and feeds this script as an input to an
executable file ns. During the simulation, the packet flow information can be
collected through text-based tracing or NAM tracing. After the simulation,
an AWK program or a perl program can be used to analyze a text-based trace
file. The NAM program, on the other hand, utilizes a NAM trace file to replay
the network simulation using animation.

Simulation using NS2 consists of three main steps. First, the simulation
design is probably the most important step. Here, we need to clearly specify
the objectives and assumptions of the simulation. Secondly, configuring and
running simulation implements the concept designed in the first step. This
step also includes configuring the simulation scenario and running simulation.
The final step in a simulation is to collect the simulation result and trace the
simulation if necessary.

Written mainly in C++, NS2 employs a make utility to compile the source
code, to link the created object files, and create an executable file ns. It
follows the instruction specified in the default descriptor file Makefile. The
make utility provides a simple way to incorporate a newly developed modules
into NS2. After developing a C++ source code, we simply add an object file
name into the dependency, and re-run make.
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Linkage Between OTcl and C++ in NS2

NS2 is an object oriented simulator written in OTcl and C++ languages.
While OTcl acts as the frontend (i.e., user interface), C++ acts as the back-
end running the actual simulation (Fig. 3.1). As can be seen from Fig. 3.1,
class hierarchies of both languages can be either standalone or linked together
using an OTcl/C++ interface called TclCL [15]. There are two types of classes
in each domain. The first type includes classes which are linked between the
C++ and OTcl domains. In the literature, these OTcl and C++ class hierar-
chies are referred to as the interpreted hierarchy and the compiled hierarchy,
respectively. The second type includes OTcl and C++ classes which are not
linked together. These classes are neither a part of the interpreted hierarchy
nor a part of compiled hierarchy. This chapter discusses how OTcl and C++
languages constitute NS2.

C++ class

class class class

class class

OTclclass

class classclass

class class

one-to-one correspondence

The interpreted
hierarchy

The compiled
hierarchy

Fig. 3.1. Two language structure of NS2 [12]. Class hierarchies in both the lan-
guages may be standalone or linked together. OTcl and C++ class hierarchies which
are linked together are called the interpreted hierarchy and the compiled hierarchy,
respectively.

Written in C++, TclCL consists of the following six main classes:

• Class Tcl provides methods to access the interpreted hierarchy (from the
compiled hierarchy; Defined in files ˜tclcl/tclcl.h and ˜tclcl/Tcl.cc).

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 3, c© Springer Science+Business Media, LLC 2009
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• Class InstVar binds member variables in both the hierarchies together
(Defined in file ˜tclcl/Tcl.cc).

• Class TclObject is the base class for all C++ simulation objects in the
compiled hierarchy (defined in file ˜tclcl/Tcl.cc).

• Class TclClass maps class names in the interpreted hierarchy to class
names in the compiled hierarchy (Defined in files ˜tclcl/tclcl.h and
˜tclcl/Tcl.cc).

• Class TclCommand provides a global access to the compiled hierarchy from
the interpreted hierarchy (Defined in files ˜tclcl/tclcl.h and ˜tclcl/Tcl.cc).

• Class EmbeddedTcl translates OTcl scripts into C++ codes (Defined in
files ˜tclcl/tclcl.h, ˜tclcl/Tcl.cc, and ˜tclcl/tclAppInit.cc).

The organization of this chapter is as follows. Section 3.1 describes the
concept behind the two language structure of NS2. Sections 3.2 through 3.7
discuss the six main components of TclCL, namely, class Tcl, class InstVar,
class TclObject, class Tclclass, class TclCommand, and class EmbeddedTcl.
Finally, the chapter summary is given in Section 3.8.

3.1 The Two-Language Concept in NS2

Why two languages? Loosely speaking, NS2 uses OTcl to create and configure
a network, and uses C++ to run simulation. All C++ codes need to be com-
piled and linked to create an executable file. Since the body of NS2 is fairly
large, the compilation time is not negligible. A typical Pentium 4 computer
requires few seconds (long enough to annoy most programmers) to compile
and link the codes with a small change such as including “int i=0;” into the
codes.

OTcl, on the other hand, is an interpreter, not a compiler. Any change
in a OTcl file does not need compilation. Nevertheless, since OTcl does not
convert all the codes into machine language, each line needs more execution
time. In summary, C++ is fast to run but slow to change. It is suitable for
running a large simulation. OTcl, on the other hand, is slow to run but fast to
change. It is therefore suitable to run a small simulation over several repeti-
tions (each may have different parameters). NS2 is constructed by combining
the advantages of these two languages.

NS2 manual provides the following guidelines to choose a coding language:

• Use OTcl
– for configuration, setup, or one time simulation, or
– to run simulation with existing NS2 modules.
This option is preferable for most beginners, since it does not involve com-
plicated internal mechanism of NS2. Unfortunately, existing NS2 modules
are fairly limited. This option is perhaps not sufficient for most researchers.

• Use C++
– when you are dealing with a packet, or
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– when you need to modify existing NS2 modules.
This option perhaps discourages most of the beginners from using NS2.
This book particularly aims at helping the readers understand the struc-
ture of NS2 and feel more comfortable in modifying NS2 modules.

In principle, one can develop a C++ program in three styles. The first
style–namely “Basic C++”–is the simplest form and involves basic C++ in-
structions only. This style has a flexibility problem, since any change in system
parameters requires a compilation (which takes non-negligible time) of the
entire program. Addressing the flexibility problem, the second coding style–
namely “C++ coding with input arguments”–takes the system parameters as
input arguments. As the system parameters change, we can simply change the
input arguments, and do not need to recompile the entire program. The main
problem of the second style is that the invocation could be quite lengthy for
a large number of input arguments. The last coding style–“C++ coding with
configuration files”–puts all system parameters in a configuration file, and has
the C++ code read the system parameters from the configuration file. This
style does not have the flexibility problem, and it facilitates program invo-
cation. To change system parameters, we can simply change the content of
the configuration file. In fact, this style acts as a foundation from which NS2
develops.

Recall from Section 2.5 that we write a Tcl simulation script and feed it
as an input argument to NS2 when running a simulation (e.g., executing “ns
myfirst_ns.tcl”). Here, “ns” is a C++ executable file obtained from the
compilation, while myfirst_ns.tcl is an input configuration file specifying
system parameters and configuration such as nodes, link, and how they are
connected. Analogous to reading a script file through C++, NS2 reads the
system configuration from the Tcl simulation script. Again, when we change
the parameters, we do not need to re-compile the entire NS2 code. All we have
to do is to modify the Tcl simulation script and re-run the simulation.

Example 3.1. Consider the network topology in Fig. 3.2. Define overall packet
delivery delay as the time needed to carry a packet from the leftmost node to
the rightmost node, where delay in link i is d_i and total number of nodes
is num_nodes. We would like to measure the overall packet delivery delay and
show the result on the screen.

...

Overall packet delivery delay

packet
Link delay

Fig. 3.2. A chain topology for network simulation.
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Basic C++ Coding

Program 3.1 Basic C++ codes which simulates Example 3.1, where the
delay for each of the links is 1 unit and the number of nodes is 11.

//sim.cc

1 main(){

2 float delay = 0, d_i = 1;

3 int i, num_nodes = 11;

4 for(i = 1; i < num_nodes; i++)

5 delay += d_i;

6 printf("Overall Packet Delay is %2.1f seconds.\n",delay);

7 }

Suppose that every link has the same delay of 1 second (i.e., d_i = 1 sec-
ond for all i), and the number of nodes is 11 (num_nodes = 11). Program 3.1
shows the C++ codes written in this style (the filename is “sim.cc”). Since
the link delay is fixed, we simply increment delay for num_nodes-1 times
(Lines 4-5). After compiling and linking file sim.cc, we obtain an executable
file sim. By executing “./sim” at the command prompt, we will see the fol-
lowing statement on the screen:

>>./sim

Overall Packet Delay is 10.0 seconds.

Despite its simplicity, this coding style has a flexibility problem. Suppose
link delay is changed to 2 seconds. Then, we need to modify, compile, and
link the file sim.cc to create a new executable file sim. After that, we can
run “./sim” to generate another result (for d_i = 2 seconds).

C++ Coding with Input Arguments

We can avoid the above need for re-compilation and re-linking by feeding
system parameters as input arguments of the program. Program 3.2 shows
the codes which feed link delay and the number of nodes as the first and
the second arguments, respectively. Line 1 specifies that the codes take input
arguments. Variable argc is the number of input arguments. Variable argv is
an argument vector which contains all input arguments provided by the caller
(See the details on C++ coding with input arguments in [14]).

With this style, we only need to compile and link the program once. After
obtaining an executable file sim, we can obtain results by simply changing the
input arguments. For example,

>> ./sim 1 11
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Overall Packet Delay is 10.0 seconds.

>> ./sim 2 11

Overall Packet Delay is 20.0 seconds.

Program 3.2 C++ coding with input arguments: C++ codes which simulate
Example 3.1. The first and second arguments are link delay (d i) and the
number of nodes (num nodes), respectively.

//sim.cc

1 int main(int argc, char* argv[]) {

2 float delay = 0, d_i = atof(argv[0]);

3 int i, num_nodes = atoi(argv[1]);

4 for(i = 1; i < num_nodes; i++)

5 delay += d_i;

6 printf("Overall Packet Delay is %2.1f seconds\n",delay);

7 }

Though this coding style solves the flexibility problem, it suffers from a
large number of input arguments. For example, if delays in all the links in
Example 3.1 are different, we will have to type in all values of link delay every
time we run the program.

C++ Coding with Configuration Files

Program 3.3 C++ coding style with configuration files: C++ code which
simulates Example 3.1. A sample configuration file (config.txt) is given in
Lines 10–11.

//sim.cc

1 int main(int argc, char* argv[]) {

2 float delay = 0, d[10];

3 FILE* fp = fopen(argv[1],"w");

4 int i, num_nodes = readArgFromFile(fp,d);

5 for(i = 1; i < num_nodes; i++)

6 delay += d[i-1];

7 printf("Overall Packet Delay is %2.1f seconds\n", delay);

8 fclose(fp);

9 }

//config.txt

10 Number of node = 11

11 Link delay = 1 2 3 4 5 6 7 8 9 10\vspace*{-3pt}
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Program 3.3 shows C++ simulation codes for Example 3.1. The program
takes only one input argument which is the configuration file name (See C++
file input/output in [14]). Function readArgFromFile(fp,d) reads the con-
figuration file associated with a file pointer fp, and sets variables num_node

and d (the details are not shown here). In this case, the configuration file
(config.txt) is shown in Lines 10–11. When invoking “./sim config.txt”,
the screen will show the following result.

>>./sim config.txt

Overall Packet Delay is 55.0 seconds.

To change the system parameters, we can simply modify the file “config.txt”.
Clearly, this coding style removes the necessity for compiling the entire code
and the lengthy invocation process.

3.2 Class Tcl

Class Tcl is a C++ class which acts as an interface to the OTcl domain. De-
clared in file ˜tclcl/Tcl.cc, it provides methods for the following operations:

(i) Obtain the Tcl instance (using function instance),
(ii) Invoke OTcl (instance) procedures from within the C++ domain (using

functions eval(...), evalc(...), and evalf(...)),
(iii) Pass or receive results to/from the interpreter (using functions result(...

) and resultf(...)),
(iv) Report error and quit the program in a uniform manner (using function

error(...)), and
(v) Retrieve the reference to TclObjects (using functions enter(...), delete

(...), and lookup(...)).

3.2.1 Obtain a Reference to the Tcl Instance

In C++, class functions are invoked through a class object (e.g., function
“fn” can be invoked by “object.fn”). To invoke the above functions (e.g.,
eval(...) and result(...)) of class Tcl, we need to have an object of class
Tcl. Class Tcl provides function “instance()” to obtain a static Tcl variable:

Tcl& tcl = Tcl::instance();

Here, function instance() of class Tcl returns the static variable instance_
of class Tcl. Since it is static, in a simulation, there is only one Tcl
object, instance_. Therefore, any attempt to retrieve a Tcl object using the
above statement returns the same Tcl object. After obtaining the Tcl object,
we can invoke class functions through the Tcl instance (e.g., eval(...) and
result(...)).
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3.2.2 Invoking a Tcl Procedure

We may need to invoke an OTcl instance procedure (instproc) when program-
ming in C++. For example, we may obtain the current simulation time (see
the definition in Chapter 4) by invoking instproc now{} of class Simulator

in the interpreted hierarchy. Class Tcl provides four following functions to
invoke OTcl procedures. For example, the following C++ codes tell OTcl to
print out “Overall Packet Delay is 10.0 seconds” on the screen1.

• Tcl::eval(char* str): executes the command string stored in a variable
“str” through the interpreter. For example,

Tcl& tcl = Tcl::instance();

char s[128];

strcpy(s,"puts [Overall Packet Delay is 10.0 seconds]");

tcl.evalc(s);

• Tcl::evalc(const char* str): executes the command string “str”. For
example,

Tcl& tcl = Tcl::instance();

tcl.eval("puts [Overall Packet Delay is 10.0 seconds]");

This function is different from the former one in that the former one takes
a “string variable” as an input variable (char*), while this one take a
“string” as an input variable (const char*).

• Tcl::eval(): executes the command which has already been stored in the
internal variable bp_. For example,

Tcl& tcl = Tcl::instance();

char s[128];

sprintf(tcl.buffer(),"puts [Overall

Packet Delay is 10.0 seconds]");

tcl.eval();

where tcl::buffer() returns the internal variable bp_. The third line
above prints the string stored in the variable bp_.

• Instproc Tcl::evalf(const char* fmt,...): uses the format fmt of
printf(...) in C++ to formulate a command string, and passes the
formulated string to the interpreter. For example,

Tcl& tcl=Tcl::instance();

float delay = 10.0;

tcl.evalf("puts [Overall

Packet Delay is %2.1f seconds]",delay);

1 You can save the sample codes in any C++ file and compile NS2 to create an
executable ns file. When NS2 is invoked, the message “Overall Packet Delay

is 10.0 seconds” should appear on the screen.
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3.2.3 Pass or Receive Results to/from the Interpreter

After executing few statements, we may need to pass or receive values to/from
the interpreter. For example, in Example 3.1, we may want to pass the value
of the overall packet delivery delay to the interpreter instead of printing it to
the screen. Class Tcl provides three functions to pass values back and forth
between the two hierarchies.

• Tcl::result(const char* fmt): passes the string result as the result
to the interpreter. For example, the following statement returns 10 to the
interpreter.

Tcl& tcl=Tcl::instance();

tcl.result("10");

return TCL_OK;

• Tcl::resultf(const char* result,...): uses the format of printf

(...) in C++ to formulate a result string, and passes the formulated
string to the interpreter.

Example 3.2. Let command returnDelay of class Chain returns the value
in C++ variable delay with one decimal digit to the interpreter. The
implementation of the command returnDelay is given below:

Tcl& tcl=Tcl::instance();

tcl.resultf("%1.1f",delay);

return TCL_OK;

From OTcl, the following statement stores the value of the variable
“delay” of the C++ Chain object in the variable “d”.

set chain [new Chain]

set d [$chain returnDelay]

sets the variable d to be the same as the variable delay in C++.
• Tcl::result(void): retrieves the result from the interpreter as a string.

For example, the following statements stores the value of the OTcl variable
“d” in the C++ variable “delay”.

Tcl& tcl=Tcl::instance();

tcl.evalc("$d");

char* delay = tcl.result();

Class Tcl uses a private member variable tcl_->result(...) to pass re-
sults between the two hierarchies. Here, tcl_ is a member of class Tcl, and is a
pointer to a Tcl_Interp object. NS2 protects tcl_->result(...) from being
accessed externally, and provides three functions to access this variable. Func-
tions Tcl::result(const char* result) and Tcl::resultf(const char*

result) set the value of tcl->result(...). After setting the value of
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tcl->result(...) in C++, NS2 may return to OTcl with a certain return
value (e.g., TCL_OK, TCL_ERROR) We will discuss the details of this return
mechanism in Section 3.4.4. After returning to OTcl, the interpreter reads
the value of tcl->result(...) for a certain purpose (e.g., setting the delay
value or reporting error).

Similarly, after executing an OTcl statement (e.g., tcl.evalc("$delay")),
the execution result is stored in the variable tcl->result(...). Function
Tcl::result(void) in the compiled hierarchy returns the value stored in
tcl->result(...) by the interpreter.

3.2.4 Reporting Error and Quitting the Program

Class Tcl provides function “error(. . .)” to exit the program in a uniform way.
This function simply prints a string stored in “str” and tcl->result(...)

to the screen, and exits with code 1.

Tcl::error(const char* str)

The difference between Tcl::error(str) and return TCL_ERROR is as
follows. Function Tcl::error(str) simply prints out the error message and
exits. When returning TCL_ERROR, NS2 traps the error, which may occur in
more than one point. In the end, the user may use the trapped errors to
recover from the error, to locate the error, or to print all error messages in
the error stack.

3.2.5 Retrieve the Reference to TclObjects

Recall that an interpreted object always has a shadow compiled object. In
some cases, we may need to obtain a shadow compiled object which corre-
sponds to an interpreted object.

NS2 creates the association between objects in two hierarchies by means
of a hash table. Class Tcl provides the following functions to enter, delete,
and retrieve an entry to/from the hash table.

• Tcl::enter(TclObject* o): inserts the object “*o” to the hash table,
and associates “*o” to the OTcl name string stored in a protected variable
name_. This function is invoked by function TclClass:create_shadow(...

), when an object is created.
• Tcl::delete(TclObject* o): deletes the entry associated with TclOb-

ject “*o” from the hash table. This function is invoked by function
TclClass:delete_shadow(...), when an object is destroyed.

• Tcl::lookup(char* str): returns the TclObject whose name is “str”.

Example 3.3. Consider the C++ codes in Program 3.4. Here, argv[2] is an
input argument passed from OTcl (in this case argv[2] is an interpreted
object). Line 8 uses function TclObject::lookup(argv[2]) to retrieve the
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Program 3.4 Function Connector::command.

//~ns/common/connector.cc

1 int Connector::command(int argc, const char*const* argv)

2 {

3 Tcl& tcl = Tcl::instance();

4 ...

5 if (argc == 3) {

6 if (strcmp(argv[1], "target") == 0) {

7 ...

8 target_ = (NsObject*)TclObject::lookup(argv[2]);

9 ...

10 }

11 ...

12 }

13 return (NsObject::command(argc, argv));

14 }

shadow compiled object corresponding to the interpreted object argv[2].
The retrieved object is converted to an object of type NsObject and stored in
variable∗ target_. Note that the details of function command will be discussed
later in Section 3.4.4.

3.3 Class InstVar

Class InstVar acts as a glue which binds a member variable of a C++ class
to an instproc of an OTcl class. When a C++ variable is bound to an OTcl
instvar, any change in the C++ variable or the OTcl instvar will result in
an automatic update the OTcl instvar or the C++ variable, respectively.
NS2 supports variable binding for 5 following NS2 data types: real, inte-
ger, bandwidth, time, and boolean. These 5 data types are neither a C++
data type nor an OTcl data type.2 They are defined here to facilitate NS2
value assignment. As shown in Table 3.1, these data types are defined in the
C++ classes InstVarReal, InstVarInt, InstVarBandwidth, InstVarTime,
and InstVarBool, respectively, which derive from class InstVar. Among these
five data types, real, bandwidth, and time data types make use of a double
C++ data type, while integer and boolean employ int and bool C++ data
types, respectively.

2 As indicated in Appendix A.1.3, Tcl stores everything in strings. Therefore, OTcl
variables have no data type.
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Table 3.1. OTcl bindable data types and C++ binding classes.

OTcl data type C++ binding class

Real InstVarReal

Integer InstVarInt

Bandwidth InstVarBandwidth

Time InstVarTime

Boolean InstVarBool

3.3.1 Real and Integer Variables

These two NS2 data types are specified as real-valued and integer-valued,
respectively. Optionally, we can also use “e<x>” as “×10<x>”, where <x>

denotes the value stored in the variable x.

Example 3.4. Let realvar and intvar be instvars of an OTcl object “obj”
and be of real and integer NS2 data types, respectively. Different ways of
setting3 realvar and intvar to 1200 are shown below.

$obj set realvar 1.2e3

$obj set realvar 1200

$obj set intvar 1200

3.3.2 Bandwidth

Bandwidth is specified as real-valued. By default, the unit of bandwidth is bits
per second (bps). Optionally, we can add the following suffixes to bandwidth
setting.

• “k” or “K” means kilo or ×103,
• “m” or “M” means mega or ×106, and
• “B” changes the unit from bits per second to bytes per second.

NS2 only considers leading character of valid suffixes. Therefore, the suf-
fixes “M” and “Mbps” are the same to NS2.

Example 3.5. In Example 3.4, let bwvar be an instvar of “obj” whose NS2
data type is bandwidth. The followings show different ways of setting bwvar

to be 8 Mbps (megabits per second).

$obj set bwvar 8000000

$obj set bwvar 8m

$obj set bwvar 8Mbps

$obj set bwvar 800k

$obj set bwvar 1MB

3 See the OTcl value assignment in Appendix A.2.



48 3 Linkage Between OTcl and C++ in NS2

3.3.3 Time

Time is specified as real-valued. By default, the unit of time is second. Op-
tionally, we can add the following suffixes to change the unit.

• “m” means milli or ×10−3,
• “n” means nano or ×10−9, and
• “p” means pico or ×10−12.

Again, NS2 only reads the leading character of valid suffixes. Therefore,
the suffixes “p” and “ps” are the same to NS2.

Example 3.6. From Example 3.4, let timevar also be a time variable of
“obj”. The following shows different ways of setting timevar to be 2 micro
seconds.

$obj set timevar 2m

$obj set timevar 2e-3

$obj set timevar 2e6n

$obj set timevar 2e9ps

3.3.4 Boolean

Boolean is specified as either true (or a positive number) or false (or a zero).
A boolean variable will be true if the first letter of the value is greater than
0, is “t”, or is “T”. Otherwise, the variable will be false.

Example 3.7. In Example 3.4, let boolvar be a boolean variable of “obj”. The
following show different ways of setting boolvar to be true and false.

# set boolvar to be TRUE

$obj set boolvar 1

$obj set boolvar T

$obj set boolvar true

$obj set boolvar tasty

$obj set boolvar 20

$obj set boolvar 3.37

$obj set boolvar 4xxx

# set boolvar to be FALSE

$obj set boolvar 0

$obj set boolvar f

$obj set boolvar false

$obj set boolvar something

$obj set boolvar 0.9

$obj set boolvar -5.29
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NS2 ignores all letters except for the first one. As can be seen from Example
3.7, there are several strange ways for setting a boolean variable (e.g., tasty,
something, -5.29). For better understanding, the readers are encouraged
to experiment with boolean variable debug_ and real variable rate_ in the
following codes4:

# Create a Simulator instance

set ns [new Simulator]

# Create an error model object

set err [new ErrorModel]

# Set values for class variables

$err set debug_ something

$err set rate_ 12e3

# Show the results

puts "debug_(bool) is [$err set debug_]"

puts "rate_(double) is [$err set rate_]"

The results of execution of the above codes are as follows:

>>debug_(bool) is 0

>>rate_(double) is 12000

After assigning a value to an OTcl variable, NS2 converts the string value
to the corresponding type in C++. Except for boolean, NS2 converts the
string to either double or int. During the conversion, valid suffixes are also
converted (e.g., “M”is converted by multiplying 106 to the value). For boolean
data type, NS2 retrieves the first character in the string and throws away all
other characters. If the retrieved character is an integer, NS2 will do nothing.
If the retrieved character is a non-integer, NS2 will convert the character to
one if it is “t” or “T” and to zero otherwise. After converting the string to a
one-digit integer, NS2 casts the converted integer to boolean and updates the
bound compiled variable.

3.4 Class TclObject

Class TclObject provides an instruction to create a compiled shadow object,
when an interpreted object is created. The C++ class TclObject is mapped
to the OTcl class SplitObject. These two classes are the base classes from
which all classes (excluding the standalone classes) in their hierarchies develop.
When an object is instantiated from the OTcl domain, the constructor of class
SplitObject is invoked to initialize the object. One of the initialization is

4 Save the codes to a file (e.g., test.tcl) and run it (e.g., ns test.tcl).
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the shadow object construction whose instruction, which will be discuss in
this section, Section 3.4.1 shows how a TclObject is referred to in both the
hierarchies. Section 3.4.2 explains the shadow object creation and deletion
procedure. The variable binding process performed during object construction
is discussed in Section 3.4.3. Finally, Section 3.4.4 discusses a special function
command(...), which provides an access to the compiled class from the OTcl
domain.

3.4.1 Reference to a TclObject

OTcl and C++ employ different method to access their objects. As a compiler,
C++ directly accesses the memory space allocated for a certain object (e.g.,
0xd6f9c0). As an interpreter, OTcl does not directly access the memory.
Rather, it uses a string (e.g., _o10) as a reference (or a handle)5 to the object.
By convention, the name string of a SplitObject is of format _<NNN>, where
<NNN> is a number uniquely generated for each SplitObject.

Example 3.8. Let the variables c_obj and otcl_obj be C++ and OTcl ob-
jects, respectively. Table 3.2 shows examples of the reference value of C++
and OTcl objects.

Table 3.2. Examples of reference to (or handle of) TclObjects.

Domain Variable name Example

C++ c_object 0xd6f9c0

OTcl otcl_object _o10

We can see the format of a value stored in an OTcl object by running the
following codes6:

set ns [new Simulator]

set tcp [new Agent/TCP]

puts "The value of tcp is $tcp"

which show the following line on the screen.

The value of tcp is _o10

3.4.2 Creating and Destroying a Shadow TclObject

In most cases, objects are created and destroyed in the OTcl domain, or more
precisely in a Tcl simulation script. Again, the OTcl commands create and

5 In NS2, the term “handle” means the object itself.
6 Put the sample codes in a file (e.g, test.tcl) and run the file (e.g., ns test.tcl).
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destroy can be used to create and destroy, respectively, a standalone OTcl
object. However, these commands are rarely used in NS2, since they do not
create the shadow compiled object. In NS2, the global procedures new{...}
and delete{...} are used to create and delete, respectively, an OTcl object
as well as a shadow compiled object.

Creating a TclObject

A TclObject is created by using the global procedure new{...}, whose syntax
is

new<classname> [<args>]

The details of procedure “new{...}” are shown in Program 3.5. The proce-
dure “new{className args}” takes two input arguments. The first argument
<className> (mandatory) is the OTcl class name. The subsequent arguments
<args> (optional) is fed as input arguments to the OTcl constructor. The
procedure “new{className args}” creates an object whose OTcl class is
<className> as well as its corresponding shadow compiled object. It will
return the reference string (Line 11) if the construction process is successful.
Otherwise, it will show an error message on the screen (Line 9).

Program 3.5 Global instance procedure new.

//~tclcl/tcl-object.tcl

1 proc new { className args } {

2 set o [SplitObject getid]

3 if [catch "$className create $o $args" msg] {

4 if [string match "__FAILED_SHADOW_OBJECT_" $msg] {

5 delete $o

6 return ""

7 }

8 global errorInfo

9 error "class $className: constructor failed:

$msg" $errorInfo

10 }

11 return $o

12 }

The internal mechanism of the procedure “new{className args}” pro-
ceeds as follows. First, Line 2 retrieves a reference string for an object, and
stores the string in variable “o”. Instproc getid{} of class SplitObject cre-
ates a reference string according to the naming format defined in Section
3.4.2. Next, Line 3 creates an object whose OTcl class is className and as-
sociates the created object with the string stored in “o”. Finally, if the object
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is successfully created, Line 11 returns the reference string “o” to the caller7.
Otherwise, an error message (Line 9) will be shown on the screen.

The OTcl command create in Line 3 invokes instproc alloc{...} to allo-
cate a memory space for an object of class className, and instproc init{...}
to initialize the object. In most cases, instproc init{...} is referred to an
OTcl constructor. Each class overrides function init{...} and defines its own
initialization in this function.

Program 3.6 Samples of object constructor: Classes Agent/TCP and
SimpleLink.

//~ns/tcl/lib/ns-agent.tcl

1 Agent/TCP instproc init {} {

2 eval $self next

3 set ns [Simulator instance]

4 $ns create-eventtrace Event $self

5 }

//~tclcl/tcl-object.tcl

6 SplitObject instproc init args {

7 $self next

8 if [catch "$self create-shadow $args"] {

9 error "__FAILED_SHADOW_OBJECT_" ""

10 }

11 }

Program 3.6 shows an example of the OTcl constructor. Instproc next{...}
in Line 2 invokes the instproc with the same name (i.e., init{...} in this
case) of the parent class. This is a common concept in an Object Oriented
Programming, where the constructor of the parent class needs to be called
earlier. The construction therefore moves up the hierarchy until it reaches
class SplitObject (see Lines 6–11 in Program 3.6). Here, Line 8 creates a
shadow compiled object by invoking the command create-shadow, which
will be discussed later in Section 3.5.

We now conclude this section with an example of a creation of a Agent/TCP

OTcl object as well as its shadow compiled object.

Example 3.9. To create an OTcl Agent/TCP object, we can execute “new
Agent/TCP” from a Tcl Simulation Script. In the interpreted hierarchy, class
Agent/TCP derives from class Agent, which derives from class SplitObject.
In the compiled hierarchy, these three classes correspond to class TcpAgent,
Agent, and TclObject, respectively.

7 Note that Line 11 returns a reference string stored in o, not the variable o. Hence
the procedure new returns a reference string stored in the variable o.
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Fig. 3.3. Object creation diagram: Class Agent/TCP derives from class Agent, which
derives from class SplitObject.

Figure 3.3 shows the creation process of an object (o) of class Agent/TCP.
Again, the first step is to retrieve a reference string by invoking instproc
getid{} of class SplitObject. The next step is to invoke instproc init{...}
up the hierarchy. On the top level, class SplitObject invokes command
create-shadow to create a shadow compiled object (on the right hand side
of Fig. 3.3 which will be discussed in Section 3.5).

After returning from instproc create-shadow, the process performs the
rest of initialization and moves (or returns) down the interpreted hierarchy
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until it reaches class Agent/TCP. Then, it returns to procedures create{...}
and new{...}, respectively, where the reference string corresponding to the
created object “o” is returned to the caller (of procedure new{...}).

Note that the above procedures are used to create an interpreted TclObject
which is linked to the compiled hierarchy. Standalone C++ or OTcl objects
do not need any shadow object, and do not have to go through the above
procedures. They can be constructed in a normal way.

Destroying a TclObject

OTcl uses instproc delete{...} to destroy an interpreted object as well as its
shadow compiled object (by invoking instproc delete-shadow). Program 3.7
shows a sample usage of instproc delete{...}. Instproc Simulator::use-sch
eduler{...} removes the existing scheduler (if any; Line 3) by using in-
stproc delete{...}, and creates an object of class Scheduler/$type us-
ing the global procedure new{...}. We will discuss the details of instproc
Simulator::use-scheduler{...} in Chapter 4.

Program 3.7 An example usage of global procedures new and delete.

//~ns/tcl/lib/ns-lib.tcl

1 Simulator instproc use-scheduler type {

2 $self instvar scheduler_

3 delete $scheduler_

4 set scheduler_ [new Scheduler/$type]

5 }

3.4.3 Binding Variables in the Compiled and Interpreted
Hierarchies

In general, both interpreted and compiled objects have their own class vari-
ables, and they are not allowed to directly access one another’s class variables.
NS2, therefore, provides a mechanism which binds class variables in both hier-
archies together. After the binding, a change in a class variable in one hierarchy
will result in an automatic change in the bound variable in another hierarchy.

Binding Variables in Both Hierarchies

NS2 binds an interpreted class variable to a compiled variable during shadow
object construction. More specifically, class TclObject invokes the following
functions in the constructor to bind variables in both hierarchies (see file
˜tclcl/tclcl.h).
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bind("iname",&cname)

bind_bw("iname",&cname)

bind_time("iname",&cname)

bind_bool("iname",&cname)

where iname and cname are the names of the class variables in the interpreted
and compiled hierarchies, respectively. Essentially, the first and second argu-
ments of the above functions are the name string of the interpreted variable
and the address of the compiled variable, respectively.

Example 3.10. Let class Test in both hierarchies be bound together. Let
icount_, idelay_, ispeed_, ivirtual_time_, iis_running_ be OTcl class
variables whose types are integer, real, bandwidth, time, and boolean, respec-
tively. The following codes show declaration and the constructor of C++ class
Test.

class Test { /* Declaration */

public:

int count_;

double delay_,virtual_time_,speed_;

bool is_running_;

Test() { /* Constructor */

bind("icount_",&count_);

bind("idelay_",&delay_);

bind_bw("ispeed_",&speed_);

bind_time("ivirtual_time_",&virtual_time_);

bind_bool("iis_running_",&is_running_);

};

};

All class variables are bound in the compiled constructor (i.e., Test()).
By convention, we use the same variable name for both hierarchies. Here,
however, we would like to show that bound variables do not need to have the
same names.

Setting the Default Values

NS2 sets the value of bound variables as specified in file ˜ns/tcl/lib/ns-
default.tcl. The syntax for setting a default value is similar to the value as-
signment syntax in OTcl. That is,

<className> set <instvar> <def_value>

which sets the instvar <instvar> of class <className> to be <def_value>. As
an example, a part of file ˜ns/tcl/lib/ns-default.tcl is shown in Program 3.8.

To set the default values for the variables, NS2 invokes instproc
init-instvar{...} of class SplitObject (see file ˜tclcl/tcl-object.tcl). Inst-
proc init-instvar{...} takes variables’ default values from file ˜ns/tcl/lib/
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Program 3.8 An example for specifying default values in NS2: A part of file
˜ns/tcl/lib/ns-default.tcl.

//~ns/tcl/lib/ns-default.tcl

1 ErrorModel set enable_ 1

2 ErrorModel set markecn_ false

3 ErrorModel set delay_pkt_ false

4 ErrorModel set delay_ 0

5 ErrorModel set rate_ 0

6 ErrorModel set bandwidth_ 2Mb

7 ErrorModel set debug_ false

8 Classifier set offset_ 0

9 Classifier set shift_ 0

10 Classifier set mask_ 0xffffffff

11 Classifier set debug_ false

ns-default.tcl, and assigns them to the bound variables. If we bind a variable
but do not specify the default value, instproc SplitObject::warn-instvar

{...} invoked from within SplitObject::init-instvar{...} will show a
warning message on the screen. A warning message will not be shown, if a
default value is assigned to an invalid variable (e.g., not-bound or does not
exist).

3.4.4 OTcl Commands

Section 3.2.2 showed an approach to access the interpreted hierarchy from the
compiled hierarchy. This section discusses the reverse: a method to access the
compiled hierarchy from the interpreted hierarchy called “command”.

Review of Instance Procedure Invocation Mechanism

Before we proceed further, let us review the OTcl instproc invocation mech-
anism. An instproc is invoked according to the following syntax:

$obj <instproc> [<args>]

where the instproc name <instproc> and the input argument <args> are
mandatory and optional, respectively, for such an invocation. The internal
mechanism of the above instproc invocation proceeds as follows:

(i) Look for a matching instproc in the object class. If found, execute the
matched instproc and return. If not, proceed to the next step.

(ii) Look for instproc “unknown{...}”. If found, execute “unknown{...}”
and return. If not, proceed to the next step. The instproc “unknown{...}”
is the default instproc which will be invoked if no matching instproc is
found.
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(iii) Repeat steps (i) and (ii) for the base class of the object.
(iv) If the top class is reached but neither the input instproc nor the instproc

unknown is found, report an error and exit the program.

OTcl Command Invocation

The syntax of a command is the same as that of an instproc, i.e.,

$obj <cmd_name> [<args>]

The main difference is that <instproc> is replaced with <cmd_name>. Since
the syntax for invoking a command is the same as that for invoking an inst-
proc, OTcl executes the command as if it is an instproc. In the following, we
will explain the command invocation mechanism of an OTcl Agent/TCP object
(see Program 3.9). Figure 3.4 shows the internal mechanism of the command
invocation process, which proceeds as follows:

(i) Execute the statement “$tcp <cmd_name> <args>”.
(ii) Look for an instproc <cmd_name> in the OTcl class Agent/TCP. If found,

invoke the instproc and complete the process. Otherwise, proceed to the
next step.

(iii) Look for an instproc unknown{...} in the OTcl class Agent/TCP. If
found, invoke the instproc unknown{...} and complete the process.
Otherwise, proceed to the next step.

(iv) Repeat steps (ii) and (iii) until reaching class SplitObject. If the in-
stprocs unknown{...} is not found in any class in the inheritance tree,
the following statement will be executed.

SplitObject unknown

The instproc unknown{...} of class SplitObject is defined in file
˜tclcl/tcl-object.tcl. Here, the statement “$self cmd $args” is exe-
cuted, where args are the input arguments of instproc unknown{...}.
Based on the above invocation, this statement interpolates to

SplitObject cmd <cmd_args>

where <cmd_args> is “<cmd_name> <args>”.
(v) Instproc cmd passes the entire statement (i.e., “cmd <cmd_args>”) as

an input argument vector (argv) to function “command(argc,argv)”
of the shadow object (TcpAgent in this case).
As shown in Program 3.9, function “command(argc,argv)” always takes
two input arguments. The second input argument (argv) is an argument
vector, which is an array of strings containing arguments passed from
the instproc “cmd”. The first input argument (argc) is the total number
of input arguments (i.e., the number of non-empty elements of argv).
The first and second elements of argv are “cmd” and the command
name (<cmd_name>), respectively. The subsequent elements contain the
input arguments (<args>) of the original invocation, each of which is
separated by one or more white spaces (see Table 3.3).
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Fig. 3.4. Command invocation process.

(vi) Function command(argc,argv) checks for the matching number of ar-
guments (stored in argc) and command name (stored in argv[1]). If
found, it takes the desired actions (e.g., Lines 6–7 in Program 3.9), and
returns TCL_OK. If no criterion matches with (argc,argv), it will skip to
the last line (Line 12).

(vii) Line 12 in Program 3.9 invokes function command(argc,argv) of the
base class (i.e., class Agent::command(argc,argv)), feeding (argc,argv)
as input arguments.
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Program 3.9 Function TcpAgent::command.

//~ns/tcp/tcp.cc

1 int TcpAgent::command(int argc, const char*const* argv)

2 {

3 ...

4 if (argc == 3) {

5 if (strcmp(argv[1], "eventtrace") == 0) {

6 et_ = (EventTrace *)TclObject::lookup(argv[2]);

7 return (TCL_OK);

8 }

9 ...

10 }

11 ...

12 return (Agent::command(argc, argv));

13 }

Table 3.3. Description of elements of array argv of function command.

index (i) Element (argv[i])

1 cmd

2 The command name (<cmd_name>)
3 The first input argument in <args>

4 The second input argument in <args>
...

...

(viii) Repeat steps (vi) and (vii) up the hierarchy until the criterion is
matched. If the process reaches class TclObject and the criterion does
not match, function command of class TclObject will report an error
(e.g., no such method, requires additional args), and return TCL_ERROR

(see file ˜tclcl/Tcl.cc).
(xi) Return down the class hierarchy. When reaching C++ class TcpAgent,

return to OTcl (instprocs cmd and unknown{...}, respectively) with a
return value (e.g., TCL_OK or TCL_ERROR), and complete the command
invocation.

An Alternative for OTcl Command Invocation

In the last subsection, we invoked an OTcl command by executing

$tcp <cmd_name> <args>

which starts from position (1) in Fig. 3.4. Alternatively, we can also invoke
a command using the following syntax:

$tcp cmd <cmd_name> <args>

which starts from position (2) in Fig. 3.4.
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The latter (position (2)) invocation method avoids the ambiguity when
OTcl defines an instproc whose name is the same as the OTcl command name.
Suppose an OTcl command <cmd_name> associated with an object “tcp” has
an implementation in the C++ class TcpAgent. Suppose further that an inst-
proc <cmd_name> (same name) is also defined in OTcl class Agent/TCP. When
invoking “$tcp <cmd_name> <args>”, NS2 will perform the actions specified
in the OTcl instproc <cmd_name>. To invoke the OTcl command <cmd_name>

whose implementation is in C++, we need to invoke “$tcp cmd <cmd_name>

<args>”. Since instproc cmd is defined solely in class SplitObject, this invo-
cation avoids the ambiguity of OTcl command and instproc names.

OTcl Command Returning Mechanism

After performing the desired actions specified in C++, NS2 returns to OTcl
with a certain return value. In file nsallinone-2.30/tcl8.4.13/generic/

tcl.h, NS2 defines five following return values (as 0–5), as specified in Pro-
gram 3.10, which inform the interpreter of the command invocation result.

Program 3.10 Return values in NS2.

//nsallinone-2.30/tcl8.4.13/generic/tcl.h

1 #define TCL_OK 0

2 #define TCL_ERROR 1

3 #define TCL_RETURN 2

4 #define TCL_BREAK 3

5 #define TCL_CONTINUE 4

• TCL_OK: The command completes successfully.
• TCL_ERROR: The command does not complete successfully. The interpreter

will explain the reason for the error.
• TCL_RETURN: After returning from C++, the interpreter exits (or returns

from) the current instproc without performing the rest of instproc.
• TCL_BREAK: After returning from C++, the interpreter breaks the current

loop. This is similar to executing C++ keyword break, but the results
prevail to the OTcl domain.

• TCL_CONTINUE: After returning from C++, the interpreter continues to
the next iteration. This is similar to executing C++ keyword continue,
but the results prevail to the OTcl domain..

Among these five types, TCL_OK and TCL_ERROR are the most common
ones. If C++ returns TCL_OK, the interperter may read the value passed from
the C++ domain. Recalling from Section 3.2.3, the interpreter does not read
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the return value, but it reads the value specified in the statement. The re-
turn code TCL_OK only tells OTcl that the value stored by the statement
tcl.result(...) is valid.

If an OTcl command returns TCL_ERROR, on the other hand, the interpreter
will invoke procedure tkerror (defined in file ˜tclcl/tcl-object.tcl),
which simply shows an error on the screen.

Exercise 3.11. What are the differences among a C++ function, an OTcl
instproc, and an OTcl command?

3.5 Class TclClass

When a TclObject is created, NS2 automatically constructs a shadow com-
piled object. In Section 3.4.2, we have explained the TclObject creation mech-
anism. We have mentioned that class TclClass is responsible for the shadow
object creation process. We now explain the details of class TclClass as well
as the shadow object creation process.

3.5.1 An Overview of Class TclClass

Class TclClass is mainly responsible for creating a shadow object in the
compiled hierarchy. It maps an OTcl class to a C++ static mapping variable,
and provides a method to create a shadow object in the compiled hierarchy.
As an example, Program 3.11 shows the details of class TcpClass, which maps
class Agent/TCP in the interpreted hierarchy to the static mapping variable
class_tcp in the compiled hierarchy.

Program 3.11 Declaration and implementation of class TcpClass.

//~ns/tcp/tcp.cc

1 static class TcpClass : public TclClass {

2 public:

3 TcpClass() : TclClass("Agent/TCP") {}

4 TclObject* create(int , const char*const*) {

5 return (new TcpAgent());

6 }

7 } class_tcp;

Unlike other classes, a child class of class TclClass is declared, imple-
mented, and instantiated (e.g., of variable class_tcp in Line 7) in the same
place. From Program 3.11, a child class of class TclClass consists of only two
functions: the constructor (TcpClass in Line 3) and function create(...)

(Lines 4–6) which creates a shadow object. To construct a shadow object for
an OTcl object of class Agent/TCP, we need to perform the following actions
in the compiled hierarchy:
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(i) Create a shadow compiled class (e.g., TcpAgent).
(ii) Derive a mapping class (e.g., TcpClass) from class TclClass.
(iii) Instantiate a static mapping variable (e.g., class_tcp).
(iv) Define the constructor of the mapping class (Line 3 in Program 3.11).

Feed the OTcl class name (e.g., Agent/TCP) as an input argument to the
base constructor (i.e., class TclClass).

(v) Define function “create(...)” to construct a shadow compiled object;
Invoke “new” to create a shadow compiled object (e.g., new TcpAgent)
and return the created object to the caller (Line 5 in Program 3.11).

3.5.2 TclObject Creation

We now explain the entire TclObject creation process. Once again, consider
Fig. 3.3. The TclObject creation process proceeds as follows:

• Create an OTcl object as in Section 3.4.2.
• Invoke instproc create-shadow of class TclClass (see file ˜tclcl/Tcl.cc).
• From within function create_shadow(...), invoke function create(...)

of class TcpClass.
• In Program 3.11, function create(...) in Line 5 executes “new TcpAgent”

and returns the created object to the caller.
• Construct a TcpAgent object, by calling the constructor of its parent

classes (Agent and TclObject).
• Construct Agent object. This includes binding all variables to those in the

interpreted hierarchy.8

• Return to class TcpAgent. Construct the TcpAgent object, and bind all
variables to those in the interpreted hierarchy.

• Return the created shadow object to instproc SplitObject::init{...},
and proceed as specified in Section 3.4.2.

3.5.3 Naming Convention for Class TclClass

The convention to name a class derived from class TclClass and the corre-
sponding static variable are described now. First, every class derives directly
from class TclClass, irrespective of its class hierarchy. For example, class
RenoTcpAgent derives from class TcpAgent. However, their mapping classes
RenoTcpClass and TcpClass derive from class TclClass.

Secondly, the naming convention is very similar to the C++ variable nam-
ing convention. In most cases, we simply name the mapping class by attaching
the word Class to the C++ class name. The static mapping variable is named
by attaching the word “class_” to the front. Table 3.4 shows few examples
of the above naming convention.

8 Recall from Section 3.4.3 that NS2 binds variables of both hierarchies in the
constructor.



3.6 Class TclCommand 63

Table 3.4. Examples of naming convention for class TclClass.

TclObject SplitObject Mapping class Mapping variable

TcpAgent Agent/TCP TcpClass class_tcp

RenoTcpAgent Agent/TCP/Reno RenoTcpClass class_reno

DropTail Queue/DropTail DropTailClass class_drop_tail

3.5.4 Instantiation of Mapping Variables

At the startup, NS2 instantiates all static mapping variables. Here, class
TclClass stores the OTcl class names in its member variable classname_

and stores all mapping variables to its linked list “all_”. After all mapping
variables are inserted into the linked list, function TclClass::bind(...) is in-
voked. Function bind(...) registers all mapping variables in “all_” into the
system, and creates the interpreted class hierarchy. Function bind(...) also
binds instprocs create-shadow and delete-shadow to functions create_sha
dow(...) and delete_shadow(...) of the mapping classes (e.g., TcpClass9),
respectively. After this point, NS2 recognizes all OTcl class names. Creation
of an OTcl object will follow the procedures specified in Sections 3.4.2 and
3.5.2.

Exercise 3.12. What are the major differences among classes TclObject,
TclClass, and InstVar? Explain their roles during an object creating process.

3.6 Class TclCommand

As discussed in Section 3.4.4, OTcl command is a method to access the com-
piled hierarchy form the interpreted hierarchy. This section discusses another
method called TclCommand to do the same. The main difference of OTcl
command and TclCommands is as follows. Each OTcl command is associ-
ated with an OTcl/C++ class and cannot be invoked independently. Each
TclCommand, on the other hand, is not bound to any class and is available
globally. Since TclCommands violate the object oriented concept, it is not
advisable to create this type of commands.

3.6.1 Invoking a TclCommand

A TclCommand is invoked as if it is a global OTcl procedure. We will explain
how to invoke a TclCommand through Example 3.13.

Example 3.13. Consider the TclCommands ns-version and ns-random, spec-
ified in file ˜ns/common/misc.cc.

9 In fact, class TcpClass inherits functions create shadow and delete shadow from
class TclClass.
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• TclCommand ns-version takes no argument and returns NS2 version.
• TclCommand ns-random returns a random number uniformly distributed

in [0, 231−1] when no argument is specified. If an input argument is given,
it will be used to set the seed of the random value generator.

These two TclCommands can be invoked globally. For example,

>>ns-version

2.30

>>ns-random

729236

>>ns-random

1193744747

### TERMINATE NS2 ###

>>ns-random

729236

>>ns-random

1193744747

### TERMINATE NS2 ###

>>ns-random 101

101

>>ns-random

72520690

>>ns-random

308637100

By executing ns-version, the version (2.30) of NS2 is shown on the screen.
TclCommand ns-random with no argument returns a random number (e.g.,
729236, 1193744747, · · ·). In NS2, a random number is generated by picking a
number from a sequence of pseudo-random numbers. A random seed specifies
the starting position in the sequence. By default, NS2 always sets random
seed to be 0. The results from multiple simulations would be the same unless
the seeds are set differently. In the above example, we do not feed the seed for
the first two runs. Therefore, the generated random numbers are the same for
the first two runs. In the third run, we set the seed to be 101, and obtain a
different set of random values (i.e., 72520690, 308637100, · · ·). An important
note: you must set random seeds differently for different runs. Otherwise, NS2
will generate the same result.

3.6.2 Creating a TclCommand

A TclCommand creation process is similar to those of a TclClass and func-
tion command of a TclObject. A TclCommand is defined in a class derived
from class TclCommand. The name of a Tclcommand is provided as an input
argument of class TclCommand, while the implementation is defined in func-
tion “command(...)”. When NS2 starts, it binds all TclCommand names to
function “command(...)” of the corresponding classes.
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Program 3.12 Declaration and function command of class RandomCommand.

//~ns/common/misc.cc

1 class RandomCommand : public TclCommand {

2 public:

3 RandomCommand() : TclCommand("ns-random") { }

4 virtual int command(int argc, const char*const* argv);

5 };

6 int RandomCommand::command(int argc, const char*const* argv)

7 {

8 Tcl& tcl = Tcl::instance();

9 if (argc == 1) {

10 sprintf(tcl.buffer(), "%u", Random::random());

11 tcl.result(tcl.buffer());

12 } else if (argc == 2) {

13 int seed = atoi(argv[1]);

14 if (seed == 0)

15 seed = Random::seed_heuristically();

16 else

17 Random::seed(seed);

18 tcl.resultf("%d", seed);

19 }

20 return (TCL_OK);

21 }

Program 3.12 shows the details of TclCommand ns-random, which is as-
sociated with class RandomCommand. Here ns-random is fed to the constructor
of class TclCommand (Line 3). When invoking ns-random, NS2 invokes func-
tion command(...) of class RandomCommand, passing the command name as
well as its input arguments to the function command(...). When invoking the
command ns-random, Lines 10–11 generate a random number, and pass it to
the interpreter. If the number of arguments is one, Lines 17-18 set the random
seed to the input argument and pass the seed to the interpreter.

TclCommands ns-version and ns-random in Example 3.13 are defined
in file ˜ns/common/misc.cc. At the startup time, NS2 invokes function
init_misc(...) (see Program 3.13) in file ˜tclcl/TclAppInit.cc. This func-
tion simply instantiates all TclCommands by calling “new{...}” (e.g., Lines
3–4 in Program 3.13). After this point, every TclCommand invoked from the
OTcl domain will refer to the corresponding instantiated TclCommand object.

3.6.3 Defining Your Own TclCommand

To create a TclCommand, you need to

(i) Derive a TclCommand class directly from class TclCommand,
(ii) Feed the TclCommand name to the constructor of class TclCommand,
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Program 3.13 Function misc init, which instantiates of TclCommands.

//~ns/common/misc.cc

1 void init_misc(void)

2 {

3 (void)new VersionCommand;

4 (void)new RandomCommand;

5 ...

6 }

(iii) Provide implementation (i.e., desired actions) in the function command

(...), and
(iv) Add an object instantiation statement in function init_misc(...).

Example 3.14. Let the TclCommand print-all-args show all input argu-
ments on the screen. We can implement this TclCommand by including the
following codes to file ˜ns/common/misc.cc:

class PrintAllArgsCommand : public TclCommand {

public:

PrintAllArgsCommand():TclCommand("print-all-args") {};

int command(int argc, const char*const* argv);

}

int PrintAllArgsCommand::command(int argc,

const char*const* argv) {

cout << "Input arguments: "

for (int i = 1; i < argc; i++) {

count << argv[i];

}

return (TCL_OK);

}

void init_misc(void)

{ ...

(void)new PrintAllArgsCommand;

...

}

3.7 Class EmbeddedTcl

Although written in two languages, NS2 mainly operates in C++. At the
compilation, NS2 translates all the OTcl script (e.g., all the script files in
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directory ˜ns/tcl/lib) into the C++ language using class EmbeddedTcl. The
translation process consists of two main steps:

(i) During the compilation, NS2 translates the scripts into EmbeddedTcl
objects (e.g., et_ns_lib, et_tclobject) by the following statement in
file Makefile:

$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl \

| $(TCL2C) et_ns_lib > gen/ns_tcl.cc

This statement creates an EmbeddedTcl object et_ns_lib.10 There are
two main parts in this statement: expanding file ˜ns/tcl/lib/ns-lib.tcl
and creating an EmbeddedTcl object et_ns_lib as well as a C++ file
˜ns/gen/ns tcl.cc. The details of these two parts are as follows:

(a) The first part, “$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.t

cl”, runs the Tcl shell (TCLSH) to interpret the scripting file ˜ns/bin/
tcl-expand.tcl, which takes the scripting file ˜ns/tcl/lib/ns-lib.tcl as
an input argument.
Apart from containing its own codes, file ˜ns/tcl/lib/ns-lib.tcl has
lines with format “source <fn>”. These lines “source” another script-
ing file whose name is <fn>. By sourcing a Tcl file, we mean to in-
clude the file into the translation process. The script file ˜ns/bin/tcl-
expand.tcl simply expands the file ˜ns/tcl/lib/ns-lib.tcl by replacing
the source statement “source <fn>” with the content of the file <fn>.

(b) The second part, “| $(TCL2C) et_ns_lib > gen/ns_tcl.cc”, trans-
lates the expanded file in the first part into an EmbeddedTcl object
et_ns_lib (using a unix pipe “|”) and redirects the printed result
into file ˜ns/gen/ns tcl.cc (using the unix redirect operator “>”).

(ii) During NS2 startup, NS2 loads the translated EmbeddedTcl objects into
NS2.

To incorporate a new scripting file “file” into NS2, we need to source the
file by inserting the statement “source file” into file ˜ns/tcl/lib/ns-lib.tcl.
At the compilation, a new scripting file will be included into NS2, and will be
ready to use thereafter.

3.8 Chapter Summary

NS2 is written in OTcl (interpreted class hierarchy) and C++ (compiled class
hierarchy). Loosely speaking, OTcl sets up a network (e.g., creating and con-
necting nodes), while C++ runs actual simulation (e.g., passing packets from
one node to another). When an object is created from the interpreted hierar-
chy, a so-called shadow object is also created in the compiled hierarchy. The
connection between the interpreted and compiled hierarchies is established
through TclCL which consists of following C++ classes.

10 Other EmbeddedTcl object (e.g., et tclobject) are created similarly.
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• Class TclObject is the main class where all classes in the compiled hierar-
chy derive. It corresponds to an OTcl class SplitObject, which is the base
class for all classes in the interpreted hierarchy. Class TclObject has four
main responsibilities. The first two responsibilities are to provide methods
to create and destroy a C++ shadow object, when an OTcl object is cre-
ated and destroyed, respectively. The third responsibility is to bind class
variables in both hierarchies together so that a change in the variable in
one hierarchy will result an automatic update in the bound variable in an-
other hierarchy. The last responsibility is to provide method–namely OTcl
command–to access C++ from OTcl domain.

• Class TclClass maps an OTcl class name to a C++ static mapping vari-
able. While class TclObject initiates the shadow object creation process,
the actual shadow object creation is performed by class TclClass.

• Class InstVar defines NS2 variable data types which can be bound in both
the hierarchies.

• Class Tcl provides an access to the interpreted hierarchy from the compiled
hierarchies.

• Similar to OTcl command, class TclCommand provides a global access to
the compiled hierarchy from the interpreted hierarchy.

• Class EmbeddedTcl translates OTcl scripts into C++ codes.
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Implementation of Discrete-Event Simulation

in NS2

NS2 is a discrete-event simulator, where actions are associated with events
rather than time. An event in a discrete-event simulator consists of execution
time, a set of actions, and a reference to the next event (Fig. 4.1). These events
connect to each other and form a chain of events on the simulation timeline
(e.g., that in Fig. 4.1). Unlike a time-driven simulator, in an event-driven
simulator, time between a pair of events does not need to be constant. When
the simulation starts, events in the chain are executed from left to right (i.e.,
chronologically).1 In the next section, we will discuss the simulation concept of
NS2. In Sections 4.2, 4.3, and 4.4, we will explain the details of classes Event
and Handler, class Scheduler, and class Simulator, respectively. Finally, we
summarize this chapter in Section 4.6.

Event1

time = 0.9

Action1

1 2 3 4 5 6 7

Time
(second)

Event2

time = 2.2

Action2

Event3

time = 5

Action3

Event4

time = 6.8

Action4

Event5
time = 3.7

Action5

insert

eventcreate
event

Fig. 4.1. A sample chain of events in a discrete-event simulation. Each event con-
tains execution time and a reference to the next event. In this figure, Event1 creates
and inserts Event5 after Event2 (the execution time of Event 5 is at 3.7 second).

1 By execution, we mean taking actions associated with an event.

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,
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4.1 NS2 Simulation Concept

NS2 simulation consists of two major phases.

Phase I: Network Configuration Phase

In this phase, NS2 constructs a network and sets up an initial chain of events.
The initial chain of events consists of events which are scheduled to occur at
certain times (e.g., start FTP (File Transfer Protocol) traffic at 1 second.).
These events are called at-events (see Section 4.2). This phase corresponds to
every line in a Tcl simulation script before executing instproc run{} of the
Simulator object.

Phase II: Simulation Phase

This part corresponds to a single line, which invokes instproc Simulator::run
{}. Ironically, this single line contributes to most (e.g., 99%) of the simulation.

In this part, NS2 moves along the chain of events and executes each event
chronologically. Here, the instproc Simulator::run{} starts the simulation
by dispatching the first event in the chain of events. In NS2, “dispatching
an event” or “firing an event” means “taking actions corresponding to that
event”. An action is, for example, starting FTP traffic or creating another
event and inserting the created event into the chain of events. In Fig. 4.1, at
0.9 s, Event1 creates Event5 which will be dispatched at 3.7 s, and inserts
Event5 after Event2. After dispatching an event, NS2 moves down the chain
and dispatches the next event. This process repeats until the last event corre-
sponding to instproc halt{} of OTcl class Simulator is dispatched, signifying
the end of simulation.

4.2 Events and Handlers

4.2.1 An Overview of Events and Handlers

As shown in Fig. 4.1, an event specifies an action to be taken at a certain
time. In NS2, an event contains a handler which specifies the action, and
the firing time or dispatching time. Program 4.1 shows declaration of classes
Event and Handler. Class Event declares variables handler_ (whose class
is Handler; Line 5) and time_ (Line 6) as its associated handler and firing
time, respectively. To maintain the chain of events, each Event object contains
pointers next_ (Line 3) and prev_ (Line 4) to the next and previous Event
objects, respectively. Variable uid_ (Line 7) is an ID unique to every event.

Lines 10–14 in Program 4.1 show the declaration of an abstract class
Handler. Class Handler specifies the default action to be taken when an asso-
ciated event is dispatched in its pure virtual function handle(e) (Line 13)2.

2 We call actions specified in the function handle(e) default action, since they are
taken by default when the associated event is dispatched.
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Program 4.1 Declaration of classes Event and Handler.

//~/ns/common/scheduler.h

1 class Event {

2 public:

3 Event* next_; /* event list */

4 Event* prev_;

5 Handler* handler_; /* handler to call when event ready */

6 double time_; /* time at which event is ready */

7 scheduler_uid_t uid_; /* unique ID */

8 Event() : time_(0), uid_(0) {}

9 };

10 class Handler {

11 public:

12 virtual ~Handler () {}

13 virtual void handle(Event* e) = 0;

14 };

This declaration forces all its instantiable derived classes to provide the ac-
tion in function handle(e). In the following, we will discuss few classes which
derive from classes Event and Handler. These classes are NsObject, Packet,
AtEvent, and AtHandler.

4.2.2 Class NsObject: A Child Class of Class Handler

Derived from class Handler, class NsObject is one of the main classes in NS2.
It is a base class for most of the network components. We will discuss the de-
tails of this class in Chapter 5. Here, we only show the implementation of func-
tion NsObject::handle(e) in Program 4.2. Function NsObject::handle(e)

casts an Event object associated with the input pointer (e) to a Packet object.
Then it feeds the casted object to function recv(p) (Line 3). Usually, func-
tion recv(p), where p is a pointer to a packet, indicates that an object has
received a packet p (see Chapter 5). Unless function handle(e) is overrid-
den, function handle(e) (i.e., an action associated with an event *p) of an
NsObject simply indicates packet reception.

Program 4.2 Function NsObject::handle.

//~/ns/common/object.cc

1 void NsObject::handle(Event* e) 2 { 3 recv((Packet*)e); 4

}
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4.2.3 Classes Packet and AtEvent: Child Classes of Class Event

Classes Packet and AtEvent are among key NS2 classes which derive from
class Event. These two classes can be placed on the chain of events so that
their associated handler will take actions at the firing time. While the details
of class AtEvent are discussed in this section, that of class Packet will be
discussed later in Chapter 8.

Program 4.3 Declaration of classes AtEvent and AtHandler, and function
AtHandler::handle.

//~/ns/common/scheduler.cc

1 class AtEvent : public Event {

2 public:

3 AtEvent() : proc_(0) {

4 }

5 ~AtEvent() {

6 if (proc_) delete [] proc_;

7 }

8 char* proc_;

9 };

10 class AtHandler : public Handler {

11 public:

12 void handle(Event* event);

13 } at_handler;

14 void AtHandler::handle(Event* e)

15 {

16 AtEvent* at = (AtEvent*)e;

17 Tcl::instance().eval(at->proc_);

18 delete at;

19 }

Declared in Program 4.3, class AtEvent represents events whose action is
the execution of an OTcl statement. It contains one string variable proc_ (Line
8) which holds an OTcl statement string. At the firing time, its associated
handler, whose class is AtHandler, will retrieve and execute the OTcl string
from this variable.

Derived from class Handler, class AtHandler specifies the actions to be
taken at firing time in its function handle(e) (Lines 14–19). Here, Line 16
casts the input event into an AtEvent object. Then Line 17 extracts and
executes the OTcl statement from variable proc_ of the cast event.

In the OTcl domain, an AtEvent object is placed in a chain of events at
a certain firing time by instproc “at{time statement}” of class Simulator.
The syntax for the invocation is given below:
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$ns at <time> <statement>

where ns is the Simulator object (see Section 4.4), <time> is the firing time,
and <statement> is an OTcl statement string which will be executed when
the simulation time is <time> second.

Program 4.4 Instance procedure at of class Simulator and command at of
class Scheduler.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc at args {

2 $self instvar scheduler_

3 return [eval $scheduler_ at $args]

4 }

//~/ns/common/scheduler.cc

5 if (strcmp(argv[1], "at") == 0) {

6 /* t < 0 means relative time: delay = -t */

7 double delay, t = atof(argv[2]);

8 const char* proc = argv[3];

9 AtEvent* e = new AtEvent;

10 int n = strlen(proc);

11 e->proc_ = new char[n + 1];

12 strcpy(e->proc_, proc);

13 delay = (t < 0) ? -t : t - clock();

14 if (delay < 0) {

15 tcl.result("can’t schedule command in past");

16 return (TCL_ERROR);

17 }

18 schedule(&at_handler, e, delay);

19 sprintf(tcl.buffer(), UID_PRINTF_FORMAT, e->uid_);

20 tcl.result(tcl.buffer());

21 return (TCL_OK);

22 }

Program 4.4 shows the details of instproc at{...} of an OTcl class
Simulator and an OTcl command at of class Scheduler. The instproc
“at{...}” of class Simulator invokes an OTcl command “at” of the
Scheduler object (See Lines 5–22).

Command at of class Scheduler stores the firing time in variable t

(Line 7). Line 9 then creates an AtEvent object. Lines 8 and 10–12 store
the input OTcl command in the variable proc_ of the created AtEvent ob-
ject. Line 13 converts the firing time to the delay time from the current time.
Finally, Line 18 schedules the created AtEvent e at delay seconds in future,
feeding the address of variable at_handler (see Program 4.3) as an input
argument to function schedule(...).
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4.3 The Scheduler

The scheduler maintains the chain of events and simulation (virtual) time.
At runtime, it moves along the chain, and dispatches one event after another.
Since there is only one chain of events in a simulation, there is exactly one
Scheduler object in a simulation. Hereafter, we will refer to the Scheduler

object simply as the Scheduler. Also, NS2 supports the four following types
of schedulers: List Scheduler, Heap Scheduler, Calendar Scheduler (default),
and Real-time Scheduler. For brevity, we do not discuss the differences among
all these schedulers here. The details of these schedulers can be found in [15].

Program 4.5 Declaration of class Scheduler.

//~ns/common/scheduler.h

1 class Scheduler : public TclObject {

2 public:

3 static Scheduler& instance() { return (*instance_); }

4 void schedule(Handler*, Event*, double delay);

5 virtual void run();

6 virtual void cancel(Event*) = 0;

7 virtual void insert(Event*) = 0;

8 virtual Event* lookup(scheduler_uid_t uid) = 0;

9 virtual Event* deque() = 0;

10 virtual const Event* head() = 0;

11 double clock() const { return (); }

12 virtual void reset();

13 protected:

14 void dispatch(Event*);

15 void dispatch(Event*, double);

16 Scheduler();

17 virtual ~Scheduler();

18 int command(int argc, const char*const* argv);

19 double clock_;

20 static Scheduler* instance_;

21 static scheduler_uid_t uid_;

22 int halted_;

22 };

4.3.1 Main Components of the Scheduler

Declared in Program 4.5, class Scheduler consists of a few main variables and
functions. Variable clock_ (Line 19) contains the current simulation time, and
function clock() (Line 11) returns the value of the variable clock_. Variable
halted_ (Line 22) is initialized to 0, and is set to 1 when the simulation
is stopped or paused. Variable instance_ (Line 20) is the reference to the
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Scheduler, and function instance() (Line 3) returns the variable instance_.
Variable uid_ is the event unique ID. In NS2, the Scheduler acts as a single
point of unique ID management. When an event is inserted into the simulation
timeline, the Scheduler creates a new unique ID, and assigns the ID to the
event. Both the variables instance_ and uid_ are static, since there is only
one scheduler and unique ID in a simulation.

4.3.2 Data Encapsulation and Polymorphism Concepts

Program 4.5 implements the concepts of data encapsulation and polymorphism
(see Appendix B). It hides the chain of events from the outside world, and de-
clares pure virtual functions cancel(e), insert(e), lookup(uid), deque(),
and head() in Lines 6–10 to manage the chain. Classes derived from class
Scheduler provide implementation of the chain as well as all of the above
functions. The beauty of this mechanism is the ease of modifying type of
scheduler at runtime. NS2 implements most of the codes in relation to class
Scheduler, not its derived classes (e.g., CalendarScheduler). At runtime
(e.g., in a Tcl simulation script), we can select a scheduler to be of any de-
rived class (e.g., CalendarScheduler) of class Scheduler without having to
modify the codes for the base class (Scheduler).

4.3.3 Main Functions of the Scheduler

Three main functions of class Scheduler are run() (Program 4.6), schedule(
h,e,delay) (Program 4.7) and dispatch(p,t) (Program 4.8). In Program 4.6,
function run() first sets variable instance_ to the address of the scheduler
(this) in Line 3. Then, it keeps dispatching events (Line 6) in the chain until
halted_ �= 0 or untill all the events are executed (Line 5).

Program 4.6 Function run of class Scheduler.

//~ns/common/scheduler.cc

1 void scheduler::run()

2 {

3 instance_ = this;

4 Event *p;

5 while (!halted_ && (p = deque())) {

6 dispatch(p, p->time_);

7 }

8 }

Function schedule(h,e,delay) in Program 4.7 takes three input argu-
ments: A Handler pointer(h), an Event pointer(e), and the delay(delay),
respectively. It inserts the input Event object(*e) into the chain of events.
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Lines 3–12 check for possible errors. Line 13 increments the unique ID of the
Scheduler and assigns it to the input Event object. Line 14 associates the
input Handler object with the input Event object. Line 15 converts input
delay time (delay) to the firing time (time_) of the Event object e. Line
17 inserts the configured Event object e in the chain of events via func-
tion insert(e). Since the scheduler increments its unique ID when invoking
function schedule(...), every scheduled event will have different unique ID.

Finally, the errors in Lines 3–12 include

1. Null handler (Line 3)
2. Positive Event unique ID (Lines 4-7; See Section 4.3.4)
3. Negative delay (Line 8)
4. Negative Scheduler unique ID3

Program 4.7 Function schedule of class Scheduler.

//~ns/common/scheduler.cc

1 void Scheduler::schedule(Handler* h, Event* e, double delay)

2 {

3 if (!h) { /* error: Do not feed in NULL handler */ };

4 if (e->uid_ > 0) {

5 printf("Scheduler: Event UID not valid!\n\n");

6 abort();

7 }

8 if (delay < 0) { /* error: negative delay */ };

9 if (uid_ < 0) {

10 fprintf(stderr, "Scheduler: UID space exhausted!\n");

11 abort();

12 }

13 e->uid_ = uid_++;

14 e->handler_ = h;

15 double t = clock_ + delay;

16 e->time_ = t;

17 insert(e);

18 }

Function dispatch(p,t) in Program 4.8 is invoked by function run()

at the firing time. It takes a dispatching event (*p) and firing time (t) as
input arguments. Since the scheduler moves forward in the simulation time,
the firing time (t) cannot be less than the current simulation time (clock_).
Line 3 will show an error, if t < clock_. Line 4 sets the current simulation
virtual time to be the firing time of the event. Line 5 inverts the sign of the

3 The unique ID of the Scheduler is always positive. Its negative value indicates
possible abnormality such as memory overflow or inadvertent memory access
violation.
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uid_ of the event, indicating that the is event is being dispatched. Line 6
invokes function handle(p) of the associated handler handler_, feeding the
event (p) as an input argument.

Program 4.8 Function dispatch of class Scheduler.

//~ns/common/scheduler.cc

1 void Scheduler::dispatch(Event* p, double t)

2 {

3 if (t < clock_) { /* error */ };

4 clock_ = t;

5 p->uid_ = -p->uid_; // being dispatched

6 p->handler_->handle(p); // dispatch

7 }

4.3.4 Dynamics of the Unique ID of an Event

The dynamics of the event’s unique ID (uid_) is fairly subtle. In general,
the scheduler maintains the unique ID, and assigns the unique ID to the
event being scheduled. To make uid_ unique, the Scheduler increments uid_
and assigns the incremented uid_ to the scheduling event in its function
schedule(...) (Line 13 in Program 4.7). When dispatching an event, the
scheduler inverts the sign of uid_ of the dispatching event (Line 5 in Pro-
gram 4.8). Figure 4.2 shows the dynamics of the unique ID caused by the above
schedule(...) and dispatch(...) functions. The sign toggling mechanism
of unique ID ensures that events will be scheduled and dispatched properly. If
a scheduled event is not dispatched, or is dispatched twice, its unique ID will
be positive, and an attempt to schedule this undispatched event will cause an
error (Lines 5 and 6 in Program 4.7).

–2

Fig. 4.2. Dynamics of Event unique ID (uid) : Take a positive value from
Scheduler::uid when being scheduled, and invert the sign when being dispatched.
Increment upon schedule and inversion of sign upon dispatch
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4.3.5 Scheduling-Dispatching Mechanism

We conclude this section through an example explaining the scheduling-
dispatching mechanism. Consider the following script

set ns [new Simulator]

$ns at 10 [puts "An event is dispatched"]

$ns run

which prints out the message “An event is dispatched” 10 seconds af-
ter the simulation has started. Figure 4.3 shows the functions (shown in
rectangles) and objects (shown in rounded rectangles) related to the scheduling-
dispatching mechanism, whose names are shown in boldface font. Again, an
AtEvent object is scheduled by the OTcl command “at” (in the upper-left
rectangle), of class Scheduler. The Scheduler creates an AtEvent object e and
stores input command (the fourth input argument str = puts "An event is

dispatched") in e->proc_. Then, it schedules the event e with delay con-
verted from time = 10 (the third input argument), feeding the address of
AtHandler object (at_handler in the lower right rounded rectangle) as the
corresponding handler.

The lower-left rectangle in Fig. 4.3 shows the details of function schedule(

h,e,delay) of class Scheduler. Before inserting event e into the chain of
events, function schedule(...) configures event e as follows: Update uid_

to be the same as that of Scheduler, store at_handler in the handler of event
e, and set firing time to be clock_ (current time) + delay.

At the firing time, the scheduled AtEvent object is dispatched through
function dispatch(p,t) (the upper-right rectangle in Fig. 4.3). When the
scheduled Event object e4 is dispatched, function dispatch(...) inverts the
sign of its variable uid_, and invokes function handle(e) of the correspond-
ing handler feeding Event object e as an input argument. Since the handler
is at_handler (see the upper-left rectangle), the OTcl command puts "An

event is dispatched" stored in e is executed.

4.3.6 Null Event and Dummy Event Scheduling

When being dispatched, an event p is fed to function handle(p) of the as-
sociated handler for a certain purpose. For example, the function handle(p)

of class NsObject executes “recv(p), where “p” is a packet reception event.
Here, the event *p must have been created and fed to function schedule(...)

prior to the ongoing dispatching process.
In some cases, an event only indicates the time where the default action is

taken but takes no part in such the action. For example, a queue unblocking
event, informs the associated Queue object of the completion of the ongoing

4 In Program 4.8, the first argument of function dispatch is p. Here, we use e as
the first argument for the sake of explanation.
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AtHandler at_handler

command (argv = [ cmd, at, time, str] )

schedule( &at_handler , e , delay )

dispatch( p , t )

    clock_=t
    p->uid_ = -p->uid_
    p->handler_->handle(p)

handle(e)

invoke OTcl command 
stored in e->proc_

AtEvent e

e->proc_ =   str

  schedule( h , e , delay )

      uid_++

      insert(e)

Event

uid_

handler_

time_
Clock_+(  )

DispatchingScheduling

Fig. 4.3. Scheduling and dispatching mechanism of an AtEvent.

transmission (see Section 7.3). Function handle(p) of the associated handler
in this case simply invokes function resume() which take no input argument
of the associated Queue object. Clearly the queue unblocking event takes no
role in the dispatching process. In this case, we do not need to explicity create
an event. Instead, we can use a null event or a dummy event as an input to
function schedule(...).

Scheduling of a Null Event

Function schedule(h,e,delay) takes a pointer to an event as its second input
argument. A null event refers to a null pointer which is fed as the second input
argument to the function schedule(...) (e.g., schedule(handler,0,delay)).

Although simple to use, a null event could lead to runtime error which is
difficult to be located. A null event is not an actual event. Its unique ID does
not follow semantic in Fig. 4.3. The Scheduler ignores the unique ID when
scheduling and dispatching a null event, and allows an undispatched event to
be rescheduled. This breaks the scheduling-dispatching protection mechanism.
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Using null events, the users are responsible for ensuring the proper sequence
of scheduling-dispatching by themselves.

Scheduling of a Dummy Event

This is another approach to schedule and dispatch events which do not take
part in default actions. A dummy event is usually declared as a member
variable of a C++ class, and is used repeatedly in a scheduling-dispatching
process.

Consider a packet departure event which is modeled by class LinkDelay

(see Section 7.2) for example. During simulation, an NsObject informs a
LinkDelay object to schedule packet departure events. At the firing time, the
packet completely departs the NsObject, and the NsObject is allowed to fetch
another packet for transmission. The packet departure event takes no part in
the default action, since a new packet is fetched or created by another object.

As we shall see, a packet departure event is represented by a dummy event
variable intr_ of class LinkDelay, and the packet departure is scheduled
through the variable intr_ only. Since variable intr_ is a dummy Event,
its unique ID follows the semantic in Fig. 4.3. An attempt to schedule an
undispatched event would immediately cause runtime error. Note that intr_
is a variable of class LinkDelay. It is used over and over again to indicate
packet departure from a LinkDelay object.

As a final note, under a simple configuration, it is recommended to use the
null event scheduling approach. For a complicated configuration, on the other
hand, the dummy event scheduling is preferable, since it provides a protection
against scheduling of undispatched events.

4.4 The Simulator

OTcl and C++ classes Simulator are the main classes which supervise the
entire simulation. Like the Scheduler object, there can be only one Simulator
object throughout a simulation. This object will be referred to as the Simulator
hereafter. The Simulator contains two types of key components: simulation
objects and information-storing objects. While simulation object (e.g., the
Scheduler) are the key components which derive the simulation, as well as the
simulator are created during the Network Configuration Phase, and will be
used in the Simulation Phase.

Information-storing objects (e.g., the reference to created nodes) con-
tain information which is shared among several objects. For example, NS2
needs to know all created nodes and links in order to construct a routing ta-
ble. These information-storing objects are created via various instprocs (e.g.,
Simulator::node{}) during the Network Configuration Phase. In the Sim-
ulation Phase, most objects access these information-storing objects via its
instvar ns_ (set by executing set ns_ [Simulator instance]), which is
the reference to the Simulator.
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4.4.1 Main Components of a Simulation

Interperted Hierarchy

Created by various instprocs, the main OTcl simulation components are as
follows:

• The Scheduler (scheduler_ created by instproc Simulator::init)main-
tains the chain of events and executes the events chronologically.

• The null agent (nullAgent_ created by instproc Simulator::init) pro-
vides the common packet dropping point.5

• Node reference (Node_ created by instproc Simulator::node) is an as-
sociative array whose elements are the created nodes and indices are node
IDs.

• Link reference (link_ created by instprocs simplex-link{...} or duplex-
link{...}) is an associative array. Associated with an index with for-
mat “sid:did”, each element of link_ is the created uni-directional link
which carries packet from node “sid” to node “did”.

Compiled Hierarchy

In the compiled hierarchy, class Simulator also contains variables and func-
tions as shown in Program 4.9. Variable instance_ (Line 18) is a pointer to the
Simulator. It is a static variable, which means that there is only one variable
instance_ of class Simulator for the entire simulation. Variable nodelist_

(Line 14) is the linked list containing the created nodes. The linked list can
contain upto “size_” elements (Line 17), while the total number of nodes is
“nn_” (Line 16). Variable rtobject_ (Line 15) is a pointer to a RouteLogic

object, which is responsible for the routing mechanism (see Chapter 6).
Function populate_flat_classifiers{...} (Line 7) pulls out the rout-

ing information stored in variable *rtobject_ and installs the routing table in
the created nodes and links (see Section 6.6). Function add_node(...) (Line
8) puts the input argument node into the linked list of nodes (nodelist_).
Function get_link_head(...) returns the link head object (see Chapter 7)
of the link with ID “nh” which connects to a ParentNode object *node. Func-
tion node_id_by_addr(addr) (Line 10) converts node address "addr" to
node ID. Function alloc(n) (Line 11) allocates spaces in nodelist_ which
can accommodate up to “n” nodes, and clears all components of nodelist_ to
NULL. Function check(n) immediately returns if n is less than size_. Other-
wise, it will create more space in nodelist_, which can accommodate upto "n"
nodes. Static function instance() in Line 3 returns the variable instance_

which is the pointer to the simulator.

5 By “dropping a packet”, we mean “removing a packet” from the simulation.
We will discuss the dropping mechanism in Chapter 5. For the moment, it is
sufficient to know that nullAgent drops or removes all received packets from the
simulation.
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Program 4.9 Declaration of class Simulator.

//~ns/common/simulator.h

1 class Simulator : public TclObject {

2 public:

3 static Simulator& instance() { return (*instance_); }

4 Simulator() : nodelist_(NULL),

rtobject_(NULL), nn_(0), size_(0) {}

5 ~Simulator() { delete []nodelist_;}

6 int command(int argc, const char*const* argv);

7 void populate_flat_classifiers();

8 void add_node(ParentNode *node, int id);

9 NsObject* get_link_head(ParentNode *node, int nh);

10 int node_id_by_addr(int address);

11 void alloc(int n);

12 void check(int n);

13 private:

14 ParentNode **nodelist_;

15 RouteLogic *rtobject_;

16 int nn_;

17 int size_;

18 static Simulator* instance_;

19 };

4.4.2 Retrieving the Instance of the Simulator

Program 4.10 Retrieving the instance of the Simulator using instproc
instance of class Simulator.

//~ns/tcl/lib/ns-lib.tcl

1 Simulator proc instance {} {

2 set ns [Simulator info instances]

3 if { $ns != "" } {

4 return $ns

5 }

6 ...

7 }

From the interpreted hierarchy, we can also retrieve the simulator instance
by invoking instproc instance{} of class Simulator. This instproc executes
the OTcl built-in command “info” with an option “instances”. This ex-
ecution returns all the instances of a certain class. Since there is only one
Simulator instance, the statement “Simulator info instances” returns
the Simulator object as required.
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4.4.3 Simulator Initialization

Simulator initialization refers to the process in the Network Configuration
Phase, which creates the Simulator as well as its components. The Simulator is
created by executing new Simulator. This command invokes the constructor
(i.e., instproc init{...} of class Simulator) shown in Program 4.11.

Program 4.11 Instance procedures init and use-scheduler of class
Simulator.

//~ns/tcl/lib/ns-lib.tcl

1 Simulator instproc init args {

2 $self create_packetformat

3 $self use-scheduler Calendar

4 $self set nullAgent_ [new Agent/Null]

5 $self set-address-format def

6 eval $self next $args

7 }

8 Simulator instproc use-scheduler type {

9 $self instvar scheduler_

10 if [info exists scheduler_] {

11 if { [$scheduler_ info class] == "Scheduler/$type" } {

12 return

13 } else {

14 delete $scheduler_

15 }

16 }

17 set scheduler_ [new Scheduler/$type]

18 }

The constructor first initializes the packet format in Line 2, and invokes
instproc use-scheduler{type} in Line 3 to specify the type of the Scheduler.
By default, the type of the Scheduler is Calendar. Line 4 creates a null agent
(nullAgent). Line 5 sets the address format to the default format in Line 5.
Instproc use-scheduler{type} (Lines 8–18) will delete the existing scheduler
if it is different from that specified in the input argument type. Then it will
create a scheduler with type = type, and store the created Scheduler object
in instvar scheduler_.

4.4.4 Running Simulation

The Simulation Phase starts at the invocation of instproc Simulator::run{}.
As shown in Program 4.12, the instproc Simulator::run{} first invokes
instproc “configure{}” of class RouteLogic (Line 2). This instproc com-
putes the optimal routes and creates the routing table (see Chapter 6). Lines
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5–10 reset nodes and queues. Finally, Line 11 starts the Scheduler by invoking
the OTcl command run{} of class Scheduler, which in turn invokes the C++
function run{} of class Scheduler shown in Program 4.6. Again, this function
executes events in the chain of events one after another until the Simulator is
halted (i.e., varaible halted_ of class Scheduler is 1), or untill all the events
are executed.

Program 4.12 Instance procedure Simulator::run.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc run {

2 [$self get-routelogic] configure

3 $self instvar scheduler_ Node_ link_ started_

4 set started_ 1

5 for each nn [array names Node_] {

6 $Node_($nn) reset

7 for each qn [array names link_] {

8 set q [$link_($qn) queue]

9 $q reset

10 }

11 return [$scheduler_ run]

12 }

4.5 Instprocs of OTcl Class Simulator

The list of useful instprocs of class Simulator is shown below.

now{} Retrieve the current simulation time.
nullagent{} Retrieve the shared null agent.

use-scheduler{type} Set the scheduler to be <type>.
at{time stm} Execute the statement <stm> at <time> second.

run{} Start the simulation.
halt{} Terminate the simulation.

cancel{e} Cancel the scheduled event <e>.

4.6 Chapter Summary

This chapter explains the details of discrete-event simulation in NS2. The
simulation is carried out by running a Tcl simulation script, which consists of
two parts. First, the Network Configuration Phase establishes a network, and
configures all simulation components. This phase also creates a chain of events
by connecting the created events chronologically. Secondly, the Simulation
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Phase chronologically executes (or dispatches) the created events until the
Simulator is halted, or untill all the events are executed.

There are four main classes involved in an NS2 simulation:

• Class Simulator supervises the simulation. It contains simulation compo-
nents such as the Scheduler, the null agent, etc. It also contains information
storing objects which are share by other (simulation) components.

• Class Scheduler maintains the chain of events and chronologically dis-
patches the events.

• Class Event consists of the firing time and the associated handler. Events
are put together to form a chain of events, which are dispatched one by
one by the Scheduler. Classes Packet and AtEvent are among the classes
derived from class Event, which can be placed on the simulation timeline
(i.e., in the chain of event). They are associated with different handlers,
and take different actions at the firing time.

• Class Handler: Associated with an event, a handler specifies default
actions to be taken when the associated event is dispatched. Classes
NsObject and AtHandler are among classes derived from class Handler.
They are always associated with Packet and AtEvent events, respectively.
Their actions are to receive the Packet object and to execute an OTcl
statement specified in the AtEvent object, respectively.
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Network Objects: Creation, Configuration,

and Packet Forwarding

NS2 is a simulation tool designed specifically for communication networks.
The main functionalities of NS2 are to set up a network of connecting nodes
and to pass packets from one node (which is a network object) to another.

A network object is one of the main NS2 components, which is responsible
for packet forwarding. NS2 implements network objects by using the poly-
morphism concept in Object-Oriented Programming (OOP). Polymorphism
allows network objects to take different actions ways under different contexts.
For example, a Connector object immediately passes the received packet to
the next network object, while a Queue1 object enques the received packets
and forwards only the head of the line packet.

This chapter first introduces the NS2 components by showing four major
classes of NS2 components, namely, network objects, packet-related objects,
simulation-related objects, and helper objects in Section 5.1. A part of the
C++ class hierarchy, which is related to network objects, is also shown here.
Section 5.2 presents class NsObject which acts as a template for all network
objects. An example of network objects as well as packet forwarding mech-
anism are illustrated through class Connector in Section 5.3. Finally, the
chapter summary is given in Section 5.4. Note that the readers who are not
familiar with object-oriented programming are recommended to go through a
review of the OOP polymorphism concept in Appendix B before proceeding
further.

5.1 Overview of NS2 Components

5.1.1 Functionality-Based Classification of NS2 Modules

Based on the functionality, NS2 modules (or objects) can be classified into
four following types:

1 Class Queue is a child class of class Connector.

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 5, c© Springer Science+Business Media, LLC 2009
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• Network objects are responsible for sending, receiving, creating, and de-
stroying packet-related objects. Since these objects are those derived from
class NsObject, they will be referred to hereafter as NsObjects.

• Packet-related objects are various types of packets which are passed around
a network.

• Simulation-related objects control simulation timing, and supervise the en-
tire simulation. As discussed in Chapter 4, examples of simulation-related
objects are events, handlers, the Scheduler, and the Simulator.

• Helper objects do not explicitly participate in packet forwarding. However,
they implicitly help to complete the simulation. For example, a routing
module calculates routes from a source to a destination, while network
address identifies each of the network objects.

In this chapter, we focus only on network objects. Note that, the simulation-
related objects were discussed in Chapter 4. The packet-related objects will
be discussed in Chapter 8. The main helper objects will be discussed in
Chapter 12.

5.1.2 C++ Class Hierarchy

This section gives an overview of C++ class hierarchies. The entire hierarchy
consists of over 100 C++ classes and struct data types. Here, we only show
a part of the hierarchy (in Fig. 5.1). The readers are referred to [16] for the
complete class hierarchy.

TclObject

OTcl Interface

Handler

NsObject

Connector

AtHandler QueueHandlerPacketQueueSimulator

RoutingModule

Classifier LanRouter

Agent ErrorModel LinkDelayQueue Trace

Default Action

Network Component

Uni-directional Point-to-
point Object Connector

Fig. 5.1. A part of NS2 C++ class hierarchy (this chapter emphasizes on classes
in boxes with thick solid lines).
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As discussed in Chapter 3, all classes deriving from class TclObject form
the compiled hierarchy. Classes in this hierarchy can be accessed from the
OTcl domain. For example, they can be created by the global OTcl pro-
cedure “new{...}”. Classes derived directly from class TclObject include
network classes (e.g., NsObject), packet-related classes (e.g., PacketQueue),
simulation-related classes (e.g., Scheduler), and helper classes (e.g., Routing-
Module). Again, classes which do not need OTcl counterparts (e.g., classes
derived from class Handler) form their own standalone hierarchies. These
hierarchies are not a part of the compiled hierarchy nor the interpreted
hierarchy.

As discussed in Chapter 4, class Handler specifies an action associ-
ated with an event. Again, class Handler contains a pure virtual function
handle(e) (see Program 4.1). Therefore, its derived classes are responsible
for providing the implementation of function handle(e). For example, func-
tion handle(e) of class NsObject tells the NsObject to receive an incom-
ing packet (Program 4.2), while that of class QueueHandler invokes function
resume() of the associated Queue object (Lines 1–4 in Program 5.1; also see
Section 7.3.2).

Program 5.1 Function handle of class QueueHandler.

//~/ns/queue/queue.cc

1 void QueueHandler::handle(Event*)

2 {

3 queue_.resume();

4 }

Derived directly from class TclObject and Handler (see Program 5.2),
class NsObject is the template class for all NS2 network objects. It inherits
OTcl interfaces from class TclObject and the default action (i.e., function
handle(e)) from class Handler. In addition, it defines a packet reception
template, and forces all its derived classes to provide packet reception imple-
mentation. We will discuss the details of class NsObject in Section 5.2.

There are three main classes deriving from class NsObject: Connector,
Classifier, and LanRouter. Connecting two NsObjects, a Connector object
immediately forwards a received packet to the connecting NsObject (see Sec-
tion 5.3). Connecting an NsObject to several NsObjects, a Classifier object
classifies packets based on packet header (e.g., destination address, flow ID),
and forwards the packets with the same classification to the same connect-
ing NsObject (see Section 6.4). Class LanRouter also has multiple connect-
ing NsObjects. However, it forwards every received packet to all connecting
NsObjects.
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5.2 NsObjects: A Network Object Template

5.2.1 Class NsObject

Representing NsObjects, class NsObject is the base class for all network ob-
jects in NS2 (see the declaration in Program 5.2). Again, the main responsi-
bility of an NsObject is to forward packets. Therefore, class NsObject defines
a pure virtual function recv(p,h) (see Line 5 in Program 5.2) as a uniform
packet reception interface to force all its derived classes to implement this
function.

Program 5.2 Declaration of class NsObject.

//~/ns/common/object.h

1 class NsObject : public TclObject, public Handler {

2 public:

3 NsObject();

4 virtual ~NsObject();

5 virtual void recv(Packet*, Handler* callback = 0) = 0;

6 virtual int command(int argc, const char*const* argv);

7 protected:

8 virtual void reset();

9 void handle(Event*);

10 int debug_;

11 };

Function recv(p,h) is in fact the very essence of packet forwarding mech-
anism in NS2. In NS2, an upstream object maintains a reference to the con-
necting downstream object. It passes a packet to the downstream object by
invoking the function recv(p,h) of the downstream object and feeding the
packet as an input argument. Since NS2 focuses mainly on forwarding packets
in a downstream direction, NsObjects do not need to have a reference to its
upstream objects. In most cases, NsObject configuration involves downstream
(not upstream) objects only.

Function recv(p,h) takes two input arguments: a packet p to be received
and a handler h. Most invocation of function recv(p,h) involves only packet
“p”, not the handler.2 For example, a Queue object (see Section 7.3.3) puts
the received packet in the buffer and transmits the packet at the head of the
buffer. An ErrorModel object (see Section 12.3) imposes error probability on
the received packet, and forwards the packet to the connecting object if the
transmission is not in error.

2 We will discuss the callback mechanism which involves a handler in Section 7.3.3.
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Class NsObject derives from classes TclObject and Handler. Again, the
functionality of class TclObject creates and binds the compiled shadow NsOb-
ject when an NsObject is created from the interpreted hierarchy. As a handler,
an NsObject overrides function handle(e) which specifies the default action
taken at the firing time of an associated event. Again, since the main respon-
sibility of an NsObject is the packet forwarding, its function handle(e) (i.e.,
default action) is to receive a packet (cast from an event) through function
recv(p,h) (see Program 4.2).

5.2.2 Packet Forwarding Mechanism of NsObjects

An NsObject forwards packets in two following ways:

• Immediate packet forwarding: To forward a packet to a downstream ob-
ject, an upstream object needs to obtain a reference (e.g., a pointer)
to the downstream object and invokes function recv(p,h) of the down-
stream object through the obtained reference. For example, a Connector
(see Section 5.3) has a private pointer target_ to its downstream ob-
ject. Therefore, it forwards a packet to its downstream object by invoking
target_->recv(p,h).

• Delayed packet forwarding: To delay packet forwarding, a Packet object is
cast to be an Event object, associated with a packet receiving NsObject,
and placed on the simulation timeline at a given simulation time. At the
firing time, function handle(e) of the NsObject will be invoked, and the
packet will be received through function recv(p,h) (see an example of
delayed packet forwarding in Section 5.3).

5.3 Connectors

As shown in Fig. 5.2, a Connector is a NsObject which connects three NsOb-
jects in a uni-directional manner. It receives a from an upstream NsObject. By
default, a Connector immediately forwards the received packet to its down-
stream NsObject. Alternatively, it can drop the packet by forwarding the
packet to a packet dropping object.3

In NS2, each NsObject acts as a packet forwarder. Since it has no knowl-
edge about its upstream objects, it does not have any interface to configure
an upstream object. From Fig. 5.2, a Connector is interested in configuring
its downstream NsObject and packet dropping NsObject only. The connec-
tion from an upstream object to a Connector, on the other hand, must be
configured from within the scope of the upstream object.

3 A packet dropping network object (e.g., a null agent) is responsible for destroying
packets.
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Fig. 5.2. Diagram of a connector. The solid arrows represent pointers, while the
dotted arrows show packet forwarding and dropping paths.

Program 5.3 Declaration and function recv of class Connector.

//~/ns/common/connector.h

1 class Connector : public NsObject {

2 public:

3 Connector();

4 inline NsObject* target() { return target_; }

5 void target (NsObject *target) { target_ = target; }

6 virtual void drop(Packet* p);

7 void setDropTarget(NsObject *dt) {drop_ = dt; }

8 protected:

9 virtual void drop(Packet* p, const char *s);

10 int command(int argc, const char*const* argv);

11 void recv(Packet*, Handler* callback = 0);

12 inline void send(Packet* p, Handler* h){target_->recv(p, h);}

13

14 NsObject* target_;

15 NsObject* drop_; // drop target for this connector

16 };

//~/ns/common/connector.cc

17 void Connector::recv(Packet* p, Handler* h){send(p, h);}

5.3.1 Class Declaration

Program 5.3 shows the declaration of class Connector. Class Connector con-
tains two pointers (Lines 14–15 in Program 5.3) to NsObjects:4 target_ and

4 Since class Connector contains two pointers to abstract object (i.e., class
NsObject), it can be regarded as an abstract user class for class composition
discussed in Section B.8. We will discuss the details of how the class composition
concept applies to a Connector in the next section.
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drop_. From Fig. 5.2, target_ is the pointer to the connecting downstream
object, while drop_ is the pointer to the packet dropping object.

Class Connector derives from the abstract class NsObject. It overrides
the pure virtual function recv(p,h), by simply invoking function send(p,h)

(see Line 12 in program 5.3). Function send(p,h) simply forwards the received
packet to its downstream object by invoking function recv(p,h) of the down-
stream object (i.e., target_->recv(p,h) in Line 12).

Program 5.4 Function Connector::drop.

//~/ns/common/connector.cc

1 void Connector::drop(Packet* p)

2 {

3 if (drop_ != 0)

4 drop_->recv(p);

5 else

6 Packet::free(p);

7 }

Program 5.4 shows the implementation of function drop(p), which drops
or destroys a packet. Function drop(p) takes one input argument, which is
a packet to be dropped. If the dropping NsObject exists (i.e., drop_ �= 0),
this function will forward the packet to the dropping NsObject by invoking
drop_->recv(p,h). Otherwise, it will destroy the packet by invoking function
Packet::free(p) (see Chapter 8). Note that function drop(p) is declared as
virtual (Line 9). Hence, classes derived from class Connector may override
this function without any function ambiguity5.

5.3.2 OTcl Configuration Commands

As discussed in Section 4.1, NS2 simulation consists of two steps: Network
Configuration Phase and Simulation Phase. In the Network Configuration
Phase, a Connector is set up as shown in Fig. 5.2. Again, a Connector config-
ures its downstream and packet dropping NsObjects only.

Suppose OTcl has instantiated three following objects: a Connector ob-
ject (conn_obj), a downstream object (down_obj), and a dropping object
(drop_obj). Then, the Connector is configured using the following two OTcl
commands (see Program 5.5):

• OTcl command target with one input argument conforms to the following
syntax:

$conn_obj target $down_obj

5 Function ambiguity is discussed in Appendix B.2
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Program 5.5 OTcl commands target and drop-target of class Connector.

//~/ns/common/connector.cc

1 int Connector::command(int argc, const char*const* argv)

2 {

3 Tcl& tcl = Tcl::instance();

4 if (argc == 2) {

5 if (strcmp(argv[1], "target") == 0) {

6 if (target_ != 0)

7 tcl.result(target_->name());

8 return (TCL_OK);

9 }

10 if (strcmp(argv[1], "drop-target") == 0) {

11 if (drop_ != 0)

12 tcl.resultf("%s", drop_->name());

13 return (TCL_OK);

14 }

15 }

16 else if (argc == 3) {

17 if (strcmp(argv[1], "target") == 0) {

18 if (*argv[2] == ’0’) {

19 target_ = 0;

20 return (TCL_OK);

21 }

22 target_ = (NsObject*)TclObject::lookup(argv[2]);

23 if (target_ == 0) {

24 tcl.resultf("no such object %s", argv[2]);

25 return (TCL_ERROR);

26 }

27 return (TCL_OK);

28 }

29 if (strcmp(argv[1], "drop-target") == 0) {

30 drop_ = (NsObject*)TclObject::lookup(argv[2]);

31 if (drop_ == 0) {

32 tcl.resultf("no object %s", argv[2]);

33 return (TCL_ERROR);

34 }

35 return (TCL_OK);

36 }

37 }

38 return (NsObject::command(argc, argv));

39 }
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This command casts the input argument down_obj to be of type NsObject*
and stores it in variable target_ (Line 22).

• OTcl command target with no input argument (e.g., $conn_obj target)
returns OTcl instance corresponding to the C++ variable target_ (Line
5–9). Note that function name() of class TclObject returns the OTcl ref-
erence string associated with the input argument.

• OTcl command drop-target with one input argument is very similar to
that of OTcl command target but the input argument is cast and stored
in the variable drop_ instead of the variable target_.

• OTcl command drop-target with no input argument is very similar to
that of OTcl command target but it returns the OTcl instance corre-
sponding to the variable drop_ instead of the variable target_.

Example 5.1. Consider the connector configuration in Fig. 5.3. Let the down-
stream object be of class TcpAgent, which corresponds to class Agent/Tcp

in the OTcl domain. Also, let a Agent/Null object be a packet dropping
NsObject. The following code shows how the network is set up from the OTcl
domain:

set conn_obj [new Connector]

set tcp [new Agent/TCP]

set null [new Agent/Null]

$conn_obj target $tcp

$conn_obj drop-target $null

The first three lines create a Connector (conn), a TCP object (tcp), and
a packet dropping object (null). The last two lines use the OTcl commands
target and drop-target to set tcp and null as the downstream object and
the dropping object of the Connector, respectively.

recv(p,h)=0;Upstream
network

component  recv(p,h) { … };

Connector

target_

NsObject NsObject

c
a

s
ti
n
g

     recv(p,h){...};

TcpAgent

By declaration

Implementation
by

polymorphism

Fig. 5.3. A polymorphism implementation of a Connector. A Connector declares
target as an NsObject pointer. In the Network Configuration Phase, the OTcl
command target is invoked to setup a downstream object of the Connector, and
the NsObject *target is cast to a TcpAgent object.



96 5 Network Objects

Connector configuration complies with the class composition program-
ming concept discussed in Appendix B.5. Table 5.1 shows the components
in Example 5.1 and the corresponding class composition. Classes Agent/TCP
and Agent/Null are OTcl classes whose corresponding C++ classes derive
from class NsObject. Class Connector stores pointers (i.e., target_ and
drop_) to NsObjects, and is therefore considered to be an abstract user
class. Finally, as a user class, the Tcl Simulation Script instantiates NsObjects
conn, tcp, and null from classes Connector, Agent/Tcp, and Agent/Null,
respectively, and binds tcp and null to variables target_ and drop_,
respectively.

Table 5.1. Class composition of network components in Example 5.1.

Abstract class NsObject

Derived class Agent/Tcp and Agent/Null

Abstract user class Connector

User class A Tcl Simulation Script

When invoking “target” and “drop-target”, tcp and null are first
type-cast to NsObject pointers. Then they are assigned to target_ and to
drop_, respectively. Since a virtual function is unaffected by type casting,
function recv(p,h) of both tcp and null are associated to class Agent/TCP
and Agent/Null, respectively.

5.3.3 Packet Forwarding Mechanism

From Section 5.2.2, an NsObject forwards a packet in two ways: immediate
and delayed packet forwarding. This section demonstrates both the packet
forwarding mechanisms through a Connector.

Immediate Packet Forwarding

Immediate packet forwarding is carried out by invoking function recv(p,h)

of a downstream object. In Example 5.1, the Connector forwards a packet to
the TCP object by invoking function recv(p,h) of the TCP object (i.e.,
target_->recv(p,h), where target_ is configured to be a TCP object).
C++ polymorphism is responsible for associating function recv(p,h) to class
Agent/TCP (i.e., the construction type), not NsObject (i.e., the declaration
type).

Delayed Packet Forwarding

Delayed packet forwarding is implemented with the aid of the Scheduler. Here,
a packet is cast to an event, associated with a receiving NsObject, and placed
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on the simulation timeline. For example, to delay packet forwarding in Ex-
ample 5.1 for “d” seconds, we may invoke the following statement instead of
target_->recv(p,h).

Scheduler& s = Scheduler::instance();

s.schedule(target_, p, d);

Consider Fig. 5.4 and Program 5.6 altogether. Figure 5.4 shows the
diagram of delayed packet forwarding, while Program 5.6 shows the de-
tails of functions schedule(h,e,delay) as well as dispatch(p,t) of class
Scheduler. When “schedule(target_, p, d)” is invoked, function
schedule (...) casts packet *p and the NsObject *target_ into Event and
Handler objects, respectively (Line 1 of Program 5.6). Line 5 of Program 5.6
associates packet *p with the NsObject *target_. Lines 6-7 insert packet
*p into the simulation timeline at the appropriate time. At the firing time,
the event (*p) is dispatched (Lines 9-14). The Scheduler invokes function
handle(p) of the handler associated with event *p. In this case, the associated
handler is the NsObject *target_. Therefore, in Line 13, the default action
handle(p) of target_, invokes function recv(p,h) to receive the scheduled
packet.

Fig. 5.4. Delayed packet forwarding.
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Program 5.6 Functions schedule and dispatch of class Scheduler.

//~/ns/common/scheduler.cc

1 void Scheduler::schedule(Handler* h, Event* e, double delay)

2 {

3 ...

4 e->uid_ = uid_++;

5 e->handler_ = h;

6 e->time_ = clock_ + delay;

7 insert(e);

8 }

9 void Scheduler::dispatch(Event* p, double t)

10 ...

11 clock_ = t;

12 p->uid_ = -p->uid_; // being dispatched

13 p->handler_->handle(p); // dispatch

14 }

5.4 Chapter Summary

Referred to as an NsObject, a network object is responsible for sending, re-
ceiving, creating, and destroying packets. As an object of class NsObject,
it derives OTcl interfaces from class TclObject and the default action (i.e.,
function handle(e)) from class Handler. It defines a pure virtual function
recv(p,h) as a uniform packet reception interface for all its derived classes.
Based on the polymorphism concept, all its derived classes must provide their
own implementation of how to receive a packet.

In NS2, an NsObject needs to create a connection to its downstream ob-
ject only. Normally, an NsObject forwards a packet to a downstream object by
invoking function recv(p,h) of its downstream object. In addition, an NsOb-
ject can defer packet forwarding by associating a packet to the downstream
object and inserting the packet on the simulation timeline. At the firing time,
the scheduler dispatches the packet, and the default action of the downstream
object is invoked to receive the packet.

As an example, we show the details of class Connector, one of the main
NsObject classes in NS2. Class Connector contains two pointers to NsObjects:
target_ pointing to a downstream object and drop_ pointing to a packet
dropping object. To configure a Connector, an object whose class derives
from class NsObject can be set as downstream and dropping objects via OTcl
command target and drop-target, respectively. These two OTcl commands
cast the downstream and dropping objects to NsObjects, and assign them to
C++ variables *target_ and *drop_, respectively.
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Nodes as Routers or Computer Hosts

This chapter focuses on a basic network component, Node. In NS2, a Node
acts as a computer host (e.g., a source or a destination) and a router (e.g.,
an intermediate node). It receives packets from an attached application or
an upstream object, and forwards them to the attached links specified in the
routing table (as a router) or delivers them to the ports specified in the packet
header (as a host).

In the following, we first give an overview of Nodes and routing mechanism
in NS2 in Sections 6.1 and 6.2, respectively. Sections 6.3, 6.4, and 6.5 discuss
three main routing components: Route logic, classifiers, and routing modules,
respectively. In Section 6.6 we show how the aforementioned Node components
are assembled to compose a Node. Finally, the chapter summary is provided
in Section 6.7.

6.1 An Overview of Nodes in NS2

A Node plays two important roles in NS2. As a router, it forwards packets to
the connecting link based on a routing table. As a host, it delivers packets to
the transport layer agent attached to the port specified in the packet header.
NS2 configures the connection to its downstream NsObjects only. A Node
does not need to have a connection to its upstream NsObject (e.g., a sending
transport agent or an upstream link). Instead, its upstream NsObject will
create a connection to the Node.

6.1.1 Architecture of a Node

In the OTcl domain, a Node is defined in a C++ class Node which is bound
to an OTcl class with the same name. Unless specified otherwise, this chapter
deals with the OTcl class only. A Node is a composite object whose archi-
tecture is shown in Fig. 6.1. It provides a single point of packet entrance,

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 6, c© Springer Science+Business Media, LLC 2009
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Link Link

AddrClassifier
(classifier_)

PortClassifier
(dmux_)

Node Entry
(entry_)

NODE

Fig. 6.1. Node architecture.

entry_ (which is a Connector object). After entering the Node entry, the
packet enters an address classifier (an instvar classifier_). If the Node is
not the final destination, the address classifier will forward the packet to the
link specified in the routing table. Otherwise, it will forward the packet to the
demultiplexer or port classifier (an instvar dmux_), which forwards the packet
to the agent attached to the port specified in the packet header.

Apart from the above packet forwarding components, a Node also has
other components. The list of major Node OTcl components is given below.

id_ Node ID
agents_ List of attached transport layer agents

nn_ Total number of Nodes (a static class instvar belonging to
an OTcl class Node)

neighbor_ List of neighboring nodes
nodetype_ Node type (e.g., regular node or mobile node)

ns_ Simulator
dmux_ Demultiplexer or port classifier

module_list_ List of enabled routing modules
reg_module_ List of registered routing modules

rtnotif_ List of routing modules which will be notified of route up-
dates

ptnotif_ List of routing modules which will be notified of port at-
tachment/detachment

hook_assoc_ Sequence of the chain of classifiers
mod_assoc_ Association of classifiers and routing modules, whose in-

dexes and values are classifiers and the associated routing
modules, respectively.
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6.1.2 Related Instproc of Class Node

An OTcl class Node defines the following main instprocs, which can be classi-
fied into three categories.

Initialization Instprocs

enable-module{mod_name} Appends “mod_name” to the module list
“module_list_”.

disable-module{mod_name} Removes “mod_name” from the module list
“module_list_”.

register-module{mod} Inserts an input routing module “mod” into
an entry of the instance associative array
“reg_module_” whose index in the module
name.

unregister-module{mod} Removes an entry of an instance associative
array “reg_module_” whose index matches
with the name of the input routing module
“mod”.

route-notify{module} Inserts an input routing module “module” into
the route notification list “rtnotif_”.

unreg-route-notify{... Removes a routing module “module” from
the route notification list “rtnotif ”module}

port-notify{module} Inserts an input routing module “module” into
the agent attachment list “ptnotif_”.

unreg-port-notify{... Removes an input routing module “module”
from the agent attachment list “ptnotif ”.module}

Route Adding/Deleting and Agent Attachment/Detachment
Instprocs

add-route{... Recursively adds a routing entry (dst,target),
where “dst” and “target” are a destination node
and a forwarding NsObject, respectively, for all
routing modules in the link list “rtnotif ”.

dst target}

delete-route{args} Recursively removes a routing entry specifies in the
input arguments from all routing modules in the
linked list “rtnotif_”.

alloc-port{... Returns a free port of the demultiplexer “dmux ” of
the Node.nullagent}

agent{port} Returns the agent whose port is “port”.
add-target{... Recursively attaches the input agent “agent” to

the port “port” of the demultiplexer “dmux ”
associated with all routing modules in the instvar
“ptnotif ”

agent port}
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attach{agent port} Attaches an input agent “agent” to the port
“port” of the Node; Sets up necessary instvars and
invoke instprocs “add-target” to install the input
agent “agent” in slot “port” of the demultiplexer
“dmux_” associated with all routing modules in the
instvar “ptnotif_”.

detach{agent ... Recursively detaches an input agent “agent” from
the demultiplexer “dmux ” associated with all
routing modules in “ptnotif ”. Replaces the
“agent” installed in the demultiplexer with the
input null agent “nullagent”.

nullagent}

Classifier Manipulation Instprocs

insert-entry{module... Inserts an input classifier “clsfr” as the
head (i.e., the first) classifier connecting from
the Node entry, and installs the existing (if
any) head classifier in the slot “hook” of the
classifier “clsfr”. Also, updates the instvars
“hook assoc ” and “mod assoc ”
accordingly.

clsfr hook}

install-entry{module... Does what the instproc “insert-entry”
does. Also destroy the existing head classifier
if any.

clsfr hook}

install-demux{demux... Replaces the existing demultiplexer “dmux ”
with the input demultiplexer “demux”. If
“port” is an integer, installs the existing
demultiplexer “dmux ” in the slot “port” of
“demux”.

port}

mk-default-classifier{} Creates classifiers and routing modules speci-
fied in the instvar “module_list_”, and asso-
ciates them to the Node.

6.1.3 Default Nodes and Node Configuration Interface

A default NS2 Node is based on flat-addressing and static routing. With flat-
addressing, an address of every new node is incremented by one from that of
the previously created node. Static routing assumes no change in topology.
The routing table is computed once at the beginning of the Simulation phase
and does not change thereafter. By default, NS2 employs the Dijkstra shortest
path algorithm [17] to compute optimal routes for all pairs of Nodes. The
details about other routing protocols as well as hierarchical addressing can be
found in the NS manual [15].

To provide a default Node with more functionalities such as link layer or
Medium Access Control (MAC) protocol functionalities, we may use instproc
node-config of class Simulator whose syntax is as follows:
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$ns node-config -<option> [<value>]

where $ns is the Simulator object. This instproc does not immediately con-
figure the Nodes as specified in the <option>. Instead, it stores <value> in
the instvars of the Simulator corresponding to <option>. This stored con-
figuration will be used during a Node construction process. Therefore, this
instproc must be executed prior to the Node construction.

An example use of the instproc node-config{args} for the default setting
is shown below:

$ns_ node-config -addressType flat

-adhocRouting

-llType

-macType

-propType

-ifqType

-ifqLen

-phyType

-antType

-channel

-channelType

-topologyInstance

By default, almost every option is specified as NULL with the exception of
addressType, which is set to be flat addressing. Another important option
reset is used to restore default parameter setting:

$ns node-config -reset

The details of instproc node-config (e.g., other options) can be found in
the file ˜ns/tcl/lib/ns-lib.tcl and [15].

6.2 Routing Mechanism in NS2

In general, a Node may connect to several downstream NsObjects (i.e., tar-
gets). As a router, it needs to select one of the downstream NsObjects as a
forwarding NsObject for each incoming packet. In most cases, this process is
carried out using a so-called routing table each row of which is called a rout-
ing entry. A routing entry specifies a forwarding NsObject for a packet which
matches a predefined criterion. For example, (dst,target) specifies that, a
packet whose destination address is dst, must be forwarded to a forwarding
NsObject target.

The routing mechanism in NS2 consists of four main components:

• Routing agent: collects information (e.g., the network topology) needed to
compute a routing table.
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• Route logic: uses the information collected by the routing agent, and com-
pute the routing table.

• Classifier: employs the computed routing table for packet forwarding.
• Routing module: acts as a single point of management of a group of clas-

sifiers in a Node. It takes configuration commands from a routing agent,
a route logic, and a Node, and propagates them to relevant classifiers.

In this book we focus on static routing, where routing agents are not involved
in the routing process. Therefore, we omit the details of routing agents here-
after (the details of which can be found in [15]).

Figure 6.2 shows the routing components in NS2. Each box in this figure
represents an object whose type is indicated on the top, while each word in a
box represents an instproc of the corresponding object. The arrow shows the
sequence of instproc invocation (details of the instprocs will be shown later
in this chapter). For example, the instproc new{...} of the Node invokes the
insproc register{proto args} of the routing module.

Depending on their functionality, the above four routing components are
stored in different simulation objects. A route logic computes the routing table
for every node. It is shared by several simulation objects, and is therefore
stored in the Simulator. Acting as a routing table, an address classifier is
specific to and is hence stored in a Node. A routing module is an interface to
all the routing components of a Node. Hence, it is stored as an instvar of a
Node.

Next, we will discuss the details of route logic, classifiers, and routing
module in Sections 6.3, 6.4, and 6.5, respectively. Then, in Section 6.6, we will
revisit NS2 routing mechanism, and discuss how the above routing components
are configured in a Node.

attach-agent SIMULATOR

NODE

new

attach
add-route

CLASSIFIER

install

ROUTING MODULE

compute
configure

ROUTE LOGIC

register

attach
add-route

Fig. 6.2. Configuration of routing components in NS2.



6.3 Route Logic 105

6.3 Route Logic

The main responsibility of a route logic object is to compute the routing table.
Route logic is implemented in a C++ class RouteLogic which is bound to the
OTcl class with the same name (see Program 6.1). Class RouteLogic has two
key variables: “adj_”, which is the adjacency matrix used to compute the
routing table, and “route_”, which is the routing table. It has the following
three main functions:

Program 6.1 Declaration of class RouteLogic and the corresponding OTcl
mapping class.

//~/ns/routing/route.h

1 class RouteLogic : public TclObject {

2 public:

3 RouteLogic();

4 ~RouteLogic();

5 int command(int argc, const char*const* argv);

7 virtual int lookup_flat(int sid, int did);

8 protected:

9 void reset(int src, int dst);

10 void reset_all();

11 void compute_routes();

12 void insert(int src, int dst, double cost);

13 void insert(int src, int dst, double cost, void* entry);

14 adj_entry *adj_;

15 route_entry *route_;

16 };

//~/ns/routing/route.cc

17 class RouteLogicClass : public TclClass {

18 public:

19 RouteLogicClass() : TclClass("RouteLogic") {}

20 TclObject* create(int, const char*const*) {

21 return (new RouteLogic());

22 }

23 } routelogic_class;
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insert(src,... Inserts a new entry including a source ID (src), a
destination ID (dst), and the corresponding routing cost
(cost) into the adjacency matrix.

dst,cost)

compute_route() Uses the adjacency matrix adj_ to compute the optimal
routes for all source-destination pairs and store the com-
puted routes in the variable route_.

lookup_flat(... Searches within variable route for an entry with
matching source ID (sid) and destination ID (did), and
returns the index of the forwarding object (e.g.,
connecting link).

sid,did)

Program 6.2 Instprocs register, configure and lookup of class
RouteLogic.

//~/ns/tcl/lib/ns-route.tcl

1 RouteLogic instproc register {proto args} {

2 $self instvar rtprotos_ node_rtprotos_ default_node_rtprotos_

3 if [info exists rtprotos_($proto)] {

4 eval lappend rtprotos_($proto) $args

5 } else {

6 set rtprotos_($proto) $args

7 }

8 }

9 RouteLogic instproc configure {} {

10 $self instvar rtprotos_

11 if [info exists rtprotos_] {

12 foreach proto [array names rtprotos_] {

13 eval Agent/rtProto/$proto init-all $rtprotos_($proto)

14 }

15 } else {

16 Agent/rtProto/Static init-all

17 }

18 }

19 RouteLogic instproc lookup { nodeid destid } {

20 if { $nodeid == $destid } {

21 return $nodeid

22 }

23 set ns [Simulator instance]

24 set node [$ns get-node-by-id $nodeid]

25 $self cmd lookup $nodeid $destid

26 }
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In the interpreted hierarchy, the OTcl class RouteLogic has two major
instprocs to configure the route logic and one major instproc to query the
routing information (see Program 6.2).

register{... Stores a routing agent <args> as an element of the
instance associative array rtprotos whose index is
<proto>.

proto,args}

configure Reads instvar rtprotos_ and invokes instproc init-all of
all registered routing agents to create routing tables.

lookup{... Looks in the routing table for the forwarding object
corresponding to the input source and destination pair
(nodeid,destid). Returns nodeid (Line 11) if
nodeid=destid. Otherwise, returns the forwarding object
returned from the function lookup flat of the C++ class
RouteLogic.

nodeid destid}

6.4 Classifiers: Multi-target Packet Forwarders

A classifier is a packet forwarding object with multiple connecting target.
It forwards incoming packets whose header matches with a certain criterion
(e.g., same destination host) to the same forwarding NsObject. Similar to a
Connector, a classifier identifies each target using a pointer. It installs each
of these pointers so-called slots. Based on a predefined criterion, a classifier
selects a slot for each incoming packet, and forwards the packet to the NsOb-
ject whose pointer is installed in that slot. In this section, we will explain the
packet forwarding mechanism, the internal variables and functions, and the
configuration interface of the classifiers. The process of assembling classifiers
and composing a Node will be discussed in Section 6.6.

6.4.1 Class Classifier and Its Main Components

NS2 implements classifiers in a C++ class Classifier (see the declaration
in Program 6.3), which is bound to an OTcl class with the same name. The
main components of a classifier include the following.

C++ Variables

The C++ class Classifier has two key variables: slot_ and default_

target_. The variable slot_ (Line 13 in Program 6.3) is a linked list of
pointers whose entries are a pointer a to downstream NsObjects. Each of
these NsObjects corresponds to a predefined criterion. Packets matched with
a predefined criterion are forwarded to the corresponding NsObject. Class
Classifier also define another pointer to an NsObject, default_target_.
The variable default_target_ points to a receiving NsObject for packets
which do not match with any predefined criterion.
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Program 6.3 Declaration of class Classifier.

//~/ns/classifier/classifier.h

1 class Classifier : public NsObject {

2 public:

3 Classifier();

4 virtual ~Classifier();

5 virtual void recv(Packet* p, Handler* h);

6 virtual NsObject* find(Packet*);

7 virtual int classify(Packet *);

8 virtual void clear(int slot);

9 virtual void install(int slot, NsObject*);

10 inline int mshift(int val) {return((val >> shift_) & mask_);}

11 protected:

12 virtual int command(int argc, const char*const* argv);

13 NsObject** slot_;

14 NsObject *default_target_;

15 int shift_;

16 int mask_;

17 };

The class Classifier also have two supplementary variables: shift_

(Line 15) and mask_ (Line 16). These two variables are used in function
mshift(val) (Line 10) to reformat the address (see also Section 12.4).

C++ Functions

The main C++ functions of class Classifier can be classified into packet for-
warding functions (i.e., recv(p,h), find(p), and classify(p)) and configu-
ration functions (i.e., install(slot,p), install_next(node), do_install(
dst,target), and clear(slot)).

recv(p,h) Receives a packet *p and handler *h.
find(p) Returns a forwarding NsObject pointer for an incom-

ing packet *p.
classify(p) Returns a slot number of an entry which match with

the header of an incoming packet *p.
install(slot,p) Stores the input NsObject pointer “p” in the slot

number “slot” of the variable slot_.
install_next(node) Installs the NsObject pointer “node” in the next

available slot.
do_install(... Installs an input NsObject pointer target in the

slot number dst.dst,target)

clear(slot) Removes the NsObject pointer installed in the slot
number “slot”.
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mshift(val) Shifts val to the left by “shift_” bits. Masks the shifted value
by using a logical AND (&) operation with “mask_”.

As an NsObject, a classifier receives a packet by having its upstream object
invoke its function recv(p,h), passing the packet “*p” and a handler “*h”
as input arguments. In Program 6.4, Line 3 retrieves for an NsObject pointer
“node” for an incoming packet “*p” by invoking function find(*p). Then,
Line 8 passes the packet“*p” and the handler “*h” to its forwarding NsObject
*node by executing node->recv(p,h).

Program 6.4 Functions recv and find of class Classifier.

//~/ns/classifier/classifier.cc

1 void Classifier::recv(Packet* p, Handler* h)

2 {

3 NsObject* node = find(p);

4 if (node == NULL) {

5 Packet::free(p);

6 return;

7 }

8 node->recv(p,h);

9 }

10 NsObject* Classifier::find(Packet* p)

11 {

12 NsObject* node = NULL;

13 int cl = classify(p);

14 if (cl < 0 || cl >= nslot_ || (node = slot_[cl]) == 0) {

15 /*There is no potential target in the slot;*/

16 }

17 return (node);

18 }

Function find(p) (Lines 10–18 in Program 6.4) examines the incoming
packet *p, and retrieves the matched NsObject pointer installed in the variable
slot_. Line 13 invokes function classify(p) to retrieve the slot number (cl)
corresponding to the packet *p. Then, Lines 14 and 17 return the NsObject

pointer (i.e., node) stored in slot cl of variable slot_.
Function classify(p) is perhaps the most important function of a classi-

fier. This is the place where the classification criterion is defined. The function
classify(p) returns an NsObject pointer installed in the slot whose crite-
rion matches with the input packet *p. Since classification criteria could be
different for different types of classifiers, the function classify(p) is usually
overridden in the derived classes of class Classifier. In Sections 6.4.2 and
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6.4.3, we will show two example implementations of function classify(p) in
classes HashClassifier and PortClassifier, respectively.

Program 6.5 Functions clear, install, and install next of class
Classifier.

//~ns/classifier/classifier.cc

1 void Classifier::install(int slot, NsObject* p)

2 {

3 if (slot >= nslot_)

4 alloc(slot);

5 slot_[slot] = p;

6 if (slot >= maxslot_)

7 maxslot_ = slot;

8 }

9 int Classifier::install_next(NsObject *node) {

10 int slot = maxslot_ + 1;

11 install(slot, node);

14

12 return (slot);

13 }

14 void Classifier::clear(int slot)

15 {

16 slot_[slot] = 0;

17 if (slot == maxslot_)

18 while (--maxslot_ >= 0 && slot_[maxslot_] == 0);

19 }

//~ns/classifier/classifier.h

20 virtual void do_install(char* dst, NsObject *target) {

21 int slot = atoi(dst);

22 install(slot, target);

23 }

Consider Program 6.5. Function install(slot,p) stores the input
NsObject pointer “p” in the slot number “slot” of the variable “slot_” (Line
5), and updates the variable maxslot_ (the total number of slots) if necessary.
Function install_next(node) installs the input NsObject pointer “node”
in the next available slot (Lines 10–11). Function do_install(dst,target)

converts dst to be an integer variable (Line 21), and installs the NsObject
pointer target in the slot corresponding to dst (Line 22). Finally, function
clear(slot) removes the installed NsObject pointer from the slot number
“slot” of the variable slot_ (Line 6).



6.4 Classifiers: Multi-target Packet Forwarders 111

Defined in Line 10 of Program 6.3, function mshift(val) simply returns
val. The constructor of class Classifier sets the default values of shift_
and mask_ to be zero and 0xffffffff. The function mshift(val) shifts the
input argument val by zero bit. Also, the logical AND with 0xffffffff

leaves the input argument unchanged. Hence, function mshift(val) of class
Classifier has no effect on the input argument val.

OTcl Commands

Class Classifier also defines the following key OTcl commands in a C++
function command of class Classifier. These OTcl command can be invoked
from the OTcl domain.

slot{index} Returns the NsObject stored in the slot num-
ber index

clear{slot} Clears the NsObject pointer installed in the
slot number slot.

install{index object} Installs object in the slot number index.
installNext{object} Installs object in the next available slot.

6.4.2 Hash Classifiers

An Overview of Hash Classifiers

Hash table is a data structure which facilitate a key-value lookup process1.
It eliminates the need to sequentially search for a matched key and retrieve
the corresponding value. A hash table uses a hash function to transform a
hash key into a hash index, and stores the corresponding hash value in an
array entry (i.e., a record of the hash table) whose index corresponding to
the hash index. Given a hash key, the search process transforms the hash key
into a hash index using a hash function, and directly accesses the array entry
corresponding to the hash index. Since a hash function has low complexity,
the search time when using hash table is usually much smaller than that when
using a sequential search.

In NS2, a hash classifier classifies packets based on a hash table. Table 6.1
shows an example of hash tables used for a hash classifier. Here, each row of
the hash table is called a hash record. A hash value is the slot number. A hash
key has three components: Flow ID, source address, and destination address. A
hash classifier examines the header of an incoming packet, searches in the hash
table for a hash entry whose key matches with information provided in the
packet header, and returns the hash value (i.e., slot number) of the matched
entry. From Table 6.1, the hash classifier returns the slot number 1 for a packet

1 Suppose we have a table which associates keys and values. The objective of a
key-value lookup process is as follows. Given a key, search in the table for the
matched key and return the corresponding value.
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Table 6.1. An example of hash table.

Slot number Flow ID Source address Destination address

1 1 1 1
2 1 1 2
...

...
...

...

with (flow ID, source address, destination address) = (1,1,1), and returns 2
for a packet with (flow ID, source address, destination address) = (1,1,2).

Implementation of Hash Classifier in NS2

Hash classifier is declared in a C++ class HashClassifier in the compiled
hierarchy (Program 6.6), and mapped to an OTcl class Classifier/Hash in
the interpreted hierarchy.

Program 6.6 Declaration of class HashClassifier.

//~ns/classifier/classifier-hash.h

1 class HashClassifier : public Classifier {

2 public:

3 HashClassifier(int keylen): default_(-1), keylen_(keylen);

4 ~HashClassifier();

5 virtual int classify(Packet *p);

6 virtual long lookup(Packet* p) ;

7 void set_default(int slot) { default_ = slot; }

8 protected:

9 long lookup(nsaddr_t src, nsaddr_t dst, int fid);

10 void reset();

11 int set_hash(nsaddr_t src, nsaddr_t dst, int fid, long slot);

12 long get_hash(nsaddr_t src, nsaddr_t dst, int fid);

13 virtual int command(int argc, const char*const* argv);

14 virtual const char* hashkey(nsaddr_t, nsaddr_t, int)=0;

15 int default_;

16 Tcl_HashTable ht_;

17 int keylen_;

18 };

Declared in Program 6.6, the class HashClassifier has three main vari-
ables. First, variable default_ (Line 15) contains the default slot for a packet
which does not match with any entry in the table. Secondly, variable ht_ (Line
16) is the hash table. Finally, variable keylen_ (Line 17) is the total number
of hash keys. By default, the hash keys include flow ID, source address, and
destination address, and the variable keylen_ is 3.
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Apart from function classify(p) derived from class Classifier, class
HashClassifier defines the following functions (see the function declaration
in Program 6.6):

lookup(p) Returns the slot number of the entry which matches
with the incoming packet “p” (Line 6).

lookup(src,... Returns the slot number of the entry whose source
address, destination address, and flow ID are “src”,
“dst”, and “fid”, respectively. (Line 9).

dst,fid)

set_hash(src,... Inserts an entry with source address “src”, destination
address “dst”, and flow ID “fid” to the hash table,
and associates the entry to slot number “slot” (Line
11).

dst,fid,slot)

get_hash(src,... Returns the slot number which matches with the
values returned from function hashkey (. . .) (Line 12).dst,fid)

hashkey(src,...) Returns an identifier for a hash entry corresponding to
the input hash key (src,dst,fid). This function is
pure virtual and should be overridden by child classes
of HashClassifier.

dst,fid)

Program 6.7 Functions lookup and get hash of class HashClassifier.

//~ns/classifier/classifier-hash.cc

1 long HashClassifier::lookup(Packet* p) {

2 hdr_ip* h = hdr_ip::access(p);

3 return get_hash(mshift(h->saddr()),mshift(h->daddr()),

h->flowid());

4 }

5 long HashClassifier::get_hash(nsaddr_t src,

nsaddr_t dst, int fid) {

6 Tcl_HashEntry *ep= Tcl_FindHashEntry(&ht_,

hashkey(src, dst, fid));

7 if (ep)

8 return (long)Tcl_GetHashValue(ep);

9 return -1;

10 }

Program 6.7 shows the details of functions lookup(p) and get_hash(src,

dst,fid) of class HashClassifier. Function lookup(p) returns the slot num-
ber of an entry whose source address, destination address, and flow ID match
with those indicated in the header of an incoming packet *p2 (by invok-
ing function get_hash(...) in Line 3). To retrieve an entry, the function
get_hash(...) invokes function Tcl_FindHashEntry (. . .) to get the input

2 See the details of IP packet header in Section 8.3.3.
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entry from the hash table ht_ in Line 6. If the entry exists, Line 8 will re-
trieve the slot number by invoking function Tcl_GetHashValue(ep). Declared
as pure virtual in class HashClassifier, function hashkey(...) (invoked in
Line 6), which computes a hash index from a hash key, should be overridden
by the child classes of class HashClassifier.

Program 6.8 Declaration of class DestHashClassifier.

//~ns/classifier/classifier-hash.h

1 class DestHashClassifier : public HashClassifier {

2 public:

3 DestHashClassifier() : HashClassifier(TCL_ONE_WORD_KEYS) {}

4 virtual int command(int argc, const char*const* argv);

5 int classify(Packet *p);

6 virtual void do_install(char *dst, NsObject *target);

7 protected:

8 const char* hashkey(nsaddr_t, nsaddr_t dst, int) {

9 long key = mshift(dst);

10 return (const char*) key;

11 }

12 };

As an example, consider class DestHashClassifier (Program 6.8), a
child class of class HashClassifier, which classifies incoming packets by
the destination address only. Class DestHashClassifier overrides functions
classify(p), do_install(dst,target), and hashkey(...), and uses other
functions (e.g., lookup(p)) of class HashClassifier (i.e., its parent class).

Program 6.9 shows the implementation of function classify(p) of class
DestHashClassifier. This function obtains a matching slot number “slot”
by invoking lookup(p) (Line 2; See also Fig. 6.3), and returns “slot” if it is
valid (Line 4). Otherwise, Line 6 will return variable “default_” if “slot” is
invalid. If neither slot nor default_ is valid, Line 7 will return –1, indicating
no matching entry in the hash table. Function do_install(dst,target) in-
stalls (Line 12) an NsObject pointer target in the next available slot, and reg-
isters this installation in the hash table (Line 13). Defined in class Classifier,
function getnxt(target) in Line 11 returns the slot where target is in-
stalled or the next available slot if target is not found. Again, the statement
set_hash(0,d,0,slot) inserts an entry with source address “0”, destination
address “d”, and flow ID “0” into the hash table, and associates the entry
with a slot number “slot”.

Figure 6.3 shows a process when a DestHashClassifier object invokes
function lookup(p). In this figure, the function name is indicated at the
top of each box, while the corresponding class is shown in the right of a
block arrow. The process follows what we discussed earlier. The important
point here is the function hashkey(...). From Lines 8–11 in Program 6.8,
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Program 6.9 Functions classify and do install of class
DestHashClassifier.

//~ns/classifier/classifier-hash.cc

1 int DestHashClassifier::classify(Packet * p) {

2 int slot = lookup(p);

3 if (slot >= 0 && slot <=maxslot_)

4 return (slot);

5 else if (default_ >= 0)

6 return (default_);

7 else return (-1);

8 }

9 void DestHashClassifier::do_install(char* dst, NsObject *target) {

10 nsaddr_t d = atoi(dst);

11 int slot = getnxt(target);

12 install(slot, target);

13 if (set_hash(0, d, 0, slot) < 0)

14 /* show error */

15 }

class DestHashClassifier overrides function hashkey(...) by returning the
destination address (see the detail of function mshift(val) in Line 10 of
Program 6.3). In Fig. 6.3, functions lookup(p) and get_hash(...) belong
to class HashClassifier, while function hashkey(...) is attributed to class

lookup(p)

Retrieving source address (src), 
destination address (dst), and flow ID (fid)

from the header of packet p

get_hash(src, dst, fid)

(const char*) mshift(dst)

ep=Tcl_FindHashEntry(&ht_,     )

(long)Tcl_GetHashValue(ep)

ep

src dst fid

Return
slot number

p

dst

HashClassifier

HashClassifier

hashkey(src, dst, fid) DestHashClassifier

Fig. 6.3. Flowchart of function lookup(p) invoked from class DestHashClassifier.
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DestHashClassifier. This is a beauty of OOP, since we only need to override
one function for a derived class (e.g., class DestHashClassifier), and are able
reuse the rest of the code from the parent class (e.g., class HashClassifier).

Apart from class DestHashClassifier, class HashClassifier has three
other major child classes (class names on the left and right are compiled and
interpreted classes, respectively):

• SrcDestHashClassifier ⇔ Classifier/Hash/SrcDest: classifies pack-
ets based on source and destination addresses.

• FidHashClassifier⇔ Classifier/Hash/Fid: classifies packets based on
a flow ID.

• SrcDestFidHashClassifier⇔ Classifier/Hash/SrcDestFid: classifies
packets based on source address, destination address, and flow ID.

6.4.3 Port Classifiers

A port classifier classifies packets based on the destination port. From Line 5
in Program 6.10, function classify(p) returns the destination port number
of the IP header of the incoming packet p.

Program 6.10 Function classify of class PortClassifier.

//~ns/classifier/classifier-port.cc

1 int PortClassifier::classify(Packet *p)

2 {

3 hdr_ip* iph = hdr_ip::access(p);

4 return iph->dport();

5 }

A port classifier is used as a demultiplexer (e.g., dmux_ in Fig. 6.1) which
bridges a node to a receiving transport agent. When function recv(p,h) of
dmux_ (i.e., a PortClassifierobject) is invoked, the packet is forwarded to an
NsObject associated with slot_[cl], where cl is the destination port number
specified in the packet header. By installing a receiving agent in slot_[cl],
the classifier forwards packets whose destination port is “cl” to the receiving
agent.

6.4.4 Installing Classifiers in a Node

This section discusses the how classifiers are installed in a Node. As shown
in Fig. 6.1, a Node can have more than one classifier. These classifiers are
inter-connected and form a so-called chain of classifiers.

Class Node has three instvars related to classifier installation: classifier_,
hook_assoc_, and mod_assoc_. Instvar classifier_ is the head of the chain
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Table 6.2. An example of hook assoc for a chain of classifiers

index _o2 _o3 _o4

hook_assoc_(index) _o1 _o2 _o3

of classifiers, which connects from the node entry. Instvar hook_assoc_ is an
associative array whose index is a classifier and its value is the downstream
classifier in the chain. For example, let us install classifiers _o1, _o2, _o3, and
_o4 in sequence into a Node. Then, the instvar classifier_ would be _o4.
The value of hook_assoc_ in this case is shown in Table 6.2. Finally, instvar
mod_assoc_ is an associative array whose index is a classifier and its value is
the associated routing module.

As discussed in Section 6.1, class Node provides three instprocs to configure
classifiers. First, as shown in Program 6.11, instproc insert-entry{module
clsfr hook} takes three input arguments: a routing module module, a clas-
sifier clsfr, and an optional argument hook. Line 4 updates the instvar
hook_assoc_. Line 8 installs the current head classifier in the slot number
“hook” of the input classifier clsfr. Line 11 associates clsfr with the input
routing module module. Line 12 replaces the head classifier classifier_with
the input classifier clsfr. Note that clsfr does not need to be a classifier.
If clsfr is an NsObject, it can be inserted into the head of the chain. In this
case, hook must be specified as “target” so that Line 6 will set the target of
clsfr to be the head classifier.

Program 6.11 Instproc insert-entry of class Node

//~ns/tcl/lib/ns-node.tcl

1 Node instproc insert-entry { module clsfr {hook ""} } {

2 $self instvar classifier_ mod_assoc_ hook_assoc_

3 if { $hook != "" } {

4 set hook_assoc_($clsfr) $classifier_

5 if { $hook == "target" } {

6 $clsfr target $classifier_

7 } elseif { $hook != "" } {

8 $clsfr install $hook $classifier_

9 }

10 }

11 set mod_assoc_($clsfr) $module

12 set classifier_ $clsfr

13 }

The second classifier configuration instproc install-entry{module clsfr
hook} is shown in Program 6.12. It is very similar to instproc insert-entry.
The only difference is, it also destroys the existing head classifier, if any.
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Program 6.12 Instproc install-entry of class Node.

//~ns/tcl/lib/ns-node.tcl

1 Node instproc install-entry { module clsfr {hook ""} } {

2 $self instvar classifier_ mod_assoc_ hook_assoc_

3 if [info exists classifier_] {

4 if [info exists mod_assoc_($classifier_)] {

5 $self unregister-module $mod_assoc_($classifier_)

6 unset mod_assoc_($classifier_)

7 }

8 if [info exists hook_assoc_($classifier_)] {

9 if { $hook == "target" } {

10 $clsfr target $hook_assoc($classifier_)

11 } elseif { $hook != "" } {

12 $clsfr install $hook $hook_assoc_($classifier_)

13 }

14 set hook_assoc_($clsfr) $hook_assoc_($classifier_)

15 unset hook_assoc_($classifier_)

16 }

17 }

18 set mod_assoc_($clsfr) $module

19 set classifier_ $clsfr

20 }

Finally, Program 6.13 shows the details of instproc install-demux{demux
port}. This instproc takes two input arguments: demux (mandatory) and port

(optional). It replaces the existing demultiplexer3 dmux_ with the input de-
multiplexer demux (Line 2, 9 and 10). If port exists, the current demultiplexer
dmux_ will be installed in the slot number “port” of the input demultiplexer
demux (Lines 5–7).

6.5 Routing Modules

6.5.1 An Overview of Routing Modules

The main functionality of a routing module is to facilitate classifier manage-
ment. Since a Node maintains only the head of the chain of classifiers, access
to a classifier in a long chain could be difficult. In addition, it is fairly inconve-
nient to (possibly selectively) propagate a configuration command to several
classifiers. Such the difficulty is shown in Figure 6.4, where 10 address classi-
fiers are connected from the head classifier. As the network topology changes,
all the address classifiers need to be reconfigured. NS2 employs routing mod-
ules to facilitate the classifier configuration process.

3 A demultiplexer classifies packets based on port number specified in the packet
header (see Section 6.4.3 for more details).
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Program 6.13 Instproc Node::install-demux.

//~ns/tcl/lib/ns-node.tcl

1 Node instproc install-demux {demux {port ""} } {

2 $self instvar dmux_ address_

3 if { $dmux_ != "" } {

4 $self delete-route $dmux_

5 if { $port != "" } {

6 $demux install $port $dmux_

7 }

8 }

9 set dmux_ $demux

10 $self add-route $address_ $dmux_

11 }
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Fig. 6.4. The relationship among routing modules and classifiers in a Node.
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Routing modules provide a single point of management for a group of
classifiers. Here, each routing module is associated with a classifier, and has a
pointer to another routing module (see Fig. 6.4). Together, they form a linked
list of routing modules for a group of classifiers. The head of the linked list
acts as an interface to propagate configuration commands to classifiers in the
linked list. For example, to add a route, we only need to keep the reference of
the head routing module (as opposed to keeping the references of 10 address
classifiers). Then, the new routing information is entered through this head
routing module which will propagate the information to all routing modules
in the linked list. Each routing module determines whether the information
is relevant to the associated classifier. If so, it will (re)configure the classifier
according to the received information. From this point of view, the routing
agents and the route logic interact only to the head routing module to de-
liver classifier configuration commands (e.g., adding or deleting routes) to the
relevant classifiers. Note that a classifier can also be configured directly, if
the reference is available. Routing modules only facilitate the configuration
process of a group of classifiers.

Routing modules are implemented in a C++ class RoutingModule, which
are bound to an OTcl class RtModule (see Program 6.14). Again, these two
classes are the base classes from which more specific classes derive (see the
built-in routing module classes in Table 6.3). In the following, we will discuss
the base class routing module (classes RoutingModule and RtModule) and the
base routing modules (classes BaseRoutingModule and RtModule/Base) only.

Table 6.3. Built-in routing modules in NS2.

Routing module C++ class OTcl class

Routing Module RoutingModule RtModule

Base Routing Module BaseRoutingModule RtModule/Base

Multicast Routing Module McastRoutingModule RtModule/Mcast

Hierarchical Routing Module HierRoutingModule RtModule/Hier

Manual Routing Module ManualRoutingModule RtModule/Manual

Source Routing Module SourceRoutingModule RtModule/Source

Quick Start for TCP/IP Routing
Module (Determine initial conges-
tion window)

QSRoutingModule RtModule/QS

Virtual Classifier Routing Module VCRoutingModule RtModule/VC

Pragmatic General Multicast Rout-
ing Module (Reliable multicast)

PgmRoutingModule RtModule/PGM

Light-Weight Multicast Services
Routing Module (Reliable multi-
cast)

LmsRoutingModule RtModule/LMS

Hereafter, we define a term name of a routing module as the suffix (which
follows RtModule/) of the OTcl class name (see Table 6.3). For example,
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Program 6.14 Declaration and the constructor of a C++ class
RoutingModule which is bound to an OTcl class RtModule.

//~ns/routing/rtmodule.h

1 class RoutingModule : public TclObject {

2 public:

3 RoutingModule();

4 inline Node* node() { return n_; }

5 virtual int attach(Node *n) { n_ = n; return TCL_OK; }

6 virtual int command(int argc, const char*const* argv);

7 virtual const char* module_name() const { return NULL; }

8 void route_notify(RoutingModule *rtm);

9 void unreg_route_notify(RoutingModule *rtm);

10 virtual void add_route(char *dst, NsObject *target);

11 virtual void delete_route(char *dst, NsObject *nullagent);

12 RoutingModule *next_rtm_;

13 protected:

14 Node *n_;

15 Classifier *classifier_;

16 };

17 static class RoutingModuleClass : public TclClass {

18 public:

19 RoutingModuleClass() : TclClass("RtModule") {}

20 TclObject* create(int, const char*const*) {

21 return (new RoutingModule);

22 }

23 } class_routing_module;

24 RoutingModule::RoutingModule() :

25 next_rtm_(NULL), n_(NULL), classifier_(NULL) {

26 bind("classifier_", (TclObject**)&classifier_);

27 }

the name of classes RtModule/Base and RtModule/Hier are Base and Hier,
respectively.

6.5.2 C++ Class RoutingModule

Program 6.14 shows the declaration of class RoutingModule, which has three
main variables. Variable classifier_ in Line 15 is a pointer to a Classifier

object. To provide a single pointer of management for a group of classifiers,
routing modules form a linked list using their pointers next_rtm_ (Line 12)
to another RoutingModule object. Another important variable is n_ (Line
14), which is a pointer to the associated Node object. These three variables
are initialized to NULL in the constructor of class RoutingModule (Line 25).
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Also, variable classifier_ is bound to an OTcl instvar with the same name
(Line 26).

The key functions of class RoutingModule include (see Program 6.15).

node() Returns the attached Node object n_.
attach(n) Stores an input Node object “n” in the variable

n_.
module_name() Returns the name of the routing module.

route_notify(rtm) Adds an input RoutingModule *rtm to the end
of the linked list.

unreg_route_notify(rtm) Removes an input RoutingModule pointer *rtm
from the linked list.

add_route(dst,target) Informs every classifier in the link list to add a
routing entry (dst,target).

delete_route(... Informs every classifier in the linked list to
delete a routing entry with destination dst.dst,nullagent)

Class RoutingModule is usually not instantiated from the OTcl domain.
Therefore, its name is defined as NULL in function module_name() (Line 7 in
Program 6.14). Its derived classes override this function by returning their own
name to the caller (for class BaseRoutingModule see Line 4 in Program 6.6).

Program 6.15 shows the details of functions route_notify(rtm) and
unreg_route_notify(rtm). Function route_notify(rtm) recursively invokes
itself until it reaches the last routing module in the linked list, where
next_rtm_ is NULL. Then, it attaches the input routing module *rtm as the
last component of the linked list (Line 5). Function unreg_route_notify re-
cursively searches down the linked list (Line 13) until it finds the input routing
module pointer rtm (Line 9), and removes it from the linked list (Line 10).

Lines 17–30 in Program 6.15 show the details of functions add_route(dst,
target) and delete_route(dst,nullagent). Function add_route(dst,

target) takes a destination node dst and a forwarding NsObject pointer
target as input arguments. It installs the pointer target in all the associ-
ated classifiers (Line 20). Again, this entry is propagated down the linked
list (Line 22), until reaching the last element of the linked list (Line 14).
Function delete_route(dst,nullagent) does the opposite of the function
add_route(dst,target)does. It recursively installs a null agent “nullagent”
(i.e., a packet dropping point) as a target for packets destined for a destina-
tion node dst in all the classifiers, essentially removing the entry with the
destination dst from all the classifiers.

Class RoutingModule also defines three OTcl commands – namely node,
attach-node, and module-name – which simply invoke the functions node(),
attach(n), and module_name(), respectively.
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Program 6.15 Functions route notify, unreg route notify, add route,
and delete route of class RoutingModule.

//~ns/routing/rtmodule.cc

1 void RoutingModule::route_notify(RoutingModule *rtm) {

2 if (next_rtm_ != NULL)

3 next_rtm_->route_notify(rtm);

4 else

5 next_rtm_ = rtm;

6 }

7 void RoutingModule::unreg_route_notify(RoutingModule *rtm) {

8 if (next_rtm_) {

9 if (next_rtm_ == rtm) {

10 next_rtm_ = next_rtm_->next_rtm_;

11 }

12 else {

13 next_rtm_->unreg_route_notify(rtm);

14 }

15 }

16 }

17 void RoutingModule::add_route(char *dst, NsObject *target)

18 {

19 if (classifier_)

20 classifier_->do_install(dst,target);

21 if (next_rtm_ != NULL)

22 next_rtm_->add_route(dst, target);

23 }

24 void RoutingModule::delete_route(char *dst, NsObject *nullagent)

25 {

26 if (classifier_)

27 classifier_->do_install(dst, nullagent);

28 if (next_rtm_)

29 next_rtm_->add_route(dst, nullagent);

30 }
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6.5.3 OTcl Class RtModule

In the OTcl domain, the routing module is defined in class RtModule. Class
RtModule has two instvars: classifier_ and next_rtm_. Bound to the com-
piled variable with the same name, instvar classifier_ stores a reference
to the associated classifier. Instvar next_rtm_ provides a support to create a
linked list of routing module. This instvar has no relationship with variable
next_rtm_ of the compiled class, since the bond is not created in the con-
structor of the C++ class RoutingModule (see Lines 24–27 of Program 6.14).

The OTcl class RtModule also defines the following instprocs which can
be classified into two categories. For brevity, we do not show the details of
these instprocs here. The readers may find the details of these instprocs in file
˜ns/tcl/lib/ns-rtmodule.tcl.

Initialization Instprocs

register{node} Associates the input Node node with the rout-
ing module, and updates instvars rtnotif_

and ptnotif_ of the input Node node.
unregister{} Removes the classifier of the routing module.

Also removes the routing module from inst-
vars rtnotif_ and ptnotif_ of the associated
Node.

route-notify{... Moves down the linked list in the OTcl
domain (via instvar next rtm ) and stores
the input routing module “module” as the
last element of the link-list.

module}

unreg-route-notify{... Looks for the input routing module “module”
and removes it from the linked list of routing
modules in the OTcl domain.

module}

Instprocs for Route Addition/Deletion and Agent
Attachment/Detachment

add-route{dst target} Adds a routing entry with a destination “dst”
and a forwarding NsObject “target” in all the
classifiers in the linked list of routing modules.

delete-route{... Removes the routing entry with destination dst

from all the classifiers in the linked list of
routing module. Replaces the target of the
classifiers with the null agent “nullagent”.

dst nullagent}

attach{agent port} Attaches the input agent “agent” to the associ-
ated Node. Set the target of the input (sending)
agent “agent” to be the entry of the Node. Also,
installs the input (receiving) agent “agent” in the
slot number “port” of the demultiplexer “dmux_”
of the Node.
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6.5.4 C++ Class BaseRoutingModule and OTcl class RtModule/Base

Derived from the C++ class RoutingModule, class BaseRoutingModule is
declared in Program 6.16, and is bound to an OTcl class RtModule/Base.
It overrides function module_name(), by setting its name to be “Base”
(Line 4). A base routing module classifies packets based on its destination
address only. Therefore, the type of the variable classifier_ is defined as a
DestHashClassifier pointer.

Program 6.16 Declaration of class BaseRoutingModule which is bound to
the OTcl class RtModule/Base.

//~ns/routing/rtmodule.h

1 class BaseRoutingModule : public RoutingModule {

2 public:

3 BaseRoutingModule() : RoutingModule() {}

4 virtual const char* module_name() const { return "Base"; }

5 virtual int command(int argc, const char*const* argv);

6 protected:

7 DestHashClassifier *classifier_;

8 };

//~ns/routing/rtmodule.cc

9 static class BaseRoutingModuleClass : public TclClass {

10 public:

11 BaseRoutingModuleClass() : TclClass("RtModule/Base") {}

12 TclObject* create(int, const char*const*) {

13 return (new BaseRoutingModule);

14 }

15 } class_base_routing_module;

In the OTcl domain, class RtModule/Base also overrides instproc register
{ node} of class RtModule. We will discuss the details of this instproc later in
Section 6.6.4.

6.6 Node Object Configuration

Having discussed the key Node components, we now show how these compo-
nents are assembled to compose a Node. In Section 6.6.1 we first show the
relationship among few closely related Node components. We show the inst-
procs to add/delete routes in Section 6.6.2, and the instprocs to attach/detach
agents in Section 6.6.3. We show the Node construction process (via procedure
new{...}) in Section 6.6.4. As we will see, the main Node component (e.g.,
routing module, classifiers, demultiplexer) are assembled during this process.
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Finally, the route configuration process (i.e., configuring classifiers) is shown
in Section 6.6.5.

6.6.1 Relationship Among Instvars module list , reg module ,
rtnotif , and ptnotif

As shown in Fig. 6.5, the following five instvars of an OTcl Node are closely
related: module_list_, reg_module_, rtnotif_, ptnotif_, and mod_assoc_.
Instvar module_list_ is a list of strings, each of which represents the name of
enabled routing module. Instvar reg_module_ is an associative array whose
index and value are the name of the routing module and the routing mod-
ule instance. Instvars rtnotif_ and ptnotif_ are the objects which should
be notified of a route change and an agent attachment/detachment, respec-
tively. While rtnotif_ is the head of the linked list of the routing modules,
ptnotif_ is simply an OTcl list whose elements contain the routing modules.
Finally, instvar mod_assoc_ is an associative array whose indexes and values
are classifiers and the associated routing modules, respectively.

The relationship among module_list_, reg_module_, rtnotif_, and
ptnotif_ is shown in Fig. 6.5. The instvars are shown in boxes, while the
instprocs of class Node are encircled with ellipses. The arrow from an instproc
to an instvar indicates that the instvar is configured from within the instproc.
Here, instprocs enable-module{mod_name} and disable-module{mod_name}

Hier

module_list_

Hier

Mcast

RtModule/Hier

RtModule/Mcast

reg_module_

rtnotif_
next_rtm_

Mcast

enable-module
disable-module

next_rtm_

next_rtm_ next_rtm_

ptnotif_

mk-default-classifier

add-route
delete-route

attach
detach

new

port-notify

route-notify

set

Fig. 6.5. Relationship among instvars module list, reg module , rtnotif , and
ptnotif of class Node.
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place and remove the name of a routing module mod_name in and from in-
stvar module_list_, respectively. When instproc mk-default-classifier

is invoked, the names in module_list_ are used to instantiate routing
module instances. The instantiated objects are stored in the associative
array reg_module_ whose indexes are the corresponding names. Instproc
mk-default-classifier also invokes the instprocs route-notify{module}
and port-notify{module} to add all the instantiated objects into the list
of routing modules rtnotif_ and ptnotif_, respectively. Note that instvar
ptnotif_ is an OTcl list, and its pointer next_rtm_ is not used. In Fig. 6.5, in-
stprocs port-notify{...}, attach{agent port}, and detach{agent nullag
ent} (see file ˜ns/tcl/lib/ns-node.tcl) can directly access any component of
ptnotif_. However, instprocs route-notify{...},add-route{dst target},
and delete-route{dst nullagent} must access a routing module through
the head of the linked list (i.e., rtnotif_) only.

6.6.2 Adding/Deleting a Routing Entry

A routing entry consists of a destination node address dst and a for-
warding NsObject target. It can be added to a Node object by using in-
stproc add-route{dst target} of class Node. In Program 6.17, instproc
add-route{dst target} of class Node invokes the same instproc of the rout-
ing module rtnotif_ which is of class RtModule (Line 4). Line 10 installs the
routing entry in the classifier_ of the routing module. Lines 11–13 recur-
sively invoke instproc add-route{dst target} of all the routing modules in
the linked list to install the routing entry in the classifier_ associated with
each routing module.

The mechanism for deleting a route entry is similar to that for adding
a route entry, and is omitted for brevity. The readers may find the details
of route entry deletion in instproc delete-route{dst nullagent} of classes
Node and RtModule (see file ˜ns/tcl/lib/ns-node.tcl and file ˜ns/tcl/lib/ns-
rtmodule.tcl).

6.6.3 Agent Attachment/Detachment

To attach an agent to a Node, we use instproc attach-agent{node agent}
of class Simulator whose syntax is

$ns attach-agent $node $agent

Here, $ns, $node, and $agent are Simulator, Node, and Agent objects, re-
spectively. Program 6.18 shows the instprocs related to an agent attachment
process. The process proceeds as follows:

• Simulator::attach-agent{node agent}: Invoke “$node attach $agent”
(Line 2).
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Program 6.17 Instprocs add-route of classes Node and RtModule.

//~ns/tcl/lib/ns-node.tcl

1 Node instproc add-route { dst target } {

2 $self instvar rtnotif_

3 if {$rtnotif_ != ""} {

4 $rtnotif_ add-route $dst $target

5 }

6 $self incr-rtgtable-size

7 }

//~ns/tcl/lib/ns-rtmodule.tcl

8 RtModule instproc add-route { dst target } {

9 $self instvar next_rtm_

10 [$self set classifier_] install $dst $target

11 if {$next_rtm_ != ""} {

12 $next_rtm_ add-route $dst $target

13 }

14 }

• Node::attach{agent port}: Update instvar “agent” (Lines 6-8 and Line
16), create “dmux_” if necessary (Lines 9-15), and invoke “$self add-

target $agent $port” (Line 17).
• Node::add-target{agent port}: For each routing module “m” stored in

the instvar ptnotif_, execute “$m attach $agent $port” (Lines 21-23).
• RtModule::attach{agent port}: As a sending agent, set the node entry

to be the target of “agent” (Line 26). As a receiving agent, install “agent”
in the slot number “port” of demultiplexer “dmux_” (Line 27). Note that
although an agent can be either a sending agent or a receiving agent, this
instproc assigns both roles to an agent. This does not cause any problem
at runtime due to the following reasons. A sending agent is attached to
a source node, and always transmits packets destined to a destination
node. It takes no action when receiving a packet from a demultiplexer. A
receiving agent, on the other hand, does not generate a packet. Therefore,
it can never send a packet to the node entry.

6.6.4 Node Construction

As has already been mentioned before, a Node object is created in the OTcl
domain by executing “$ns node”, where $ns is the Simulator instance. Inst-
proc “node” of class Simulator (see Line 4 in Program 6.19) employs instproc
“new{...}” to create a Node object (Line 4 where node_factory_ is set to
Node in Line 1). It also updates instvars of the Simulator so that they can be
later used by other simulation objects throughout the simulation.

The main steps in the node construction process are shown in Table 6.4.
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Program 6.18 Instprocs attach and add-target of classes Node, and inst-
proc attach of class RtModule.

//~ns/tcl/lib/ns-lib.tcl

1 Simulator instproc attach-agent { node agent } {

2 $node attach $agent

3 }

//~ns/tcl/lib/ns-node.tcl

4 Node instproc attach { agent { port "" } } {

5 $self instvar agents_ address_ dmux_

6 lappend agents_ $agent

7 $agent set node_ $self

8 $agent set agent_addr_ [AddrParams addr2id $address_]

9 if { $dmux_ == "" } {

10 set dmux_ [new Classifier/Port]

11 $self add-route $address_ $dmux_

12 }

13 if { $port == "" } {

14 set port [$dmux_ alloc-port [[Simulator

instance] nullagent]]

15 }

16 $agent set agent_port_ $port

17 $self add-target $agent $port

18 }

19 Node instproc add-target { agent port } {

20 $self instvar ptnotif_

21 foreach m [$self set ptnotif_] {

22 $m attach $agent $port

23 }

24 }

//~ns/tcl/lib/ns-rtmodule.tcl

25 RtModule instproc attach { agent port } {

26 $agent target [[$self node] entry]

27 [[$self node] demux] install $port $agent

28 }
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Program 6.19 Default value of instvar node factory and instproc node of
class Simulator.

//~ns/tcl/lib/ns-node.tcl

1 Simulator set node_factory_ Node

//~ns/tcl/lib/ns-node.tcl

2 Simulator instproc node args {

3 $self instvar Node_ routingAgent_

4 set node [eval new [Simulator set node_factory_] $args]

5 set Node_([$node id]) $node

6 $self add-node $node [$node id]

7 $node nodeid [$node id]

8 $node set ns_ $self

9 return $node

10 }

Table 6.4. Main steps in the Node construction process.

Step Class Instproc Key statement(s)

1 Node init $self mk-default-classifier

2 Node mk-default-classifier $self register-module [...

new RtModule/Base]

3 Node register-module{mod} $mod register $self

set reg_module([$mod ...

module-name]) $mod

4 RtModule/Base register{node} $self next $node

$self set classifier_ [... new

Classifier/Hash/Dest] 32

$node install-entry

$classifier_

5 RtModule register{node} $self attach-node $node

$node route-notify $self

$node port-notify $self
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Step 1: Constructor of the OTcl class Node

Instproc init{...} sets up instvars of class Node, and invokes instproc
mk-default-classifier{} of the created Node object (Line 22 in Pro-
gram 6.20).

Program 6.20 Constructor of class Node.

//~/ns/tcl/lib/ns-node.tcl

1 Node set module_list_ { Base }

2 Node instproc init args {

3 eval $self next $args

4 $self instvar id_ agents_ dmux_ neighbor_ rtsize_ address_ \

5 nodetype_ multiPath_ ns_ rtnotif_ ptnotif_

6 set ns_ [Simulator instance]

7 set id_ [Node getid]

8 $self nodeid $id_ ;# Propagate id_ into c++ space

9 if {[llength $args] != 0} {

10 set address_ [lindex $args 0]

11 } else {

12 set address_ $id_

13 }

14 $self cmd addr $address_; # Propagate address_ into C++ space

15 set neighbor_ ""

16 set agents_ ""

17 set dmux_ ""

18 set rtsize_ 0

19 set ptnotif_ {}

20 set rtnotif_ {}

21 set nodetype_ [$ns_ get-nodetype]

22 $self mk-default-classifier

23 set multiPath_ [$class set multiPath_]

24 }

25 Node instproc mk-default-classifier {} {

26 Node instvar module_list_

27 foreach modname [Node set module_list_] {

28 $self register-module [new RtModule/$modname]

29 }

30 }

31 Node instproc register-module { mod } {

32 $self instvar reg_module_

33 $mod register $self

34 set reg_module_([$mod module-name]) $mod

35 }
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Step 2: Instproc mk-default-classifier{}

Instproc mk-default-classifier{} creates (using new{...}) and registers
(using register-module{mod}) routing modules whose names are stored in
the instvar module_list_ (Lines 27–29 in Program 6.20). By default, only
“Base” routing module is stored in instvar module_list_ (Line 1 in Pro-
gram 6.20). To enable/disable other routing module, the following two in-
stprocs of class RtModule must be invoked prior to the execution of “$ns
node”:

enable-module{name}

disable-module{name}

where <name> is the name of the routing module, which is to be enabled/
disabled.

Step 3: Instproc register-module{mod} of class Node

This instproc invokes instproc register{node} of the input routing module
mod and stores the registered module in the instvar reg_module_.

Step 4: Instproc register{node} of class RtModule/Base

This instproc first invokes instproc register{node} of its parent class (by the
statement $self next $node in Line 7 of Program 6.21). Then, Lines 9–12
create (using new{...}) and configure (using install-entry{...}) the head
classifier (i.e., classifier_) of the Node.

Step 5: Instproc register{node} of class RtModule

This instproc attaches input Node object “node”to the routing module. It
also invokes instproc route-notify{module} and port-notify{module} of
the associated Node to include the routing module into the route notification
list rtnotif_ and port notification list ptnotif_ of the associated Node (see
Program 6.22).

The details of instprocs route-notify{module} and port-notify

{module} are shown in Program 6.22. The instproc route-notify{module}
takes one input routing module. It stores the module in the last instvar
next_rtm_ down the linked list of routing modules (see Lines 6 and 10-17).
It also invokes the OTcl command route-notify of the input routing mod-
ule (Line 8). The OTcl command route-notify invokes the C++ function
route_notify(rtm) associated with the attached Node (see Lines 18-24) to
store the routing module as the last routing module in the linked list (see
Lines 25-30).

As shown in Lines 31-34 of Program 6.22, the instproc port-notify{
module} takes a routing module as an input argument, and appends the input
argument module to the end of the link-list.



6.6 Node Object Configuration 133

Program 6.21 Instprocs register of classes RtModule and RtModule/Base.

//~/ns/tcl/lib/ns-rtmodule.tcl

1 RtModule instproc register { node } {

2 $self attach-node $node

3 $node route-notify $self

4 $node port-notify $self

5 }

6 RtModule/Base instproc register { node } {

7 $self next $node

8 $self instvar classifier_

9 set classifier_ [new Classifier/Hash/Dest 32]

10 $classifier_ set mask_ [AddrParams NodeMask 1]

11 $classifier_ set shift_ [AddrParams NodeShift 1]

12 $node install-entry $self $classifier_

13 }

6.6.5 Route Configuration

At the beginning of the Simulation Phase, NS2 computes the optimal routes
for all source-destination nodes, using the Dijkstra shortest path algorithm
[17]. It installs the computed routing information in all the Nodes. This phase
commences by the execution of instproc run{} of the Simulator. Table 6.5
shows the main steps in the instproc run{} which are related to the route
configuration process.

Table 6.5. Main steps in the route configuration process.

Step Class Instproc Invocation

1 Simulator run [$self get-routelogic] configure

2 RouteLogic configure Agent/rtProto/Static init-all

3 Agent/... init-all [Simulator instance] ...

rtProto/Static compute-routes

4 Simulator compute-routes $self compute-flat-routes

5 Simulator compute-flat- set r [$self get-routelogic]

routes $r compute

set n [Node set nn_]

$self ...

populate-flat-classifiers $n
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Program 6.22 Instprocs and functions which are related to instprocs
route-notify and port-notify of the OTcl class Node.

//~/ns/tcl/lib/ns-node.tcl

1 Node instproc route-notify { module } {

2 $self instvar rtnotif_

3 if {$rtnotif_ == ""} {

4 set rtnotif_ $module

5 } else {

6 $rtnotif_ route-notify $module

7 }

8 $module cmd route-notify $self

9 }

//~/ns/tcl/lib/ns-rtmodule.tcl

10 RtModule instproc route-notify { module } {

11 $self instvar next_rtm_

12 if {$next_rtm_ == ""} {

13 set next_rtm_ $module

14 } else {

15 $next_rtm_ route-notify $module

16 }

17 }

//~ns/routing/rtmodule.cc

18 int BaseRoutingModule::command(int argc, const char*const* argv) {

19 Tcl& tcl = Tcl::instance();

20 if (argc == 3) {

21 if (strcmp(argv[1] , "route-notify") == 0) {

22 n_->route_notify(this);

23 }

24 }

//~ns/common/node.cc

25 void Node::route_notify(RoutingModule *rtm) {

26 if (rtnotif_ == NULL)

27 rtnotif_ = rtm;

28 else

29 rtnotif_->route_notify(rtm);

30 }

//~/ns/tcl/lib/ns-node.tcl

31 Node instproc port-notify { module } {

32 $self instvar ptnotif_

33 lappend ptnotif_ $module

34 }
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Step 1: Instproc run{} of class Simulator

Shown in Line 2 of Program 4.12, instproc run{} of class Simulator retrieves
the RouteLogic object using its instproc get-routelogic{} and invokes in-
stproc configure{} associated with the retrieved RouteLogic object.

Step 2: Instproc configure{} of class RouteLogic

Defined in file ˜ns/tcl/lib/ns-route.tcl, instproc configure{} of class Route

Logic configures the routing table for all the Nodes by invoking instproc
init-all{} of class Agent/rtProto/Static.

Step 3: Instproc init-all{} of class Agent/rtProto/Static

Defined in file ˜ns/tcl/rtglib/route-proto.tcl, instproc init-all{} of class
Agent /rtProto/Static invokes the instproc compute-routes{} of the Sim-
ulator.

Step 4: Instproc compute-routes{} of class Simulator

By default, NS2 uses flat addressing. Therefore, instproc compute-routes{}
of class Simulator invokes instproc compute-flat-routes{} to compute and
setup the routing table (see file ˜ns/tcl/lib/ns-route.tcl).

Step 5: Instproc compute-flat-routes{} of class Simulator

Defined in file ˜ns/tcl/lib/ns-route.tcl, instproc compute-flat-routes{} of
class Simulator retrieves the associated route logic object (using instproc
get-routelogic{}), computes the optimal route using the retrieved ob-
ject (using instproc compute{}), and configures the classifiers in all the
Nodes according to the computed route (using the command populate-flat-

classifiers{n}).
Program 6.23 shows the details of OTcl command populate-flat-cla

ssifiers{n}. This OTcl command stores the input number of nodes “n” in
the variable nn_ (Line 4), and invokes function populate_flat_classifiers()

(Line 5) to install the computed route in all the classifiers.
As shown in Lines 10–25 of Program 6.23, function populate_flat_class

ifiers() is run for all pairs (i,j) of nn_ nodes. For each pair, Line 16 re-
trieves the next hop (i.e., forwarding) referencing point nh of a forwarding
object for a packet traveling from Node “i” to Node “j”, and Line 18 re-
trieves the link entry point l_head corresponding to the variable nh. Lines
19–20 add a new routing entry for the node i (i.e., nodelist_[i]). The entry
specifies the link entry l_head as a forwarding target for packet destined for
a destination node j. The entry is included to the Node “i” via its function
add_route(dst,target).
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Program 6.23 An OTcl command populate-flat-classifiers, a function
populate flat classifiers of class Simulator, and a function add route

of class Node.
//~ns/common/simulator.cc

1 int Simulator::command(int argc, const char*const* argv) {

2 ...

3 if (strcmp(argv[1], "populate-flat-classifiers") == 0) {

4 nn_ = atoi(argv[2]);

5 populate_flat_classifiers();

6 return TCL_OK;

7 }

8 ...

9 }

10 void Simulator::populate_flat_classifiers() {

11 ...

12 for (int i=0; i<nn_; i++) {

13 for (int j=0; j<nn_; j++) {

14 if (i != j) {

15 int nh = -1;

16 nh = rtobject_->lookup_flat(i, j);

17 if (nh >= 0) {

18 NsObject *l_head=get_link_head(nodelist_[i],nh);

19 sprintf(tmp, "%d", j);

20 nodelist_[i]->add_route(tmp, l_head);

21 }

22 }

23 }

23 }

25 }

//~ns/common/node.cc

26 void Node::add_route(char *dst, NsObject *target) {

27 if (rtnotif_)

28 rtnotif_->add_route(dst, target);

29 }
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In Lines 26–29 of Program 6.23, function add_route(dst,target) simply
invokes function add_route(dst,target) of the associated RoutingModule

object rtnotif_. Defined in Program 6.15, function add_route(dst,target)

of class RoutingModule recursively installs the input routing entry down
the linked list of routing modules, by executing do_install(dst,target)

of the variable classifier_ associated with each routing module. The func-
tion do_install(...) installs NsObject target in slot dst of the classifier
such that packets destined for the destination dst are forwarded to NsObject
target.

6.7 Chapter Summary

A Node is a basic component which acts as a router and a computer host. Its
main responsibilities are to forward packets according to a routing table and
to bridge the high-layer protocols to a low-level network. A Node consists of
two key components: classifiers and routing modules. A classifier is a multi-
target packet forwarder. It is used in a Node to forward packets, which are
destined to different destinations, to different forwarding NsObjects. It is also
used as a demultiplexer, which forwards packets with different destination
ports to different attached transport-layer agents.

As another main component, a routing module acts as a single point of
management for a group of classifiers in a Node. When receiving a config-
uration command, it propagates the command to the related classifiers. It
acts as an interface to other routing components such as route logic (which
is responsible for computing the optimal routes), and to the agent attach-
ment/detachment instprocs of class Node. Routing modules alleviate the need
to configure every classifier separately, and therefore, greatly facilitate the
classifier configuration process especially for a highly-complicated node con-
figuration with numerous classifiers.

During the Network Configuration Phase, a Node is created by executing
$ns node where $ns is the object. At the construction, address classifiers and
routing modules are installed in the Node. However, the routing mechanism of
the address classifiers are not configured here. The transport layer connections,
on the other hand, are created in this phase using instproc attach-agent of
class Simulator. At the beginning of the Simulation Phase, NS2 computes
the optimal routes for all pairs of nodes, and installs the computed routing
information in relevant classifiers.
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Link and Buffer Management

A Link is an OTcl object which connects two nodes and carries packets from
the beginning node to the terminating node. This chapter focuses on a class of
most widely-used Link object, namely, SimpleLink objects. Conveying pack-
ets from one node to another, a SimpleLink object models packet transmission
time, link propagation delay, and packet buffering. Here, packet transmission
time refers to the time required by a transmitter to send out a packet. It is
determined by the link bandwidth and packet size. Link propagation delay is
the time needed to convey each bit from the beginning to the end of a link.
In presence of bursty traffic, a transmitter may receive packets while trans-
mitting a packet. The packets entering a busy transmitter could be placed in
a buffer for future transmission. Unlike the real implementation, NS2 imple-
ments packet buffering in a Link, not a Node.

In the following, we first give an introduction to classes Link and Simple-

Link in Section 7.1. Then, we show how NS2 models packet transmission
time and propagation delay in Section 7.2. Next, the packet buffering, queue
blocking, and callback mechanisms are discussed in Section 7.3. Section 7.4
shows a network construction and packet flow example. Finally, the chapter
summary is provided in Section 7.5.

7.1 Introduction to SimpleLink Objects

NS2 models a link using classes derived from OTcl class Link object, among
which OTcl class SimpleLink is the simplest one which can be used to connect
two Nodes.

7.1.1 Main Components of a SimpleLink

Figure 7.1 shows the composition of class SimpleLink, which consists of the
following basic objects and tracing objects in the interpreted hierarchy:

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,
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Fig. 7.1. Architecture of a SimpleLink object.

Basic Objects

head_ The entry point of a SimpleLink object.
queue_ As a Queue object, queue_ models packet buffering of a “real”

router (see Section 7.3).
link_ A DelayLink object, which models packet transmission time

and link propagation delay (see Section 7.2).
ttl_ A time to live checker object whose class is TTLChecker. It decre-

ments the time to live field of an incoming packet. After the
decrement, if the time to live field is still positive, the packet will
be forwarded to the next element in the link. Otherwise, it will
be removed from the simulation (see file ˜ns/common/ttl.h,cc).

drophead_ The common packet dropping point for the link. The dropped
packets are forwarded to this object. It is usually connected to
the null agent of the Simulator so that all SimpleLink objects
share the same dropping point.

Tracing Objects

These objects will be inserted only if instvar $traceAllFile_ of the is defined.
We will describe the details of tracing objects in detail in Chapter 13. These
objects are

enqT_ Trace packets entering queue_.
deqT_ Trace packets leaving queue_.
drpT_ Trace packets dropped from queue_.
rcvT_ Trace packets leaving the link or equivalently received by the next

node.

7.1.2 Instprocs for Configuring a SimpleLink Object

In the OTcl domain, a SimpleLink object is created using the instprocs
simplex-link{..} and duplex-link{...} of class Simulator whose syntax
is as follows:
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$ns simplex-link $n1 $n2 <bandwidth> <delay> <queue_type>

$ns duplex-link $n1 $n2 <bandwidth> <delay> <queue_type>

where $ns is the Simulator object, and $n1 and $n2 are Node objects.
Instproc simplex-link{...} above creates a uni-directional SimpleLink

object connecting Node $n1 to Node $n2 (Program 7.1). The speed and the
propagation delay of the link are given as <bandwidth> (in bps) and <delay>

(in seconds), respectively. Again, as opposed to a “real” router, NS2 incorpo-
rates a queue in a SimpleLink object, not in a Node object. The type of the
queue in the link is specified by <queue_type>.

Program 7.1 Instproc simplex-link of class Simulator.

//~ns/tcl/lib/ns-lib.tcl

1 Simulator instproc simplex-link { n1 n2 bw delay qtype args } {

2 $self instvar link_ queueMap_ nullAgent_ useasim_

3 switch -exact $qtype {

4 /* See the detail in ~ns/tcl/lib/ns-lib.tcl */

5 default {

6 set q [new Queue/$qtype $args]

7 }

8 }

9 switch -exact $qtypeOrig {

10 /* See the detail in ~ns/tcl/lib/ns-lib.tcl */

11 default {

12 set link_($sid:$did) [new SimpleLink \

$n1 $n2 $bw $delay $q]

13 }

14 }

15 }

Program 7.1 shows details of instproc Simulator::simplex-link{...}.
Line 6 creates an object of class Queue/qtype. Line 12 constructs a SimpleLink
object, connecting node n1 to n2. It specifies delay, bandwidth, and Queue

object of the link to be bw, delay, and q, respectively. The Simulator
stores the created SimpleLink object in its instance associative array link_

($sid:$did), where sid is the source node ID, and $did is the destination
node ID (see Chapter 4).

Instproc duplex-link{...} creates two SimpleLink objects: one connect-
ing Node $n1 to Node $n2 and another connecting Node $n2 to Node n1. For
brevity, we do not show the detail here. The readers are encouraged to find
the details of instproc duplex-link{...} in file ˜ns/tcl/lib/ns-lib.tcl.
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7.1.3 The Constructor of Class SimpleLink

Program 7.2 shows the details of instproc init{...} (i.e., the constructor) of
class SimpleLink, which constructs and connects objects according to Fig. 7.1.
Lines 3, 5, 11, 12, and 18 create instvars drophead_, head_, queue_, link_,
and ttl_, whose OTcl classes are Connector, Connector, Queue, DelayLink,
and TTLChecker, respectively. Note that the bandwidth and delay of instvar
link_ are configured in Lines 13–14.

Program 7.2 The constructor of the OTcl class SimpleLink.

//~ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc init { src dst bw delay q {

lltype "DelayLink"} } {

2 set ns [Simulator instance]

3 set drophead_ [new Connector]

4 $drophead_ target [$ns set nullAgent_]

5 set head_ [new Connector]

6 if { [[$q info class] info heritage ErrModule] ==

"ErrorModule" } {

7 $head_ target [$q classifier]

8 } else {

9 $head_ target $q

10 }

11 set queue_ $q

12 set link_ [new $lltype]

13 $link_ set bandwidth_ $bw

14 $link_ set delay_ $delay

15 $queue_ target $link_

16 $link_ target [$dst entry]

17 $queue_ drop-target $drophead_

18 set ttl_ [new TTLChecker]

19 $ttl_ target [$link_ target]

20 $self ttl-drop-trace

21 $link_ target $ttl_

22 }

Apart from creating the above objects, the constructor also connects the
created objects as in Fig. 7.1. Derived from class Connector, each of the
created objects uses command target and drop-target to specify the next
downstream object and the dropping point, respectively (see Chapter 5). Line
9 sets the target of head_ to be q. Line 15 sets the target of queue_ (which
is set to “q” in Lines 11) to be link_. Line 16 sets the target of link_ to be
the entry of the next node. Lines 19 and 21 insert ttl_ between link_ and
the entry of the next node. Line 17 sets the dropping point of queue_ to be
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drophead_. Finally, Line 4 sets the target of drophead_ to be the null agent
of the Simulator.

7.2 Modeling Packet Departure

7.2.1 Packet Departure Mechanism

NS2 models packet departure by using a C++ class Linkdelay (see Program
7.3), which is bound to an OTcl class DelayLink object. Again, the OTcl
class DelayLink is used to instantiate the instvar SimpleLink::link_ which
models the packet departure process.

Program 7.3 Declaration of class LinkDelay.

//~ns/link/delay.h

1 class LinkDelay : public Connector {

2 public:

3 LinkDelay(): dynamic_(0), latest_time_(0), itq_(0){

4 bind_bw("bandwidth_", &bandwidth_);

5 bind_time("delay_", &delay_);

6 }

7 void recv(Packet* p, Handler*);

8 void send(Packet* p, Handler*);

9 void handle(Event* e);

10 inline double txtime(Packet* p) { /* Packet TXT Time */

11 return (8. * hdr_cmn::access(p)->size() / bandwidth_);

12 }

13 protected:

14 int command(int argc, const char*const* argv);

15 double bandwidth_;

16 double delay_;

17 PacketQueue* itq_;

18 Event intr_; /* In transit */

19 };

//~ns/link/delay.cc

20 static class LinkDelayClass : public TclClass {

21 public:

22 LinkDelayClass() : TclClass("DelayLink") {}

23 TclObject* create(int argc , const char*const* argv ) {

24 return (new LinkDelay);

25 }

26 } class_delay_link;

A packet departure process consists of packet transmission time and link
propagation delay. While the former defines the time a packet stays in an
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upstream node, the summation of the former and the latter determines the
time needed to deliver an entire packet to the connecting downstream node.
Conceptually, when a LinkDelay object receives a packet, it places these two
events on the simulation timeline:

(i) Packet departure from an upstream object: Define packet transmission

time =
packet size
bandwidth

as time needed to transmit a packet over a link. After

a period of packet transmission time, the packet completely leaves (or de-
parts) the transmitter, and the transmitter is allowed to transmit another
packet. Upon a packet reception, a LinkDelay object waits for a period of
packet transmission time, and informs its upstream object that it is ready
to receive another packet.

(ii) Packet arrival at a downstream node: Define propagation delay as the
time needed to deliver a data bit from the beginning to the end of the
link. Again, an entire packet needs a period of “packet transmission time
+ propagation delay” to reach the destination. A LinkDelay object, there-
fore, schedules a packet reception event at the downstream node after this
period.

7.2.2 C++ Class LinkDelay

Program 7.3 shows the declaration of C++ class LinkDelay, which is mapped
to the OTcl class DelayLink. Class LinkDelay has the following four main
variables. Variables bandwidth_ (Line 15) and delay_ (Line 16) store the
link bandwidth and propagation delay, respectively. In Lines 4–5, these two
variables are bound to OTcl instvars with the same name. In a link with large
bandwidth-delay product, a transmitter can send a new packet before the
previous packet reaches the destination. Class LinkDelay stores all packets
in-transit in its buffer itq_ (Line 17), which is a pointer to a PacketQueue

object (See Section 7.3.1). Finally, variable intr_ is a dummy Event object,
which represent a packet departure (from the transmitting node) event. As
discussed in Section 4.3.6, the packet departure is scheduled using variable
intr_ which does not take part in event dispatching1.

The main functions of class LinkDelay are recv(p,h), send(p,h), handle
(e), and txttime(p). Function txttime(p) calculates the packet transmis-
sion time of packet *p (Lines 10–12 in Program 7.3). Function send(p,h)

sends packet *p to the connecting downstream object (see Line 12 in Pro-
gram 5.3). Function handle(e) is invoked when the Scheduler dispatches
an event corresponding to the LinkDelay object (see Chapter 4). Function
recv(p,h) (Program 7.4) takes a packet *p and a handler *h as input argu-
ments, and schedules packet departure and packet arrival events.

1 As a dummy Event object, variable intr ensures that an error message will be
shown on the screen, if an undispatched event is rescheduled.
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Program 7.4 Function recv of class LinkDelay.

//~ns/link/delay.cc

1 void LinkDelay::recv(Packet* p, Handler* h)

2 {

3 double txt = txtime(p);

4 Scheduler& s = Scheduler::instance();

5 if (dynamic_) { /* See ~ns/link/delay.cc */ }

6 else if (avoidReordering_) { /* See ~ns/link/delay.cc */ }

7 else {

8 s.schedule(target_, p, txt + delay_);

9 }

10 s.schedule(h, &intr_, txt);

11 }

(i) Packet departure event: Since a packet spends “packet transmission time”
(txt in Line 3) at the upstream object, function recv(p,h) schedules a
packet departure event at txt seconds after the LinkDelay object receives
the packet. To do so, Line 10 invokes function schedule(h,&intr,txt)

of class Scheduler, where the first, second, and third input arguments
are handler pointer, dummy event pointer, and delay, respectively (see
Chapter 4). After txt seconds, the Scheduler dispatches this event by
invoking function handle(e) associated with the handler *h to inform
the upstream object of a packet departure. In most cases, the upstream
object responds by transmitting another packet, if available (see Section
7.3.3 for the callback mechanism).

(ii) Packet arrival: Class LinkDelay also passes the packet to its downstream
object (*target_). Line 8 schedules an event cast from the input packet
*p with delay txt+delay_ seconds, where txt is the packet transmission
time and delay_ is the link propagation delay. Here, *target_ is passed
to function schedule(...) as a handler pointer. After “txt+delay_” sec-
onds, h.handle(p) will invoke function recv(p) (see Program 4.2), and
packet *p will be passed to *target_ after txt+delay_ seconds.

The major difference between scheduling packet departure and arrival
events is as follows. While a node can hold only one (head of the line) packet,
a link can contain more than one packet. Correspondingly, at an instance, a
link can schedule only one packet departure event (using intr_), and more
than one packet arrival event (using *p which represents a packet). Every
time a LinkDelay object receives a packet, it schedules the packet depar-
ture event using the same variable intr_. If variable intr_ has not been
dispatched, such a scheduling will cause runtime error, because it attempts to
place a packet in the head of the buffer which is currently occupied by another
packet. A packet arrival event, on the other hand, is tied to incoming packet.
A LinkDelay object schedules a new packet arrival event for every received
packet (see Line 8 in Program 7.4). Therefore, a link can schedule a packet
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arrival event, even if the previous arrival event has not been dispatched. This
is essentially the case in a link with large bandwidth-delay product which can
contain several packets.

7.3 Buffer Management

Another major component of a SimpleLink object is class Queue. Class Queue
models the buffering mechanism in a network router. It stores a received packet
in the buffer, and forwards a (in most case the head of the line) packet in the
buffer to its downstream object when the ongoing transmission is complete.
As shown in Program 7.5, class Queue derives from class Connector, and
can be used to connect two NsObjects. It employs a PacketQueue object
(see Section 7.3.1), *pq_ in Line 20, for packet buffering. The buffer size
is specified in variable qlim_ (Line 16). The variables blocked_ (Line 16),
unblock_on_resume_ (Line 17), and qh_ (Line 18) are related to the so-called
callback mechanism, and shall be discussed later in Section 7.3.3.

Program 7.5 Declaration of class Queue.

//~ns/queue/queue.h

1 class Queue : public Connector {

2 public:

3 virtual void enque(Packet*) = 0;

4 virtual Packet* deque() = 0;

5 virtual void recv(Packet*, Handler*);

6 void resume();

7 int blocked() const { return (blocked_ == 1); }

8 void unblock() { blocked_ = 0; }

9 void block() { blocked_ = 1; }

10 int limit() { return qlim_; }

11 int length() { return pq_->length(); }

12 virtual ~Queue();

13 protected:

14 Queue();

15 void reset();

16 int qlim_;

17 int blocked_;

18 int unblock_on_resume_;

19 QueueHandler qh_;

20 PacketQueue *pq_;

21 };

There are a number of important functions of class Queue. Function
enque(p) and deque() (Lines 3–4) place and take, respectively, a packet from
the PacketQueue object *pq_. They are declared as pure virtual, and must
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be implemented by instantiable derived classes of class Queue. Derived from
class NsObject, function recv(p,h) (Line 5) is the main packet reception
function. Function blocked() in Line 7 indicates whether the Queue object
is in a blocked state. Functions resume() (Line 6), unblock() (Line 8), and
block() (Line 9) are used in the callback mechanism which will be discussed
in Section 7.3.3. Finally, functions limit() and length() return the buffer
size and current buffer occupancy, respectively.

7.3.1 Class PacketQueue: A Model for Packet Buffering

Declared in Program 7.6, class PacketQueuemodels low-level operations of the
buffer including storing, enqueuing, and dequeuing packet. Class PacketQueue
is a linked list of Packets, whose member variables are as follows. Variable
head_ in Line 11 is the pointer to the beginning of the linked list. Variable
tail_ in Line 12 is the pointer to the end of the linked list. The variable
len_ in Line 13 is the number of packets in the buffer. Function enque(p) in
Line 5 puts the input packet *p to the end of the buffer. Function deque()

in Line 6 returns the head of the line packet pointer or returns NULL when
the buffer is non-empty or empty, respectively. Function remove(p) in Line 7
searches for a matching packet *p and removes it from the buffer (if found).
Note that packet admitting/dropping is the functionality of class Queue, not
of class PacketQueue. We will show an example of packet admitting/dropping
of class DropTail in Section 7.3.4.

Program 7.6 Declaration of class PacketQueue.

//~ns/queue/queue.h

1 class PacketQueue : public TclObject {

2 public:

3 PacketQueue() : head_(0), tail_(0), len_(0), bytes_(0) {}

4 virtual int length() const { return (len_); }

5 virtual Packet* enque(Packet* p);

6 virtual Packet* deque();

7 virtual void remove(Packet*);

8 Packet* head() { return head_; }

9 Packet* tail() { return tail_; }

10 protected:

11 Packet* head_;

12 Packet* tail_;

13 int len_;

14 };
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7.3.2 Queue Handler

Derived from class Handler (see Line 1 in Program 7.7), class QueueHandler
is closely related to the (event) Scheduler. Again, a QueueHandler object
defines its default actions in its function handle(e). These default actions
will be taken when an associated event is dispatched. As shown in Lines 8–11
of Program 7.7, the default action of a QueueHandler object is to execute
function resume() of the associated Queue object queue_. We will discuss the
details of function resume() in Section 7.3.3. In the rest of this section, we
will demonstrate how a connection between QueueHandler and Queue objects
is created.

Program 7.7 Declaration and function handle of class QueueHandler, and
the constructor of class Queue.

//~ns/queue/queue.h

1 class QueueHandler : public Handler {

2 public:

3 inline QueueHandler(Queue& q) : queue_(q) {}

4 void handle(Event*);

5 private:

6 Queue& queue_;

7 };

//~ns/queue/queue.cc

8 void QueueHandler::handle(Event*)

9 {

10 queue_.resume();

11 }

12 Queue::Queue() : Connector(), blocked_(0),

unblock_on_resume_(1), qh_(*this),pq_(0)

13 { /* See the detail in ~ns/queue/queue.cc */ }

To associate a Queue object with a QueueHandler object, classes Queue and
QueueHandler declare their member variables qh_ (Line 19 in Program 7.5)
and queue_ (Line 6 in Program 7.7), as a QueueHandler pointer and a Queue

reference, respectively. These two variables are initialized when a Queue object
is instantiated (Line 12 in Program 7.7). The constructor of class Queue

invokes the constructor of class QueueHandler, feeding itself as an input
argument (i.e., qh_(*this) in Line 12 of Program 7.7). The constructor of
qh_ then sets its member variable queue_ to share the same address as the
input Queue object (i.e. queue_(q) in Line 3 of Program 7.7), hence creating
a two-way connection between the Queue and QueueHandler objects. After
this point, the Queue and the QueueHandler objects refer to each other by
the variables qh_ and queue_, respectively.



7.3 Buffer Management 149

Fig. 7.2. State diagram of the queue blocking mechanism.

7.3.3 Queue Blocking and Callback Mechanism

Queue Blocking

NS2 uses the concept of queue blocking2 to indicate whether a queue is cur-
rently transmitting a packet. By default, a queue can transmit one packet at
a time. It is not allowed (i.e., blocked) to transmit another packet until the
ongoing transmission is complete. A queue is said to be blocked or unblocked
(i.e., blocked_ = 1 or blocked_ = 0), when it is transmitting a packet or is
not transmitting a packet, respectively.

Figure 7.2 shows the state diagram of the queue blocking mechanism.
When in the “Not Blocked” state, a queue is allowed to transmit a packet
by executing “target_->recv(p,&qh_)”, after which it enters the “Blocked”
state. Here, a queue waits until the ongoing transmission is complete where
the function resume() is invoked. After this point, the queue enters the “Not
Blocked” state and the process repeats.

Callback Mechanism

As discussed in Chapter 5, a node in NS2 passes packets to a downstream node
by executing function recv(p,h), where *p denotes a packet and *h denotes a
handler. A callback mechanism refers to a process where a downstream object
invokes an upstream object along the downstream path for a certain purpose.
In a queue blocking process, a callback mechanism is used to unblock a Queue

object by invoking function resume() of the upstream Queue object.
We now explain the callback mechanism process for queue unblocking via

an example network in Fig. 7.3. Here, we assume that the following objects are
sequentially connected: an upstream NsObject, a Queue object, a LinkDelay

object, and a downstream object. Again, an NsObject passes a packet *p by
invoking function recv(p,h) of its downstream object, where *h is a handler.
In most cases, the input handler *h is passed along with the packet *p as
input argument of function recv(p,h). However, this mechanism is different
for the Queue object.

2 Queue blocking has no relation to packet blocking when the buffer is full.
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Fig. 7.3. Diagram of callback mechanism for a queue unblocking process.

Consider function recv(p,h) of class Queue in Program 7.8. Instead of
immediately passing the incoming packet *p to its downstream object, Line
3 places the packet in the buffer (i.e., pq_). Again, a Queue object is allowed
to transmit a packet only when it is not blocked (Line 4). In this case, Line 5
retrieves a packet from the buffer. If the packet is valid (Line 6), Line 7 will
set the state of the Queue object to be “blocked”, and Line 8 will forward the
packet to its downstream object (i.e., *target_). The Queue object passes its
QueueHandler pointer qh_ (instead of the incoming handler pointer) to its
downstream object. This QueueHandler pointer acts as a reference point for
a queue blocking callback mechanism.

Program 7.8 Function recv of class Queue.

//~ns/queue/queue.cc

1 void Queue::recv(Packet* p, Handler*)

2 {

3 enque(p);

4 if (!blocked_) {

5 p = deque();

6 if (p != 0) {

7 blocked_ = 1;

8 target_->recv(p, &qh_);

9 }

10 }

11 }
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From Fig. 7.3, the downstream object of the Queue object is a LinkDelay

object. Upon receiving a packet, it schedules two events: packet departure and
arrival events (see Lines 10 and 8 in Program 7.4). A packet arrival event is
associated with the downstream object (i.e., *target_). At the firing time, the
function handle(p) of the downstream object will invoke function recv(p)

to receive packet *p (see Program 4.2).
Function recv(p) of class LinkDelay also schedules a packet departure

event. Since the input handler pointer is a QueueHandler pointer, the depar-
ture event is associated with the QueueHandler object qh_. At the firing time,
the Scheduler invokes function handle(p) of the associated QueueHandler ob-
ject. In Program 7.7, this function in turn invokes function resume() to un-
block the associated Queue object. Literally the LinkDelay object schedules
an event which calls back to unblock the upstream Queue object.

Program 7.9 Function resume of class Queue.

//~ns/queue/queue.cc

1 void Queue::resume()

2 {

3 Packet* p = deque();

4 if (p != 0)

5 target_->recv(p, &qh_);

6 else

7 if (unblock_on_resume_)

8 blocked_ = 0;

9 else

10 blocked_ = 1;

11 }

Program 7.9 shows the details of function resume(). Function resume()

first retrieves the head of the line packet from the buffer (Line 3). If the buffer
is non-empty (Line 4), Line 5 will send the packet to the downstream object of
the queue regardless of the blocked status. In this case, the variable blocked_
would remain unchanged. If the Queue object is in a “Blocked” state, it will
remained blocked after packet transmission, hence complying with the state
diagram in Fig. 7.2. If the queue is idle (i.e., the buffer is empty), variable
blocked_will be set to zero and one in case that the flag unblock_on_resume_
is one and zero, respectively.

7.3.4 Class DropTail: A Child Class of Class Queue

Consider class DropTail, a child class of class Queue, which is bound to
the OTcl class Queue/DropTail in Program 7.10. The constructor of class
DropTail creates a pointer q_ (Line 13) to a PacketQueue object, and sets
pq_ derived from class Queue to be the same as q_ (Line 5). Throughout
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the implementation, class DropTail refers to its buffer by q_ instead of pq_.
Class DropTail overrides function enque(p) (Line 11 and Program 7.11) and
deque() (Line 12) of class Queue. It also allows packet dropping at the front
of the buffer, if the flag drop_front_ (Line 14) is set to 1. Class DropTail

does not override function recv(p,h). Therefore, it receives a packet through
the function recv(p,h) of class Queue.

Program 7.10 Declaration of class DropTail.

//~ns/queue/drop-tail.h

1 class DropTail : public Queue {

2 public:

3 DropTail() {

4 q_ = new PacketQueue;

5 pq_ = q_;

6 bind_bool("drop_front_", &drop_front_);

7 };

8 ~DropTail() { delete q_; };

9 protected:

10 int command(int argc, const char*const* argv);

11 void enque(Packet*);

12 Packet* deque();

13 PacketQueue *q_;

14 int drop_front_;

15 };

//~ns/queue/drop-tail.cc

16 static class DropTailClass : public TclClass {

17 public:

18 DropTailClass() : TclClass("Queue/DropTail") {}

19 TclObject* create(int, const char*const*) {

20 return (new DropTail);

21 }

22 } class_drop_tail;

In Program 7.11, function enque(p) first checks whether the incoming
packet will cause buffer overflow (Line 3). If so, it will drop the packet either
from the front (Lines 5–7) or from the tail (Line 9), where function drop(p)

(Lines 7 and 9) belongs to class Connector (see Program 5.4). If the buffer
has enough space, Line 10 will enqueue packet (p) to its buffer (q_).

7.4 A Sample Two-Node Network

We have introduced two basic NS2 components: nodes and links. Based
on these two components, we now create a two-node network with a uni-
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Program 7.11 Function enque of class DropTail.

//~ns/queue/drop-tail.cc

1 void DropTail::enque(Packet* p)

2 {

3 if ((q_->length() + 1) >= qlim_)

4 if (drop_front_) {

5 q_->enque(p);

6 Packet *pp = q_->deque();

7 drop(pp);

8 } else

9 drop(p);

10 else

11 q_->enque(p);

12 }

udp n1 n2SimpleLink

attach-agent attach-agentsimplex-linkrun

null

Fig. 7.4. A two-node network with a uni-directional link and the instprocs of class
Simulator.

directional link and show the packet flow mechanism within this network in
Fig. 7.4.

7.4.1 Network Construction

The network in Fig. 7.4 consists of a beginning node (n1), a termination node
(n2), a SimpleLink connecting n1–n2, a source transport layer agent (udp),
and a sink transport layer agent (null). This network can be created using
the following Tcl simulation script:

set ns [new Simulator]

set n1 [$ns node]

set n2 [$ns node]

$ns simplex-link $n1 $n2 <bw> <delay> DropTail

set udp [new Agent/UDP]

set null [new Agent/Null]

$ns attach-agent $n1 $udp

$ns attach-agent $n2 $null

Here, command $ns node creates a Node object. The internal mechanism
of the node construction process was described in Section 6.6. The state-
ment $ns simplex-link $n1 $n2 <bw> <delay> DropTail creates a uni-
directional SimpleLink object, which connects node n1 to node n2. The link
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bandwidth and delay are <bw> bps and <delay> seconds, respectively. The
buffer in the link is of class DropTail. From Section 6.6.3, the commands $ns
attach-agent $n1 $udp and $ns attach-agent $n2 $null set the target
of agent udp to be the entry of Node n1, and installs agent null in the de-
multiplexer of Node n2.

7.4.2 Packet Flow Mechanism

To deliver a packet “*p” from agent udp to null,

(i) Agent udp sends packet *p to the entry of Node n1.3

(ii) Packet *p is sent to the head classifier classifier_ (which is of class
DestHashClassifier) of Node n1.

(iii) The DestHashClassifier object classifier_ examines the header of
packet *p. In this case, the packet is destined to the Node n2. Therefore,
it forwards the packet to the link head of the connecting SimpleLink

object.
(iv) The link head forwards the packet to the connecting Queue object.
(v) The Queue object enqueues the packet. If not blocked, it will forward

the head of the line packet to the connecting LinkDelay object and set
its status to blocked.

(vi) Upon receiving a packet, the LinkDelay object schedules the two fol-
lowing events:

(a) Packet departure event, which indicates that packet transmission is
complete. This event unblocks the associated Queue object.

(b) Packet arrival event, which indicates the packet arrival at the con-
necting TTLChecker object.

(vii) The TTLChecker object receives the packet, and decrements the TTL
field of the packet header. If the TTL field of the packet is non-positive,
the TTLChecker object will drop the packet. Otherwise, it will forward
the packet to the entry of Node n2 (see file ˜ns/common/ttl.cc).

(viii) Node n2 forwards the packet to the head classifier (classifier_). Since
the packet is destined to itself, the packet is forwarded to the demulti-
plexer (dmux_).

(ix) The demultiplexer forwards the packet to the agent null installed in
the demultiplexer.

7.5 Chapter Summary

This chapter focuses on class SimpleLink, a basic link class which can be used
to connect two nodes. The connection between two nodes n1 and n2 can be
created by the following instprocs:

3 Note that, each object sends a packet *p to its downstream object by invoking
target -> recv(p,h), where target is a pointer to the downstream object.
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$ns simplex-link $n1 $n2 <bw> <delay> <queue_type>

$ns duplex-link $n1 $n2 <bw> <delay> <queue_type>

where the bandwidth and delay of the SimpleLink object are <bw> bps and
<delay> seconds, respectively. Also the type of queue implemented in the
SimpleLink object is <queue_type>.

A SimpleLink object models packet transmission time, link propagation
delay, and packet buffering. Here, packet transmission time is the time re-

quired to transmit a packet, and is computed by
packet size
bandwidth

, while the link
propagation time is the time required to deliver a data bit from the begin-
ning to the end of the SimpleLink object. As shown in Fig. 7.1, an OTcl
SimpleLink object consists of instvars head_, drophead_, queue_, link_,
and ttl_, whose classes are Connector, Connector, Queue, DelayLink, and
TTLChecker, respectively.

• Instvars head_ and drophead_ act as an entry point and a dropping point,
respectively, of a SimpleLink object.

• Instvar link_ models packet transmission time and link propagation de-
lay of a link. When receiving a packet, it schedules two events: packet
departure from the beginning node and packet arrival at the terminating
node.

• Instvar queue_ models packet buffering mechanism in a SimpleLink ob-
ject. It operates very closely with the instvar link_. Upon receiving a
packet, the instvar queue_ enques the packet. If not blocked, it will block
itself and forward the packet as well as the associated queue handler to the
instvar link_. When the packet departure event (scheduled by the instvar
link_) is dispatched, instvar queue_ is unblocked (i.e., being called back)
and allowed to transmit another packet.

• Instvar ttl_ is a packet time to live checker, which drops packets which
stay in the network for longer than a specified period of time.
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Packets, Packet Headers, and Header Format

Generally, a packet consists of packet header and data payload. Packet header
stores packet attributes (e.g., source and destination IP addresses) necessary
for packet delivery, while data payload contains user information. Although
this concept is typical in practice, NS2 models packets differently.

In most cases, NS2 extracts information from data payload and stores the
information into packet header. This idea removes the need to process data
payload at runtime. For example, instead of counting the number of bits in a
packet, NS2 stores packet size in variable hdr_cmn::size_ (see Section 8.3.5),
and accesses this variable at runtime.1

This chapter discusses how NS2 models packets. Section 8.1 gives an
overview on NS2 packet modeling. Section 8.2 discusses the packet allocation
and deallocation processes. Sections 8.3 and 8.4 show the details of packet
header and data payload, respectively. We give a guideline of how to cus-
tomize packets (i.e., to define a new packet type and activate/deactivate new
and existing protocols) in Section 8.5. Finally, the chapter summary is given
in Section 8.6.

8.1 An Overview of Packet Modeling Principle

8.1.1 Packet Architecture

Figure 8.1 shows the architecture of an NS2 packet model. From Fig. 8.1, a
packet model consists of four main parts: actual packet, class Packet, protocol
specific headers, and packet header manager.

• Actual Packet: An actual packet refers to the portion of memory which
stores packet header and data payload. NS2 does not directly access
either the packet header or the data payload. Rather, it uses pointers

1 For example, class LinkDelay determines packet size from a variable hdr cmn::

size when computing packet transmission time (see Line 11 of Program 7.3).

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,
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Fig. 8.1. Packet modeling in NS2.

bits_ and data_ of class Packet to access packet header and data pay-
load, respectively. The details of packet header and data payload will be
given in Sections 8.3 and 8.4, respectively.

• Class Packet: Declared in Program 8.1, class Packet is the C++ main
class which represents packets. It contains the following variables and func-
tions:

C++ variables of class Packet

bits_ A string which contains packet header
data_ Pointer to an AppData object which contains data payload
fflag_ Set to true if the packet is currently referred to by other objects

and false otherwise
free_ Pointer to the head of the packet free list

ref_count_ Number of objects which currently refer to the packet
next_ Pointer to the next packet in the linked list of packets

hdr_len_ Length of packet header
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Program 8.1 Declaration of class Packet.

//~/ns/common/packet.h

1 class Packet : public Event {

2 private:

3 unsigned char* bits_;

4 AppData* data_;

5 static void init(Packet*) {bzero(p->bits_, hdrlen_);}

6 bool fflag_;

7 protected:

8 static Packet* free_;

9 int ref_count_;

10 public:

11 Packet* next_;

12 static int hdrlen_;

//Packet Allocation and Deallocation

13 Packet() : bits_(0), data_(0), ref_count_(0), next_(0) { }

14 inline unsigned char* const bits() { return (bits_); }

15 inline Packet* copy() const;

16 inline Packet* refcopy() { ++ref_count_; return this; }

17 inline int& ref_count() { return (ref_count_); }

18 static inline Packet* alloc();

19 static inline Packet* alloc(int);

20 inline void allocdata(int);

21 static inline void free(Packet*);

//Packet Access

22 inline unsigned char* access(int off){return &bits_[off]);};

23 }

C++ functions of class Packet

init(p) Clears the packet header bits_ of the input packet p.
copy() Returns a pointer to a duplicated packet.

refcopy() Increases the number of objects, which refer to the packet,
by one.

alloc() Creates a new packet and returns a pointer to the created
packet.

alloc(n) Creates a new packet with “n” bytes of data payload and
returns a pointer to the created packet.

allocdata(n) Allocates “n” bytes of data payload to the variable data_.
free(p) Deallocates packet p.

access(off) Retrieves a reference to a certain point (specified by the
offset “off”) of the variable bits_ (i.e., packet header).

• Protocol Specific Header: From Fig. 8.1, packet header consists of
several protocol specific headers. Each protocol specific header uses a
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contiguous portion of packet header to store its packet attributes. In com-
mon with most TclObjects, there are three classes related to each protocol
specific header: a C++ class, an OTcl class, and a mapping class.
– A C++ class (e.g., hdr_cmn or hdr_ip): provides a sturcture to store

packet attributes.
– An OTcl class (e.g., PacketHeader/Common or PacketHeader/IP): acts

as an interface to the OTcl domain. NS2 uses this class to configure
packet header from the OTcl domain.

– A mapping class (e.g., CommonHeaderClass or IPHeaderClass): binds
a C++ class to an OTcl class.

We will discuss the details of protocol specific header later in Section 8.3.5.
• Packet Header Manager: A packet header manager maintains a list of

active protocols, and configures all active protocol specific headers to setup
a packet header. It has an instvar hdrlen_ which indicates the length of
packet header consisting of protocol specific headers. Instvar hdrlen_ is
bound to a variable hdrlen_ of class Packet. Any change in one of these
two variables will result in an automatic change in another.

• Data Payload: From Line 4 in Program 8.1, the pointer data_ points
to data payload, which is of class AppData. We will discuss the details of
data payload in Section 8.4.

8.1.2 A Packet as an Event: A Delayed Packet Reception Event

Derived from class Event (Line 1 in Program 8.1), class Packet can be placed
on the simulation time line (see the details in Chapter 4). In Section 4.2, we
mentioned two main classes derived from class Event: class AtEvent and class
Packet. We also mentioned that an AtEvent object is an event created by a
user from a Tcl simulation script. This chapter discusses the details of another
derived class of class Event: class Packet.

As discussed in Section 5.2.2, NS2 models a delayed action by placing
an event corresponding to the action on the simulation timeline at a certain
delayed time. Derived from class Event, class Packet can be placed on the
simulation timeline to signify a delayed packet reception. For example, the
following statement (see Line 8 in Program 7.4) schedules a packet reception
event, where the NsObject *target_ receives a packet *p at txt+delay_

seconds in future:

s.schedule(target_, p, txt + delay_)

where function schedule(...) of class Scheduler defined in Program 4.7
takes an Event pointer as its second input argument. A Packet pointer is
cast to be an Event pointer before being fed as the second input argument.

At the firing time, the Scheduler dispatches the scheduled event (i.e., *p)
and invokes target->handle(p), which executes “target_->recv(p)” to for-
ward packet *p to the NsObject pointer *target_.
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8.1.3 A Linked List of Packets

Apart from the above 4 main packet components, a Packet object contains
a pointer next_ (Line 11 in Program 8.1), which helps formulating a linked
list of Packet objects (e.g., Packet List in Fig. 8.2). Program 8.2 shows the
implementation of functions enque(p) and deque() of class PacketQueue.
Function enque(p) (Lines 3–13) puts a Packet object *p to the end of the
queue. If the PacketQueue is empty, NS2 sets head_, tail_, and p to point
to the same place2 (Line 5). Otherwise, Lines 7–8 set p as the last packet in
the PacketQueue, and shift variable tail_ to the last packet pointer p. Since
the pointer tail_ is the last pointer of PacketQueue, Line 10 sets the pointer
tail_->next_ to 0 (i.e, points to NULL).

Fig. 8.2. A linked list of packets and a free packet list.

Function deque() (Lines 14–21) retrieves a pointer to the packet at the
head of the buffer. If there is no packet in the buffer, the function deque()

will return a NULL pointer (Line 15). If the buffer is not empty, Line 17 will
shift the pointer head_ to the next packet, Line 19 will decrease the length
of PacketQueue object by one, and Line 20 will return the packet pointer p

which was set to the pointer head_ in Line 16.

8.1.4 Free Packet List

Unlike most NS2 objects, a Packet object, once created, will not be destroyed
until the simulation terminates. NS2 keeps Packet objects which are no longer

2 Note that, head and tail are pointers to the first and the last Packet objects,
respectively, in a PacketQueue object.
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Program 8.2 Functions enque and deque of class PacketQueue.

//~/ns/common/queue.h

1 class PacketQueue : public TclObject {

2 ...

3 virtual Packet* enque(Packet* p) { // Returns previous tail

4 Packet* pt = tail_;

5 if (!tail_) head_= tail_= p; // if the PacketQueue

is empty

6 else {

7 tail_->next_= p;

8 tail_= p;

9 }

10 tail_->next_= 0;

11 ++len_;

12 return pt;

13 }

14 virtual Packet* deque() {

15 if (!head_) return 0;

16 Packet* p = head_;

17 head_= p->next_; // 0 if p == tail_

18 if (p == tail_) head_= tail_= 0;

19 --len_;

20 return p;

21 }

22 ...

23 };

in use in a free packet list (see Fig. 8.2). When NS2 needs a new packet, it
first checks whether the free packet list is empty. If not, it will take a Packet

object from the list. Otherwise, it will create another Packet object. We will
discuss the details of how to allocate and deallocate a Packet object later in
Section 8.2.

There are two variables which are closely related to the packet alloca-
tion/deallocation process: fflag_ and free_. Each Packet object uses a vari-
able fflag_ (Line 6 in Program 8.1) to indicate whether it is in use. Variable
fflag_ is set to true, when the Packet object is in use, and set to false

otherwise. Shared by all the Packet objects, a static pointer free_ (Line 8 in
Program 8.1) is a pointer to the first packet on the free packet list. Each packet
on the free packet list uses its variable next_ to help form a link list of free
Packet objects. This linked list of free packets is referred to as a free packet
list. Although NS2 does not return memory allocated to a Packet object to
the system, it does return the memory used by packet header (i.e., bits_)
and data payload (i.e., data_) to the system (see Section 8.2.2), when the
packet is deallocated. Since most memory required to store a Packet object is
consumed by packet header and data payload, maintaining a free packet list
does not result in a significant waste of memory.
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8.2 Packet Allocation and Deallocation

Unlike most of the NS2 objects,3 a Packet object is allocated and deallocated
using static functions alloc() and free(p) of class Packet, respectively. If
possible, function alloc() takes a Packet object from the free packet list.
Only when the free packet list is empty, does the function alloc() creates a
new Packet object using new. Function free(p) deallocates a Packet object,
by returning the memory allocated for packet header and data payload to
the system and storing the not-in-use Packet pointer p in the free packet
list for future reuse. The details of packet allocation and deallocation will be
discussed in the next two sections.

8.2.1 Packet Allocation

Program 8.3 shows the details of function alloc() of class Packet, the
packet allocation function. Function alloc() returns a pointer to an allo-
cated Packet object to the caller. This function consists of two parts: packet
allocation in Lines 3–15, and packet initialization in Lines 16–24.

Consider the packet allocation in Lines 3–15. Line 3 declares p as a pointer
to a Packet object, and sets the pointer p to point to the first packet on
the free packet list4. If the free packet list is empty (i.e., p = 0), NS2 will
create a new Packet object (in Line 11), and allocate memory space with size
“hdrlen_” bytes for the packet header in Line 12. Variable hdrlen_ is not
configured during the construction of a Packet object. Rather, it is set up
in the Network Configuration Phase (see Section 8.3.8), and is used by the
function alloc() to create packet header.

Function alloc() does not allocate memory space for data payload. When
necessary, NS2 creates data payload by using the function allocdata(n) (see
Lines 8–14 in Program 8.4), which will be discussed in detail later in this
section.

If the free packet list is non-empty, function alloc() will execute Lines
5–9 in Program 8.3 (see also the diagram in Fig. 8.3). In this case, function
alloc() first makes sure that nobody is using the Packet object p, by as-
serting that fflag_ is false (Line 5).5 Then, Line 6 shifts the pointer free_
by one position. Lines 8–9 initialize two variables (uid_ and time_) of class
Event (i.e., the mother class of class Packet) to be zero. Line 23 removes the
packet from the free list by setting p->next_ to zero.

After the packet allocation process is complete, Lines 16–24 initialize the
allocated Packet object. Line 16 invokes function init(p), which initializes

3 Generally, NS2 creates and destroys most objects by using procedures new and
delete, respectively.

4 Again, free is the pointer to the first packet on the free packet list.
5 The C++ function assert(cond) can be used for an integrity check. It does

nothing if the input argument cond is true. Otherwise, it will initiate an error
handling process (e.g., showing an error on the screen).
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Program 8.3 Function alloc of class Packet.

//~/ns/common/packet.h

1 inline Packet* Packet::alloc()

2 {

//Packet Allocation

3 Packet* p = free_;

4 if (p != 0) {

5 assert(p->fflag_ == FALSE);

6 free_ = p->next_;

7 assert(p->data_ == 0);

8 p->uid_ = 0;

9 p->time_ = 0;

10 } else {

11 p = new Packet;

12 p->bits_ = new unsigned char[hdrlen_];

13 if (p == 0 || p->bits_ == 0)

14 abort();

15 }

//Packet Initialization

16 init(p); // Initialize bits_[]

17 (HDR_CMN(p))->next_hop_ = -2; // -1 reserved for IP_BROADCAST

18 (HDR_CMN(p))->last_hop_ = -2; // -1 reserved for IP_BROADCAST

19 p->fflag_ = TRUE;

20 (HDR_CMN(p))->direction() = hdr_cmn::DOWN;

21 /* setting all direction of pkts to be downstream as default;

22 until channel changes it to +1 (upstream) */

23 p->next_ = 0;

24 return (p);

25 }

Packet

next_

Packet

next_free_

p

…

NULL

Fig. 8.3. Diagram of packet allocation when the free packet list is non-empty. The
dotted lines show the actions caused by function alloc of class Packet.
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Program 8.4 Functions alloc, allocdata, and copy of class Packet.

//~/ns/common/packet.h

1 inline Packet* Packet::alloc(int n)

2 {

3 Packet* p = alloc();

4 if (n > 0)

5 p->allocdata(n);

6 return (p);

7 }

8 inline void Packet::allocdata(int n)

9 {

10 assert(data_ == 0);

11 data_ = new PacketData(n);

12 if (data_ == 0)

13 abort();

14 }

15 inline Packet* Packet::copy() const

16 {

17 Packet* p = alloc();

18 memcpy(p->bits(), bits_, hdrlen_);

19 if (data_)

20 p->data_ = data_->copy();

21 return (p);

22 }

the header of packet *p. From Line 5 in Program 8.1, invocation of func-
tion init(p) executes “bzero(p-> bits_,hdrlen_)”, which clears bits_ to
zero.6 Line 19 sets fflag_ to be true, indicating that the packet *p is now
in use. Line 23 sets the pointer p->next_ to be zero. Lines 17, 18, and 20
initialize the common header. We will discuss packet header in greater detail
in Section 8.3.2.

Apart from function alloc(), other relevant functions include alloc(n),
allocdata(n), and copy() (See Program 8.4). Function alloc(n) allocates
a packet (Line 3), and invokes allocdata(n) (Line 5). Function alloc(n)

creates data payload with size “n” bytes (by invoking new PacketData(n) in
Line 11). We will discuss the details of data payload later in Section 8.4.

Function copy() returns a replica of the current Packet object. The only
difference between the current and the replicated Packet objects is the unique
ID (uid_) field. This function is quite useful, since we often need to create a
packet which is the same as or slightly different from an original packet. This

6 Function bzero takes two arguments – the first is a pointer to the buffer and the
second is the size of the buffer – and sets all values in a buffer to zero.
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function first allocates a packet pointer p in Line 17. Then, it copies packet
header and data payload to the packet *p in Lines 18 and 20, respectively.

Despite its name, function refcopy() (Line 16 in Program 8.1) does not
create a copy of a Packet object. Rather, it returns the pointer to the current
Packet object. For example, suppose p is a Packet pointer. Then, x = p and
x = p->refcopy() both store p in x. However, function refcopy() also keeps
track of the number of objects which share the same Packet object, by using
variable ref_count_ (Line 9 in Program 8.1). This variable is initialized to 0 in
the constructor of class Packet (Line 13 in Program 8.1). It is incremented by
one when function ref_copy() (Line 16 in Program 8.1) is invoked, indicating
that a new object starts using the current Packet object. Similarly, it is
decremented by one when function free(p) (see Section 8.2.2) is invoked,
indicating that an object has stopped using the current Packet object.

8.2.2 Packet Deallocation

When a packet *p is no longer in use, NS2 deallocates the packet by using
function free(p). By deallocation, NS2 returns the memory used to store
packet header and data payload to the system, sets the pointer data_ to
zero, and stores the Packet object in the free packet list. Note that although
the value of bits_ is not set to zero, the memory location stored in bits_

is no longer accessible by bits_. It is very important not to use bits_ after
packet deallocation. Otherwise, NS2 will encounter a (memory share violation)
runtime error.

The details of function free(Packet*) are shown in Program 8.5. Before
returning a Packet object to the free packet list, we need to make sure that

(i) The packet is in use (i.e., p->fflag_ = 1 in Line 3), since there is no
point in deallocating a packet which has already been deallocated.

(ii) No object is using the packet; the variable ref_count_ is Zero (Line
4), where ref_count_ stores the number of objects which are currently
using the packet.

(iii) The packet is no longer on the simulation time line (i.e., p->uid_<=0 in
Line 5). Deallocating a packet while it is still on the simulation timeline
will cause event mis-sequencing and runtime error. Line 5 asserts that
the event unique ID corresponding to the Packet object p (i.e., p->uid_)
is non-positive, and therefore is no longer on the simulation timeline.7

(iv) The data payload pointer data_ must not point to NULL (p->data_ �=0

in Line 6), when returning the memory occupied by data payload to the
system.

NS2 allows more than one simulation object to share the same Packet

object. To deallocate a packet, NS2 must ensure that the packet is no longer

7 From Fig. 4.2, an event with positive unique ID (e.g, uid is 2 or 6) was scheduled
but has not been dispatched.



8.2 Packet Allocation and Deallocation 167

Program 8.5 Function free of class Packet.

//~/ns/common/packet.h

1 inline void Packet::free(Packet* p)

2 {

3 if (p->fflag_) {

4 if (p->ref_count_ == 0) {

5 assert(p->uid_ <= 0);

6 if (p->data_ != 0) {

7 delete p->data_;

8 p->data_ = 0;

9 }

10 init(p);

11 p->next_ = free_;

12 free_ = p;

13 p->fflag_ = FALSE;

14 } else {

15 --p->ref_count_;

16 }

17 }

18 }

used by any simulation object. Again, NS2 keeps the number of objects shar-
ing a packet in variable ref_count_. If ref_count_>0–meaning an object is
invoking function free(p) while other objects are still using the packet *p,
function free(p) will simply reduce ref_count_ by one, indicating that one
object stops using the packet (Line 15).8 On the other hand, if ref_count_ is
zero–meaning no other object is using the packet, Lines 5–13 will then clear
packet header and data payload, and store the Packet object in the free packet
list.

If all the above four conditions are satisfied, function free(p) will execute
Lines 6–13 in Program 8.5. The schematic diagram for this part is shown in
Fig. 8.4. Line 7 returns the memory used by data payload to the system. Line
8 sets the pointer data_ to zero. Line 10 returns the memory used by packet
header of a packet *p to the system by invoking function init(p) (see Line
5 of Program 8.1). Function free(p) does not set the variable bit_ to zero.
Do not try to access bit_ after this point, since doing so will cause a runtime
error. Lines 11 and 12 place the packet as the first packet on the free packet
list. Finally, Line 13 sets fflag_ to false, indicating that the packet is no
longer in use.

8 If the Packet object is deallocated when ref count > 0, simulation objects may
later try to access the deallocated Packet object and cause a runtime error.



168 8 Packets, Packet Headers, and Header Format

…

Packet

next_bits_ next_data_

Packet 
Header

Data 
Payload

free_
Packet

next_

…

p

Packet

NULL

NULL

Fig. 8.4. The process of returning a packet to the packet free list. The dotted lines
show the action caused by function free of class Packet.

8.3 Packet Header

As a part of a packet, packet header contains packet attributes such as packet
unique ID, and IP address. Again, packet header is stored in variable bits_

of class Packet (see Line 3 of Program 8.1). The variable bits_ is declared
as a string (i.e., a Bag of Bits (BOB)), and has no structure to store packet
attributes. NS2 hence imposes a two-level structure on variable bits_, as
shown in Fig. 8.5.

The first level divides the entire packet header into protocol specific head-
ers. The location of each protocol specific header on bits_ is identified by its
variable offset_. The second level imposes a packet attribute storing struc-
ture on each protocol specific header. On this level, packet attributes are
stored as members of a C++ struct data type.

In practice, a packet contains only relevant protocol specific headers. An
NS2 packet on the other hand includes all protocol specific headers into a
packet header, regardless of packet type. Every packet uses the same amount
of memory to store the packet header. The amount of memory is stored in the
variable hdrlen_ of class Packet in Line 12 of Program 8.1, and is declared
as a static variable. The variable hdrlen_ has no relationship to simulation
packet size. For example, TCP and UPD packets may have different sizes. The
values stored in the corresponding variable hdr_cmn::size_may be different;
however, the values stored in the variable Packet::hdrlen_ for both TCP and
UDP packets are the same.

In the following, we first discuss the first level packet header composition
in Section 8.3.1. Sections 8.3.2 and 8.3.3 shows examples of protocol specific
headers: common packet header and IP packet header. Section 8.3.4 discusses
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Fig. 8.5. Architecture of packet header.

one of the main packet attributes: packet type. Section 8.3.5 explains the
details of protocol specific header (i.e., the second level packet header com-
position). Section 8.3.6 demonstrates how packet attributes stored in packet
header are accessed. Section 8.3.7 discusses one of the main packet header
component, a packet header manager, which maintains the active protocol list
and sets up the offset value for each protocol. Finally, Section 8.3.8 presents
the packet header construction process.

8.3.1 An Overview of First Level Packet Composition: Offseting
Protocol Specific Header on the Packet Header

On the first level, NS2 puts together all relevant protocol specific headers (e.g.,
common header, IP header, TCP header) and composes a packet header (see
Fig. 8.5). Conceptually, NS2 allocates a contiguous part on the packet header
for a protocol specific header. Each protocol specific header is offset from the
beginning of packet header. The distance between the beginning of packet
header and that of a protocol specific header is stored in the member vari-
able offset_ of the protocol specific header. For example, hdr_cmn, hdr_ip,
and hdr_tcp–which represent common header, IP header, and TCP header–
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store their offset values of variables hdr_cmn::offset_, hdr_ip::offset_,
and hdr_tcp::offset_, respectively.

8.3.2 Common Packet Header

Common packet header contains packet attributes which are common to all
packets. It employs C++ struct data type hdr_cmn to indicate how the
packet attributes are stored. Program 8.6 shows a part of hdr_cmn declaration.
The main member variables of hdr_cmn are as follows:

Program 8.6 Declaration of C++ hdr cmn struct data type.

//~/ns/common/packet.h

1 struct hdr_cmn {

2 enum dir_t { DOWN= -1, NONE= 0, UP= 1 };

3 packet_t ptype_; // packet type

4 int size_; // simulated packet size

5 int uid_; // unique id

6 dir_t direction_; // direction: 0=none, 1=up, -1=down

7 static int offset_; // offset for this header

8 inline static hdr_cmn* access(const Packet* p) {

9 return (hdr_cmn*) p->access(offset_);

10 }

11 inline static int& offset() { return offset_; }

12 inline packet_t& ptype() { return (ptype_); }

13 inline int& size() { return (size_); }

14 inline int& uid() { return (uid_); }

15 inline dir_t& direction() { return (direction_); }

16 };

ptype_ The packet type (not the type of protocol specific header).
size_ The packet size. Unlike actual packet transmission, the number

of bits requires to hold a packet has no relationship to simulation
packet size. During simulation, NS2 uses variable hdr_cmn::size_
as the packet size.

uid_ The ID which is unique to every packet.
dir_t The transmitting direction which can be downstream (–1), up-

stream (1), or not-in-use (0). By default, dir_t is set to down-
stream (see Line 20 in Program 8.3).

offset_ The memory location relative to the beginning of packet header
from which the common header is stored (see Section 8.3.1 and
Fig. 8.5).

From Fig. 8.6, most functions of class hdr_cmn act as an interface to access
its variables. Apart from these functions, function access(p) in Lines 8–10
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is perhaps the most important function of hdr_cmn. It is used to access a
protocol specific header of the input Packet object *p. We will discuss the
packet header access mechanism in greater detail in Section 8.3.6.

Program 8.7 Declaration of C++ hdr ip struct data type.

//~/ns/common/ip.h

1 struct hdr_ip {

2 ns_addr_t src_;

3 ns_addr_t dst_;

4 int ttl_;

5 int fid_;

6 int prio_;

7 static int offset_;

8 inline static int& offset() { return offset_; }

9 inline static hdr_ip* access(const Packet* p) {

10 return (hdr_ip*) p->access(offset_);

11 }

12 ns_addr_t& src() { return (src_); }

13 nsaddr_t& saddr() { return (src_.addr_); }

14 int32_t& sport() { return src_.port_;}

15 ns_addr_t& dst() { return (dst_); }

16 nsaddr_t& daddr() { return (dst_.addr_); }

17 int32_t& dport() { return dst_.port_;}

18 int& ttl() { return (ttl_); }

19 int& flowid() { return (fid_); }

20 int& prio() { return (prio_); }

21 };

8.3.3 IP Packet Header

Represented by C++ struct data type hdr_ip, IP packet header contains
information about source and destination of a packet. Program 8.7 shows
a part of hdr_ip declaration. IP packet header contains the following five
main variables which contain IP-related packet information (see Lines 2–6 in
Program 8.7):

src_ Source node’s address of the packet
dst_ Destination node’s address of the packet
ttl_ Time to live for the packet
fid_ Flow ID of the packet
prio_ Priority level of the packet

NS2 utilizes data type ns_addr_t defined in file ˜ns/config.h to store node
address. From Program 8.8, ns_addr_t is a struct data type, which contains
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two members: addr_ and port_. Both members are of type int32_t, which is
simply an alias for int data type (see Line 5 and file ˜ns/autoconf-win32.h).
While addr_ specifies the node address, port_ identifies the attached port (if
any).

Program 8.8 Declaration of C++ ns addr t struct data type, and its
int32 t alias

//~/ns/config.h

1 struct ns_addr_t {

2 int32_t addr_;

3 int32_t port_;

4 };

//~/ns/autoconf-win32.h

5 typedef int int32_t;

The variables src_ and dst_ of IP header are of class ns_addr_t. Hence,
src_.addr_ and src_.port_ store the node address and the port of the send-
ing agent, respectively. Similarly, the packet will be sent to a receiving agent
attached to port dst_.port_ of a node with address dst_.addr_.

Lines 7–11 in Program 8.7 declare variable offset_, function offset(off)

and function access(p), which are essential to access IP header of a packet.
We will discuss the packet access mechanism later in Section 8.3.6. Lines 12–20
in Program 8.7 are functions which return the values of the variables.

8.3.4 Packet Type

Although stored in common header, packet type is attributed to an entire
packet, not to a protocol specific header. Each packet corresponds to only one
packet type but may contain several protocol specific headers. For example, a
packet can be encapsulated by both TCP and IP protocols. However, its type
can be either audio or TCP packet, but not both.

NS2 stores a packet type in a member variable ptype_ of a common
packet header. The type of the variable ptype_ is enum packet_t defined
in Program 8.9. Again, members of enum are integers which are mapped to
strings. From Fig. 8.9, PT_TCP (Line 2) and PT_UDP (Line 3) are mapped to 0
and 1, respectively. Since packet_t declares PT_NTYPE (representing undefined
packet type) as the last member, the value of PT_NTYPE is Np − 1, where Np

is the number of packet_t members. NS2 provides 60 built-in packet types,
meaning the default value of PT_NTYPE is 59.

From Lines 11–30 in Program 8.9, class p_info maps each member of
packet_t to a description string. It has a static associative array variable,
name_ (Line 28). The index and value of name_ are the packet type, and
the corresponding description string, respectively. Class p_info also has one
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Program 8.9 Declaration of enum packet t type and class p info.

//~/ns/common/packet.h

1 enum packet_t {

2 PT_TCP,

3 PT_UDP,

4 PT_CBR,

5 PT_AUDIO,

6 PT_VIDEO,

7 PT_ACK,

8 ...

9 PT_NTYPE // This MUST be the LAST one

10 }

11 class p_info {

12 public:

13 p_info() {

14 name_[PT_TCP]= "tcp";

15 name_[PT_UDP]= "udp";

16 name_[PT_CBR]= "cbr";

17 name_[PT_AUDIO]= "audio";

18 name_[PT_VIDEO]= "video";

19 name_[PT_ACK]= "ack";

20 ...

21 name_[PT_NTYPE]= "undefined";

22 }

23 const char* name(packet_t p) const {

24 if ( p <= PT_NTYPE ) return name_[p];

25 return 0;

26 }

27 private:

28 static char* name_[PT_NTYPE+1];

29 };

30 extern p_info packet_info; /* map PT_* to string name */

important function name(p) (Lines 23–26), which translates a packet_t vari-
able to a description string.

At the declaration, NS2 declares a global variable packet_info (using
extern), which is of class p_info (Line 30). Accessible at the global scope, the
variable packet_info provides an access to function name(p) of class p_info.
To obtain a description string of a packet_t object p, one may invoke

packet_info.name(ptype)

Example 8.1. Class Agent is responsible for creating and destroying network
layer packets (see Chapter 11). It is the base class of TCP and UDP transport
layer protocol modules. Class Agent provides a function allocpkt(), which
is responsible for allocating (i.e., creating) a packet.
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To print out the type of every allocated packet on the screen, we modify
function allocpkt() of class Agent in file ˜ns/common/agent.cc as follows:

//~/ns/common/agent.h

1 Packet* Agent::allocpkt() const

2 {

3 Packet* p = Packet::alloc();

4 initpkt(p);

5 //------- Begin Additional Codes -------------

6 hdr_cmn* ch = hdr_cmn::access(p);

7 packet_t pt = ch->ptype();

8 printf("Example Test: Class Agent allocates a packet

with type %s\n", packet_info.name(pt));

9 getchar();

10 //------- End Additional Codes ---------

11 return (p);

12 }

where Lines 5–10 are added to the original codes. Line 6 retrieves the refer-
ence “ch” to the common packet header (see Section 8.3.6). Line 7 obtains
the packet type stored in the common header by using function ptype(),
and assigns the packet type to variable pt. Note that, variable packet_info

is a global variable of class p_info. When the variable pt is fed as an input
argument, function packet_info.name(pt) returns the description string cor-
responding to the packet_t object “pt” (Line 8).

After re-compiling the code, the simulation should show the type of every
allocated packet on the screen. For example, when running the Tcl simulation
script in Programs 2.1–2.2 provided in Chapter 2, the following result should
appear on the screen:

>> ns myfirst_ns.tcl

Example Test: Class Agent allocates a packet with type cbr

Example Test: Class Agent allocates a packet with type cbr

Example Test: Class Agent allocates a packet with type cbr

.

.

.

8.3.5 Protocol Specific Headers

A protocol specific header stores packet attributes relevant to the underly-
ing protocol only. For example, common packet header holds basic packet
attributes such as packet unique ID, packet size, packet type, and so on. IP
packet header contains IP packet attributes such as source and destination IP
addresses and port numbers. There are 48 classifications of packet headers.
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The complete list of protocol specific headers with their descriptions is given
in [15].

Each protocol specific header involves three classes discussed below.

A Protocol Specific Header C++ Class

In C++, NS2 uses a struct data type to represent a protocol specific header.
It stores packet attributes and its offset value in members of a struct data
type. It also provides a function access(p) which returns the reference to
the protocol specific header of a packet *p. Representing a protocol specific
header, each struct data type is named using format hdr_<XXX>, where XXX

is an arbitrary string representing the type of a protocol specific header. For
example, the C++ class name for common packet header is hdr_cmn.

In the C++ domain, protocol specific headers are declared but not instan-
tiated. Therefore, NS2 uses a struct data type (rather than a class) to rep-
resent protocol specific headers, and no constructor is required for a protocol
specific header. Hereafter, we will refer to struct and class interchangeably.

A Protocol Specific Header OTcl Class

NS2 defines a shadow OTcl class for each C++ protocol specific header class.
An OTcl class acts as an interface to the OTcl domain. It is named with the
format PacketHeader/<XXX>, where XXX is an arbitrary string representing a
protocol specific header. For example, the OTcl class name for common packet
header is PacketHeader/Common.

A Protocol Specific Header Mapping Class

A mapping class is responsible for binding OTcl and C++ class names
together. All the packet header mapping classes derive from class
PacketHeaderClass which is a child class of class TclClass. A mapping
class is named with format <XXX>HeaderClass, where XXX is an arbitrary
string representing a protocol specific header. For example, the mapping class
name for common packet header is CommonHeaderClass.

Program 8.10 shows the declaration of class PacketHeaderClass, which
has two key variables: hrdlen_ in Line 8 and offset_ in Line 9. The variable
hdrlen_ represents the length of the protocol specific header.9 It is the sys-
tem memory needed to store a protocol specific header C++ class. Variable
offset_ indicates the location on packet header where the protocol specific
header is used.

9 While variable hdrlen in class PacketHeaderClass represents the length of a
protocol specific header, variable hdrlen in class Packet represents total length
of packet header.
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Program 8.10 Declaration of class PacketHeaderClass.

//~/ns/common/packet.h

1 class PacketHeaderClass : public TclClass {

2 protected:

3 PacketHeaderClass(const char* classname, int hdrlen) :

4 TclClass(classname), hdrlen_(hdrlen), offset_(0);{};

5 virtual int method(int argc, const char*const* argv);

6 inline void bind_offset(int* off) { offset_ = off; };

7 inline void offset(int* off) {offset_= off;};

8 int hdrlen_; // # of bytes for this header

9 int* offset_; // offset for this header

10 public:

11 TclObject* create(int argc,const char*const* argv){return 0;};

12 virtual void bind(){

13 TclClass::bind();

14 Tcl& tcl = Tcl::instance();

15 tcl.evalf("%s set hdrlen_ %d", classname_, hdrlen_);

16 add_method("offset");

17 };

18 };

The constructor of class PacketHeaderClass in Lines 3–4 takes two input
arguments. The first input argument classname is the name of the corre-
sponding OTcl class name (e.g., PacketHeader/Common). The second one,
hdrlen, is the length of the protocol specific header C++ class. In Lines 3–4,
the constructor feeds classname to the constructor of class TclClass, stores
hdrlen in the member variable hdrlen_, and resets offset_ to zero.

Function method(argc,argv) in Line 5 is an approach to take a C++
action from the OTcl domain. Functions bind_offset(off) in Line 6 and
offset(off) in Line 7 are used to configure and retrieve, respectively, the
value of variable offset_. Function create(argc,argv) in Line 11 does noth-
ing, since no protocol specific header C++ object is ever. It will be overridden
by the derived classes of class PacketHeaderClass. Function bind() in Lines
12–17 glues the C++ class to the OTcl class. Line 13 first invokes function
bind() of class TclClass, which performs the basic binding actions. Line 15
then exports variable hdrlen_ to the OTcl domain. Line 16 registers the OTcl
method offset using function add_method(“offset”).

Apart from the commands discussed in Section 3.4.4, an OTcl method is an-
other way to invoke C++ functions from the OTcl domain. It is implemented
in C++ via the following two steps. The first step is to define a function
method(ac,av). As can be seen from Program 8.11, the structure of func-
tion method is very similar to that of function command. A method “offset”
sets the value of *offset_ to be what specified in the input argument (Line
7 in Program 8.11). The second step in method implementation is to regis-
ter the name of the method by using a function “add_method(str)”, which
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Program 8.11 Function method of class PacketHeaderClass.

//~/ns/common/packet.cc

1 int PacketHeaderClass::method(int ac, const char*const* av)

2 {

3 Tcl& tcl = Tcl::instance();

4 ...

5 if (strcmp(argv[1], "offset") == 0) {

6 if (offset_) {

7 *offset_ = atoi(argv[2]);

8 return TCL_OK;

9 }

10 tcl.resultf("Warning: cannot set

offset_ for %s",classname_);

11 return TCL_OK;

12 }

13 ...

14 return TclClass::method(ac, av);

15 }

takes the method name as an input argument. For class PacketHeaderClass,
the method offset is registered from within function bind(...) (Line 16 of
Program 8.10).

A protocol specific header is implemented using a struct data type, and
hence does not derive function command(...) from class TclObject10. It re-
sorts to OTcl methods defined in the mapping class to take C++ actions from
the OTcl domain. We will show an example use of the method offset later
in Section 8.3.8, when we discuss packet construction mechanism.

Program 8.12 Declaration of class CommonHeaderClass.

//~/ns/common/packet.cc

1 class CommonHeaderClass : public PacketHeaderClass {

2 public:

3 CommonHeaderClass() : PacketHeaderClass("PacketHeader/Common",

sizeof(hdr_cmn)) {

4 bind_offset(&hdr_cmn::offset_);

5 }

6 } class_cmnhdr;

Consider, for example, a common packet header. Its C++, OTcl, and map-
ping classes are hdr_cmn, PacketHeader/Common, and CommonPacketHeader

Class, respectively (see Table 8.1). Program 8.12 shows the declaration of

10 Since NS2 does not instantiate a protocol specific header object, it models a
protocol specific header using struct data type.
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Table 8.1. Classes and objects related to common packet header

Class/Object Name

C++ class hdr_cmn

OTcl class PacketHeader/Common

Mapping class CommonHeaderClass

Mapping variable class_cmnhdr

class CommonPacketHeaderClass. As a child class of TclClass, a class map-
ping variable class_cmnhdr is instantiated at the declaration. Line 3 of the
constructor invokes the constructor of its parent class PacketHeaderClass,
which takes the OTcl class name (i.e., PacketHeader/Common) and the amount
of memory needed to hold the C++ class (i.e., hdr_cmn) as input arguments.
Here, “sizeof (hdr_cmn)” computes such the required amount of memory,
which is fed as the second input argument. In Line 6 of Program 8.10, function
bind_offset(&hdr_cmn::offset_) sets its variable offset_ to share the ad-
dress with the input argument. Therefore, a change in hdr_cmn::offset_will
result in an automatic change in variable *offset_ of class CommonHeader-
Class, and vice versa.

8.3.6 Packet Header Access Mechanism

This section demonstrates how packet attributes stored in packet header can
be retrieved and modified. NS2 employs a two-level packet header structure to
store packet attributes. On the first level, protocol specific headers are stored
within a packet header. On the second level, each protocol specific header
employs a C++ struct data type to store packet attributes. The header
access mechanism consists of two major steps: (1) Retrieve a reference to a
protocol specific header, and (2) Follow the structure of the protocol specific
header to retrieve or modify packet attributes. In this section, we will explain
the access mechanism through common packet header (see the corresponding
class names in Table 8.1).

Retrieving a Reference to Protocol Specific Header

NS2 obtains a reference to a protocol specific header by of a packet *p using
a function access(p) in the C++ class. A reference to the common header of
a Packet object *p can be obtained by executing hdr_cmn::access(p) (see
Example 8.2 below).

Example 8.2. Consider function allocpkt() of class Agent shown in Pro-
gram 8.13, which shows the details of functions allocpkt() and initpkt(p).
Function allocpkt() in Lines 1–6 creates a Packet object and returns a
pointer to the created object to the caller. Function allocpkt() first invokes
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Program 8.13 Functions allocpkt and initpkt of class Agent.

//~/ns/common/agent.cc

1 Packet* Agent::allocpkt() const

2 {

3 Packet* p = Packet::alloc();

4 initpkt(p);

5 return (p);

6 }

7 Packet* Agent::initpkt(Packet* p) const

8 {

9 hdr_cmn* ch = hdr_cmn::access(p);

10 ch->uid() = uidcnt_++;

11 ch->ptype() = type_;

12 ch->size() = size_;

13 ...

14 hdr_ip* iph = hdr_ip::access(p);

15 iph->saddr() = here_.addr_;

16 iph->sport() = here_.port_;

17 iph->daddr() = dst_.addr_;

18 iph->dport() = dst_.port_;

19 ...

20 }

function alloc() of class Packet in Line 3 (see the details in Section 8.2.1).
Then, Line 4 initializes the allocated packet, by invoking function initpkt(p).
Finally, Line 5 returns the pointer p to the initialized Packet object to the
caller.

Function initpkt(p) follows the structure defined in the protocol specific
header C++ classes to set packet attributes to the default values. Lines 9 and
14 in Program 8.13 execute the first step in the access mechanism: retrieve
references to common packet header ch and IP header iph, respectively.

After obtaining pointers ch and iph, Lines 10–12 and Lines 15–18 carry
out the second step in the access mechanism: access packet attributes through
the structure defined in the protocol specific headers. In this step, the relevant
packet attributes such as unique packet ID, packet type, packet size, source
IP address and port, destination IP address and port, are configured through
pointers ch and iph. Note that uidcnt (i.e., uid count) is a static member
variable of class Agentwhich represents the total number of generated packets.
We will discuss the details of class Agent later in Chapter 9.

Figure 8.6 shows an internal mechanism of function hdr_cmn::access(p)

where p is a Packet pointer. When hdr_cmn::access(p) is executed Line 9
in Program 8.6 executes p->access(offset_), where offset_ is the mem-
ber variable of class hdr_cmn, specifying the location on the packet header
allocated to the common header (see also Fig. 8.5). On the right hand side of
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Fig. 8.6. The internal mechanism of function access(p) of the hdr cmn struct

data type, where p is a pointer to a Packet object.

Fig. 8.6, function access(off) simply returns &bits_[off], where bits_ is
the member variable of class Packet storing the packet header. Since hdr_cmn
feeds its variable offset_ as the input argument, function access(offset_)

essentially returns &bits_[hdr_cmn::offset_], which is the reference to the
common header stored in the Packet object *p. This reference is returned as
an unsigned char* variable. Then, class hdr_cmn casts the returned reference
to type hdr_cmn*, and returns it to the caller.

Accessing Packet Attributes in a Protocol Specific Header

After obtaining a reference to a protocol specific header, the second step is to
access the packet attributes according to the structure specified in the protocol
specific header C++ class. Since NS2 declares a protocol specific header as a
struct data type, it is fairly straightforward to access packet attributes once
the reference to the protocol specific header is obtained (see Example 8.2).

8.3.7 Packet Header Manager

A packet header manager is responsible for keeping the list of active protocols
and setting the offset values of all the active protocols. It is implemented
using a C++ class PacketHeaderManager which is bound to an OTcl class
with the same name. Program 8.14 and Fig. 8.7 show the declaration of the
C++ class PacketHeaderManager as well as the corresponding binding class,
and the diagram of the OTcl class PacketHeaderManager, respectively.
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Program 8.14 Declarations of C++ class PacketHeaderManager and map-
ping class PacketHeaderManagerClass.

//~/ns/common/packet.cc

1 class PacketHeaderManager : public TclObject {

2 public:

3 PacketHeaderManager() {bind("hdrlen_", &Packet::hdrlen_);}

4 };

5 static class PacketHeaderManagerClass : public TclClass {

6 public:

7 PacketHeaderManagerClass() : TclClass("PacketHeaderManager") {}

8 TclObject* create(int, const char*const*) {

9 return (new PacketHeaderManager);

10 }

11 } class_packethdr_mgr;

The C++ class PacketHeaderManager has only one constructor (Line 3)
and has neither variables nor functions. The constructor binds the instvar
hdrlen_ of OTcl class PacketHeaderManager to variable hdrlen_ of class
Packet (see also Fig. 8.1). The OTcl class PacketHeaderManager has two
main instvars: hdrlen_ and tab_. Instvar hdrlen_ stores the length of packet
header. It is initialized to zero in Line 1 of Program 8.15, and is incremented
as protocol specific headers are added to the packet header. Representing the
active protocol list, instvar tab_ (Line 2 in Program 8.16) is an associative
array whose indexes are protocol specific header OTcl class names and values
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Fig. 8.7. Architecture of an OTel PacketHeaderManager object.
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Program 8.15 Initialization of a PacketHeaderManager object.

//~/tcl/ns-packet.tcl

1 PacketHeaderManager set hdrlen_ 0

2 foreach prot {

3 Common

4 Flags

5 IP

6 ...

7 } {

8 add-packet-header $prot

9 }

10 proc add-packet-header args {

11 foreach cl $args {

12 PacketHeaderManager set tab_(PacketHeader/$cl) 1

13 }

14 }

Program 8.16 Function create packetformat of class Simulator and func-
tion allochdr of class PacketHeaderManager.

//~/tcl/ns-packet.tcl

1 Simulator instproc create_packetformat { } {

2 PacketHeaderManager instvar tab_

3 set pm [new PacketHeaderManager]

4 foreach cl [PacketHeader info subclass] {

5 if [info exists tab_($cl)] {

6 set off [$pm allochdr $cl]

7 $cl offset $off

8 }

9 }

10 $self set packetManager_ $pm

11 }

12 PacketHeaderManager instproc allochdr cl {

13 set size [$cl set hdrlen_]

14 $self instvar hdrlen_

15 set NS_ALIGN 8

16 set incr [expr ($size + ($NS_ALIGN-1)) & ~($NS_ALIGN-1)]

17 set base $hdrlen_

18 incr hdrlen_ $incr

19 return $base

20 }
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are 1 if the protocol specific header is active (see Line 12 in Program 8.5).
If the protocol specific header is inactive, the corresponding value of tab_
will not be available (i.e., NS2 unsets all entries corresponding to inactive
protocol specific headers; see Line 7 in Program 8.20).

8.3.8 Protocol Specific Header Composition and Packet Header
Construction

Packet header is constructed through the following three-step process:

Step 1: At the Compilation Time

During the compilation, NS2 translates all C++ codes into an executable file.
It sets up all necessary variables (including the length of all protocol specific
headers) for all built-in protocol specific headers, and includes all built-in
protocol specific headers into the active protocol list. There are three main
tasks in this step.

Task 1: Construct all mapping variables, configure the variable hdrlen , and
register the OTcl class name, and binds the offset value

Since all mapping variables are instantiated at the declaration, they are con-
structed during the compilation using their constructors. As an example,
consider the common packet header11 whose construction process shown in
Fig. 8.8 proceeds as follows:

1. Store the corresponding OTcl class name (e.g., PacketHeader/Common) in
the variable classname_ of class TclClass.

2. Determine the size (using function sizeof (...)) of the protocol specific
header, and store it in the variable hdrlen_ of class PacketHeaderClass.

3. Bind the variable PacketHeader:: offset_ to that of the C++ class
hdr_cmn.

Task 2: Invocation of function bind() of class TclClass which exports the
variable hdrlen

The main NS2 function (i.e., main(argc,argv)) invokes function init(...)

of class Tcl, which in turn invokes function bind() of class TclClass of all
mapping variables. Function bind() registers and binds an OTcl class name
to the C++ domain (see file ˜tclcl/Tcl.cc). This function is overridden by
class PacketHeaderClass.

11 NS2 repeats the following process for all protocol specific headers. For brevity,
we show the construction process through common packet header only.
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CommonHeaderClass class_cmnhdr;

CommonHeaderClass

  ::CommonHeaderClass()

PacketHeaderClass(

     “PacketHeader/Common”,

     sizeof(hdr_cmn)     )

bind_offset(&hdr_cmn::offset_)

PacketHeaderClass

    ::PacketHeaderClass

              (classname,hdrlen)

TclClass(classname)

hdrlen_(hdrlen)

offset_(0)

PacketHeaderClass::bind_offset(off)

offset_ = off;

return

PacketHeader/Common (OTcl Class)

hdr_cmn (C++ Class)

offset_

Fig. 8.8. Construction of the static mapping variable class cmnhdr.

As shown in Lines 12–17 of Program 8.10, class PacketHeaderClass over-
rides function bind() of class TclClass. Line 13 first invokes the function
bind() of class TclClass. Line 15 exports the variable hdrlen_ to the OTcl
instvar with the same name. Finally, Line 16 registers the OTcl method
offset.

In case of class CommonHeaderClass,classname_ is PacketHeader/Common
and hdrlen_ is 104 bytes. Therefore, Line 15 of Program 8.10 executes the
following command in the OTcl domain:

PacketHeader/Common set hdrlen_ 104

which sets instvar hdrlen_ of class PacketHeader/Common to be 104. Note
that this instvar hdrlen_ is not bound to the C++ domain.

After Task 1 and Task 2 are completed, the related protocol specific
classes, namely, hdr_cmn, PacketHeader/Common, and CommonHeaderClass,
would be as shown in Fig. 8.9. The mapping object class_cmnhdr is of
class CommonHeaderClass, which derives from classes PacketHeaderClass

and TclClass, respectively. It inherits variables classname_, hdrlen_, and
offset_ from its parent classes. After object construction is complete, vari-
able classname_ will store the name of the OTcl common header class (i.e.,
PacketHeader/Common), hdr_len_ will store the amount of memory in bytes
needed to store common header, and offset_will point to hdr_cmn::offset_.
Here, variable offset_ of class CommonHeaderClass only points to vari-
able offset_ of class hdr_cmn. However, at this moment, the offset value
is set to zero. The dashed arrow in Fig. 8.9 indicates that the value of vari-
able hdr_cmn::offset_ will be later set to store an offset from the begin-
ning of a packet header to the point where the common packet header is
stored. Also, after function Tcl::init() invokes function bind() of class



8.3 Packet Header 185

Fig. 8.9. A schematic diagram of a static mapping object class cmnhdr, class
hdr cmn, class PacketHeader/Common, and class Packet.

PacketHeaderClass, instvar hdrlen_ of class PacketHeader/Common will
store the value of variable hdrlen_ of class CommonHeaderClass. Note that
tasks and 2 only set up C++ OTcl class, and mapping class. However, the
packet header manager is not configured at this phase.

Task 3: Sourcing the file ˜ns/tcl/lib/ns-packet.tcl to setup an active protocol
list

As discussed in Section 3.7, NS2 sources all scripting Tcl files during the
compilation process. In regards to packet header, Program 8.15 shows a part
of the file ˜ns/tcl/lib/ns-packet. Here, Line 8 invokes procedure add-packet-
header{prot} for all built-in protocol specific headers indicated in Lines 3–6.
In Line 12, this procedure sets the value of the associated array tab_ whose
index is the input protocol specific header name to be 1.

Step 2: During the Network Configuration Phase

In regards to packet header construction, the main task in the Network Con-
figuration Phase is to setup variables offset_ of all active protocol specific
headers and formulate a packet header format. Subsequent packet creation
will follow the packet format created in this step.
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The offset configuration process takes place during the simulator construc-
tion. From Line 2 of Program 4.11, the constructor of the simulator invokes
instproc create_packetformat{} of class Simulator shown in Program 8.16.

Instproc create_packetformat{} creates a PacketHeaderManager ob-
ject pm (Line 3), computes the offset value of all active protocol specific
headers using instproc allochdr{cl} (Line 6), and configures the offset val-
ues of all protocol specific headers (Line 7). The foreach loop in Line 4
runs for all built-in protocol specific headers which are child classes of class
PacketHeader. Then Line 5 filters out those which are not in the active pro-
tocol list (see Section 8.3.7). Lines 6–7 are executed for all active protocol
specific headers specified in variable tab_ (which was configured in Step 1 –
Task 3) of the PacketHeaderManager object “pm”. Line 7 configures offset
values by using the OTcl method offset (see Program 8.11) of protocol spe-
cific header mapping classes. The OTcl method offset stores the input argu-
ment in variable *offset_ of the protocol specific header mapping class (e.g.,
CommonHeaderClass).

Lines 12–19 in Program 8.16 and Fig. 8.10 show the OTcl source codes
and the diagram, respectively, of the instproc allochdr{cl} of an OTcl
class PacketHeaderManager. Instproc allochdr{cl} takes one input argu-
ment “cl” (in Line 12) which is the name of a protocol specific header, and
returns the offset value corresponding to the input argument “cl”. Line 13
stores header length of a protocol specific header “cl”(e.g., variable hdrlen_

Fig. 8.10. A diagram representing instproc allochdr of class
PacketHeaderManager. Line numbers shown on the left correspond to the
lines in Program 8.16. The action corresponding to each line is shown on the right.
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of class PacketHeader/Common) in a local variable size.12 Based on size,
Lines 15–16 compute the amount of memory “incr” needed to store the
header based on size.13 Line 17 stores the current packet header length (ex-
cluding the input protocol specific header) in a local variable “base”. Since
“base” is an offset distance from the beginning of packet header to the input
protocol specific header, it is returned to the caller as the offset value in Line
19. Finally, Line 18 increases the header length (i.e., the instvar hdrlen_ of
class PacketHeaderManager) by “incr”.

During the Simulator construction, the packet header manager also up-
dates its variable hdrlen_ (Line 19 in Program 8.16). Note that the instvar
hdrlen_ of class PacketHeaderManager was set to zero at the compilation
(Line 1 in Program 8.15). As Lines 6–7 in Program 8.16 repeat for every
protocol specific header, the offset value is added to the instvar hdrlen_ of
an OTcl class PacketHeaderManager. At the end, the instvar hdrlen_ will
represent the total header length, which embraces all protocol specific headers.

Step 3: During the Simulation Phase

During the Simulation Phase, NS2 creates packets based on the format defined
in the former two steps. For example, an Agent object creates and initializes a
packet using its function allocpkt(). Here, a packet is created using function
alloc() of class Packet, and initialized using function initpkt(p) of class
Agent. Again, function alloc() takes a packet from the free packet list, if
it is non-empty. Otherwise, it will create a new packet using new. After re-
trieving a packet, it clears the values stored in the packet header and data
payload. Function initpkt(p) assigns default values to packet attributes such
as packet unique ID, packet type, and packet size (see Program 8.13). The
initialization is performed by retrieving a reference (e.g., ch) to the relevant
protocol specific header and accessing packet attributes using the predefined
structure.

8.4 Data Payload

Implementation of data payload in NS2 differs from actual data payload. In
practice, user information is transformed into bits, and are stored into data
payload. Such a transformation is not necessary in simulation, since NS2 stores
the user information in the packet header. NS2 rarely needs to maintain data
payload. In Line 11 of Program 7.3, packet transmission time, i.e., the time

required to send out a packet, is computed as
packet size
bandwidth

. Class LinkDelay

12 Variable hdrlen of a protocol specific header OTcl class was configured in Step
1 – Task 2.

13 Variable “incr” could be greater than size, depending on the underlying hard-
ware.
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determines the size of a packet by hdr_cmn::size_ (not by counting the
number of bits stored in packet header and data payload) to compute packet
transmission time. In most cases, users do not need to explicity deal with data
payload.

Program 8.17 Declaration of enum AppDataType and class AppData.

//~/ns/common/ns-process.h

1 enum AppDataType {

2 ...

3 PACKET_DATA,

4 HTTP_DATA,

5 ...

6 ADU_LAST

7

8 };

9 class AppData {

10 private:

11 AppDataType type_; // ADU type

12 public:

13 AppData(AppDataType type) { type_ = type; }

14 AppData(AppData& d) { type_ = d.type_; }

15 virtual ~AppData() {}

16 AppDataType type() const { return type_; }

17 virtual int size() const { return sizeof(AppData); }

18 virtual AppData* copy() = 0;

19 };

NS2 also provides a support to hold data payload. In Line 4 of Program 8.1,
class Packet provides a pointer data_ to an AppData object.14 Program 8.17
shows the declaration of an abstract class AppData. Class AppData has only
one member variable type_ in Line 11. Among its functions, and one is a pure
virtual function copy() shown in Line 18. Indicating the type of application,
variable type_ is of type enum AppDataType defined in Lines 1–8. Function
copy() duplicates an AppData object to a new AppData object. It is a pure
virtual function, and must be overridden by child instantiable classes of class
AppData. Function size() in Line 17 returns the amount of memory required
to store an AppData object.

Class AppData provides two constructors. One is in Line 13, where the
caller feeds an AppData type as an input argument. Another is in Line 14,
where a reference to a AppData object is fed as an input argument. In both
the cases, the constructor simply sets the variable type_ to a value as specified
in the input argument.

14 However, no memory is allocated to the AppData object unless it is needed.
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Program 8.18 Declaration of class PacketData.

//~/ns/common/packet.h

1 class PacketData : public AppData {

2 private:

3 unsigned char* data_;

4 int datalen_;

5 public:

6 PacketData(int sz) : AppData(PACKET_DATA) {

7 datalen_ = sz;

8 if (datalen_ > 0)

9 data_ = new unsigned char[datalen_];

10 else

11 data_ = NULL;

12 }

13 PacketData(PacketData& d) : AppData(d) {

14 datalen_ = d.datalen_;

15 if (datalen_ > 0) {

16 data_ = new unsigned char[datalen_];

17 memcpy(data_, d.data_, datalen_);

18 } else

19 data_ = NULL;

20 }

21 virtual ~PacketData() {

22 if (data_ != NULL)

23 delete []data_;

24 }

25 unsigned char* data() { return data_; }

26 virtual int size() const { return datalen_; }

27 virtual AppData* copy() { return new PacketData(*this); }

28 };

Program 8.18 shows the declaration of class PacketData, a child class
of class AppData. This class has two new member variables: data_ (a string
variable which stores data payload) in Line 3 and datalen_ (the length of
data_) in Line 4. Line 25 defines a function data() which simply returns
data_. Lines 26 and 27 override the virtual functions size() and copy(), re-
spectively, of class AppData. Function size() simply returns datalen_, while
function copy() creates a new PacketData object which has the same con-
tent as the current PacketData object, and returns the pointer to the created
object to the caller.

Class PacketData has two constructors. One is to construct a new object
with size “sz”, using the constructor in Lines 6–12. This constructor simply
sets the default application data type to be PACKET_DATA (Line 6), stores “sz”
in datalen_ (Line 7), and allocates memory of size datalen_ to data_ (Line
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9). Another construction method15 is to create a copy of an input PacketData
object (Lines 13–20). In this case, the constructor feeds an input PacketData
object “d” to the parent class (Line 13), copies the variable datalen_ (Line
14), and duplicates its data payload (Line 17).16

NS2 creates a PacketData object through two functions of class Packet:
alloc(n) and allocdata(n). In Program 8.4, function alloc(n) allocates a
packet in Line 3, and creates data payload using function allocdata(n) in
Line 5. Function allocdata(n) creates a PacketData object of size “n”, by
executing new PacketData(n) in Line 11.

Program 8.19 Functions accessdata, userdata, setdata and datalen of
class Packet.

//~/ns/common/packet.h

1 class Packet : public Event {

2 ...

3 public:

4 inline unsigned char* accessdata() const {

5 if (data_ == 0)

6 return 0;

7 assert(data_->type() == PACKET_DATA);

8 return (((PacketData*)data_)->data());

9 }

10 inline AppData* userdata() const {return data_;}

11 inline void setdata(AppData* d) {

12 if (data_ != NULL)

13 delete data_;

14 data_ = d;

15 }

16 inline int datalen() const { return data_ ? data_->size() : 0; }

17 ...

18 };

Program 8.19 shows four functions which can be used to manipulate data
payload. Functions accessdata() (Lines 4–9) and userdata() (Line 10) are
both data payload access functions. The difference is that accessdata() re-
turns a direct pointer to a string data_ which contains data payload while
userdata() returns a pointer to an AppData object which contains data pay-
load. Function setdata(d) (Lines 11–15) sets the pointer data_ to point to
the input argument “d”. Finally, function datalen() in Line 16 returns the
size of data payload.

15 Function copy() in Line 27 employs this constructor to create a copy of a
PacketData object.

16 Function memcpy(dst,src,num)) copies “num” data bytes from the location
pointed by “src” to the memory block pointed by “dst”.
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8.5 Customizing Packets

8.5.1 Creating Your Own Packet

When designing a new protocol, a user may need to change the packet format.
This section gives a guideline of how packet header, data payload, or both
can be modified. Note that, it is recommended not to use data payload in
simulation. If possible, include information related to the new protocol in a
protocol specific header.

Defining a New Packet Header

Suppose we would like to include a new protocol specific header, namely
“My Header”, into the packet header. We need to define a C++ class (e.g.,
hdr_myhdr), an OTcl class (e.g., PacketHeader/MyHeader), and a mapping
class (e.g., MyHeaderClass) for My Header, and include the OTcl class into
the active protocol list. In particular, we need to perform the following four
steps:

• Step 1: Define a protocol specific header C++ struct hdr_myhdr (e.g.,
see Program 8.6).
– Declare variable offset_.
– Define function access(p) (see Lines 8–10 in Program 8.6).
– Include all member variables required to hold new packet attributes.
– [Optional] Include a new packet type into enum packet_t and class

p_info (e.g., see Program 8.9). Again, a new packet type does not
need to be added for every new protocol specific header.

• Step 2: Define a protocol specific header OTcl class PacketHeader/MyHe
ader.

• Step 3: Derive a mapping class MyHeaderClass from class PacketHeader
Class (e.g, see class CommonHeaderClass in Program 8.12).
– At the construction, feed the corresponding OTcl class name (i.e.,

PacketHeader/MyHeader) and the size needed to hold the protocol
specific header (i.e., sizeof(hdr_myhdr)) to the constructor of class
PacketHeaderClass (e.g., see Line 3 in Program 8.12).

– From within the constructor, invoke function bind_offset(...) feed-
ing the address of the variable offset_ of the C++ struct data type as
an input argument. (i.e., invoke bind_offset(&hdr_myhdr::offset_)).

– Instantiate a mapping variable class_myhdr at the declaration.
• Step 4: Activate My Header by including class PacketHeader/MyHeader

into the active protocol list. The simplest way is to modify Lines 2–9 of
Program 8.15 as follows:

foreach prot {

Common

Flags
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...

MyHeader

} {

add-packet-header $prot

}

where only the suffix of the new protocol specific header (i.e., MyHeader)
is added to the foreach loop.

Defining a New Data Payload

Data payload can be created in four levels:

(i) None: NS2 rarely uses data payload in simulation. To avoid any compli-
cacy, it is suggested not to use data payload in simulation.

(ii) Use class PacketData: The simplest form of storing data payload is to use
class PacketData (see Program 8.18). Class Packet has a variable data_
whose class is PacketData and provides functions (in Program 8.19) to
manipulate the variable data_.

(iii) Derive a class (e.g., class MyPacketData) from class PacketData: This
option is suitable when new functionalities (i.e., functions and variables)
in addition to those provided by class PacketData are needed. After
deriving a new PacketData class, a user may also derive a new class (e.g.,
class MyPacket) from class Packet, and override the variable data_ of
class Packet to be a pointer to a MyPacketData object.

(iv) Define a new data payload class: A user can also define a new payload
type if needed. This option should be used when the new payload has
nothing in common with class PacketData. The followings are the main
tasks needed to define and use a new payload type MY_DATA.
• Include the new payload type (e.g., MY_DATA) into enum AppDataType

data type (see Program 8.17).
• Derive a new payload class MyData from class AppData.

– Feed the payload type MY_DATA to the constructor of class AppData.
– Include any other necessary functions and variables.
– Override functions size() and copy().

• Derive a new class MyPacket from class Packet
– Declare a variable of class MyData to store data payload.
– Include functions to manipulate the above MyData variable.

8.5.2 Activate/Deactivate a Protocol Specific Header

By default, NS2 includes all built-in protocol specific headers into packet
header (see Program 8.15). This inclusion can lead to unnecessary wastage of
memory especially in a packet-intensive simulation, where numerous packets
are created. For example, common, IP, and TCP headers together use only
0.1 kB, while the default packet header consumes as much as 1.9 kB [15].
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Again, NS2 does not return the memory allocated to a Packet object until
the simulation terminates. Selectively including protocol specific header can
lead to huge memory saving.

The packet format is defined when the Simulator is created. Therefore, a
protocol specific headers must be activated/deactivated prior to the creation
of the Simulator. NS2 provides the following OTcl procedures to activate/
deactivate protocol specific headers:

• To add a protocol specific header PacketHeader/MH1, execute

add-packet-header MH1

In Lines 10–14 of Program 8.15, the above statement includes PacketHe-
ader/MH1 to the variable tab_ of class PacketHeaderManager.

• To remove a protocol specific header PacketHeader/MH1 from the active
list, execute

remove-packet-header MH1

The details of procedure remove-packet-header{args} are shown in
Lines 1–9 of Program 8.20. From Line 7, the above statement removes
the entries with index PacketHeader/MH1 from the variable tab_ of class
PacketHeaderManager.

Program 8.20 Procedures remove-packet-header, and
remove-all-packet-header.

//~/tcl/ns-packet.tcl

1 proc remove-packet-header args {

2 foreach cl $args {

3 if { $cl == "Common" } {

4 warn "Cannot exclude common packet header."

5 continue

6 }

7 PacketHeaderManager unset tab_(PacketHeader/$cl)

8 }

9 }

10 proc remove-all-packet-headers {} {

11 PacketHeaderManager instvar tab_

12 foreach cl [PacketHeader info subclass] {

13 if { $cl != "PacketHeader/Common" } {

14 if [info exists tab_($cl)] {

15 PacketHeaderManager unset tab_($cl)

16 }

17 }

18 }

19 }
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• To remove all protocol specific headers, execute

remove-all-packet-header

In Lines 10–19 of Program 8.20, the procedure remove-all-packet-

header{} uses foreach to remove all protocol specific headers (except
for common header) from the active protocol list (i.e., the instvar tab_).

8.6 Chapter Summary

Consisting of packet header and data payload, a packet is represented by
a C++ class Packet. Class Packet consists of pointers bits_ to its packet
header and data_ to its data payload. It employs a pointer next_ to form
a linked list of packets. It also has a pointer free_ which points to the first
Packet object on the free packet list. When a Packet object is no longer in use,
NS2 stores the Packet object in the free packet list for future reuse. Again,
Packet objects are not destroyed until the simulation terminates. When allo-
cating a packet, NS2 first tries to take a Packet object from the free packet
list. Only when the free packet list is empty, will NS2 create a new Packet

object.
During simulation, NS2 usually stores relevant user information (e.g.,

packet size) in packet header, and rarely uses data payload. It is recommended
not to use data payload if possible, since storing all information in packet
header greatly simplifies the simulation yet yields the same simulation results.

Packet header consists of several protocol specific headers. Each protocol
specific header occupies a contiguous part in packet header, and identifies the
occupied location by using its variable offset_. NS2 employs a packet header
manager (represented by an OTcl class PacketHeaderManager) to maintain
a list of active protocols, and define packet header format using the list when
the Simulator is created. The packet header construction process proceeds in
the three following steps:

(i) At the Compilation: NS2 defines the following three classes for each of
protocol specific headers:
• A C++ class: NS2 uses C++ struct data type to define how packet

attributes are stored in a protocol specific header. One of the impor-
tant member variables is offset_, which indicates the location of the
protocol specific header on the packet header.

• An OTcl class: During the Network Configuration Phase, the packet
header manager configures packet header from the OTcl domain. It
accesses a protocol specific header from the OTcl class which acts as
an interface from the OTcl to the C++ domains.

• A mapping class: A mapping class binds the OTcl and C++ class
together. It declares a method offset, which is invoked by a packet
header manager from the OTcl domain to configure the value of vari-
able offset_ of the C++ class PacketHeaderClass.
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In this step, NS2 also stores all built-in protocol specific headers in instvar
tab_ of class PacketHeaderManager,which represents the active protocol
list.

(ii) At the Network Configuration Phase: A user may add/remove protocol
specific headers to/from the active protocol list. When the Simulator is
created, the packet header manager computes and assigns appropriate
offset values to all protocol specific headers specified in the active list.

(iii) At the Simulation Phase: NS2 follows the above packet header definitions
when allocating a packet.
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Transport Control Protocols Part 1 – An

Overview and User Datagram Protocol
implementation

A typical communication system consists of applications, transport layer
agents, and a low level network. An application models user demand to trans-
mit data. Taking user demand as an input, a sending transport layer agent
creates packets and forwards them to the associated receiving transport layer
agent through a low-level network. Having discussed the details of low level
networks in Chapters 5–7, the details of transport layer agents are presented
here in Chapters 9–10. Also, the details of applications will be presented in
Chapter 11.

This chapter provides an overview of transport layer agents, and shows
NS2 implementation of User Datagram Protocol (UDP) agents. In particu-
lar, Section 9.1 introduces two most widely used transport control protocols:
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
Section 9.2 explains NS2 implementation of basic agents. Section 9.3 shows the
implementation of UDP agents and Null agents. Finally, the chapter summary
is given in Section 9.4.

9.1 UDP and TCP Basics

9.1.1 UDP Basics

Defined in [18] and [19], User Datagram Protocol (UDP) is a connectionless
transport-layer protocol, where no connection setup is needed prior to data
transfer. UDP offers minimal transport layer functionalities – non-guaranteed
data delivery – and gives applications a direct access to the network layer.
Aside from the multiplexing/demultiplexing functions and some light error
checking, it adds nothing to IP packets. In fact, if the application developer
employs UDP as a transport layer protocol, then the application is communi-
cating almost directly with the network layer.

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,
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UDP takes messages from an application process, attaches source and
destination port for the multiplexing/demultiplexing service, adds two other
fields of error checking and length information, and passes the resulting packet
to the network layer [19]. The network layer encapsulates the UDP packet
into a network layer packet and then delivers the encapsulated packet at
the receiving host. When a UDP packet arrives at the receiving host, it is
delivered to the receiving UDP agent identified by the destination port field
in the packet header.

9.1.2 TCP Basics

As shown in Fig. 9.1, Transmission Control Protocol (TCP) [20] is a connection-
oriented reliable transport protocol consisting of three phases of operations:
connection setup, data transfer, and connection termination. In the connection
setup phase, a TCP sender initiates a three-way handshake (i.e., sending SYN,
SYN-ACK, and ACK messages). After a connection is established, TCP enters
the data transfer phase where a TCP sender transfer data to a TCP receiver.
Finally, after the data transfer is complete, TCP tears down the connection in
the connection termination phase by using a four-way handshake (i.e., sending
two pairs of FIN-ACK messages.)

…

SYN

SYN-ACK

ACK

FIN

ACK

ACK

FIN

DATA TRANSFER
PHASE

CONNECTION
SETUP
PHASE

CONNECTION
TERMINATION

PHASE

Fig. 9.1. Main phases of TCP operation: Connection setup, data transfer, and
connection termination.
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The main operation of TCP lies in the data transfer phase, which
implements two following mechanisms: (1) Error control using basic acknowl-
edgement and timeout, and (2) Congestion control using a window-based
mechanism.

Error Control Using Basic Acknowledgement and Timeout

As a reliable transport layer protocol, TCP provides connection reliability by
means of acknowledgement (ACK). For every received packet, a TCP receiver
returns an ACK packet to the sender. If an ACK packet is not received within
a given timeout value, the TCP sender will assume that the packet is lost, and
will retransmit the lost packet. Note that in the literature, a timeout period
is also referred to as Retransmission TimeOut (RTO). Hereafter, we will refer
to these two terms interchangably.

TCP employs a cumulative acknowledgement mechanism. With this mech-
anism, a TCP receiver always acknowledges to the sender with the highest
sequence number up to which all packets have been successfully received. For
example, in Fig. 9.2, packet 3 is lost. Therefore, the TCP receiver returns ACK
for packet 2 (A2) even when packets 4, 5, and 6 have been received. These
ACK packets (e.g., A2), which acknowledge the same TCP packet (e.g., packet
2), are referred to as the duplicated acknowledgement packets. From Fig. 9.2,
the TCP sender does not receive an ACK packet which acknowledges packet
3. After a period of RTO, the sender will assume that packet 3 was lost and
will retransmit packet 3.

1

A1

3TCP Sender

TCP Receiver

2 3 4 5 6

A2 A2 A2A2

RTO

Fig. 9.2. An example of TCP error control using acknowledgement: A TCP sender
realizes the loss of TCP packet number 3 after transmitting the packet number 3
for a period of RTO (ie., timeout).

The RTO value is optimized according to the following tradeoff: a small
RTO value leads to unnecessary packet retransmission while a large RTO
value results in high latency of packet loss detection. In general, an RTO
value should be a function of network Round-Trip Time (RTT), which is the
time required for a data bit to travel from a source node to the destination
node and travel back to the source node. Due to network dynamics, RTT of
one packet could be different from that of another. In TCP, smoothed (i.e.,
average) RTT (t) and RTT variation (σt) are computed based on the collected
RTT samples, and are used to compute the RTO value.

According to [21], instantaneous smoothed RTT, RTT variation, and in-
stantaneous RTO are computed as follows. Let t(k) be the kth RTT sample
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collected upon ACK reception. Also, let t(k), σt(k), and RTO(k) be the val-
ues of t, σt, and RTO, respectively, when the kth RTT sample is determined.
Then,

t(k + 1) = α × t(k) + (1 − α) × t(k + 1), (9.1)

σt(k + 1) = β × σt(k) + (1 − β) × |t(k + 1) − t(k + 1)|, (9.2)

RTO(k + 1) = min{ub, max{lb, γ × [t(k + 1) + 4 × σt(k + 1)]}} (9.3)

where ub and lb are fixed upper and lower bounds on the RTO value. The
constants α ∈ (0, 1) and β ∈ (0, 1) are usually set to 7/8 and 3/4, respectively.
The variable γ is a binary exponential backoff (BEB) factor. It is initialized
to 1, and doubled for every timeout event, and is reset to 1 when a new ACK
packet arrives.

Window-Based Congestion Control

A transport layer protocol is also responsible for network congestion. It limits
the transmission rate of a data flow to help control network congestion. As a
window-based congestion control protocol, TCP limits the transmission rate
by adjusting the congestion window (i.e., transmission window) which basi-
cally refers to the amount of data that a sender can transmit without waiting
for acknowledgement. For example, the congestion window size of the TCP
connection in Fig. 9.2 is initialized to 4. Therefore, the TCP sender pauses
after sending packets 1–4. After receiving ACK corresponding to packet 1 (i.e.,
A1), the number of unacknowledged packets becomes 3 and TCP is able to
send out packet 5.

Congestion window refers to a range of sequence numbers of TCP packets
which can be transmitted at a moment. For example, the congestion window
at the beginning of Fig. 9.2 is {1, 2, 3, 4} and the congestion window size is
4. When A1 is received, the congestion window becomes {2, 3, 4, 5}. In this
case, we say that the congestion window slides to the right. Suppose that the
congestion window changes to {2, 3, 4, 5, 6} (the size is 5). In this case, we
say that the congestion window is opened by one unit. On the contrary, if
the window becomes {2, 3, 4}, we say the congestion window is closed by one
unit. Again, a larger window size allows the sender to transmit more data in
a given interval implying a higher transmission rate at the transport layer.
TCP increases and decreases its transmission rate by opening and closing its
congestion window.

Window Increasing Mechanism

One of the key features of TCP is network-based rate adaptability. TCP slowly
opens its congestion window to fill up the underlying network, when the net-
work is underutilized. When the network is overutilized, TCP rapidly closes
the congestion window to help relieve the congestion. TCP window opening
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mechanism consists of two phases, each of which is identified by the current
congestion window size (w) and a slow-start threshold (wth):

(i) Slow-start phase: If w < wth, TCP increases w by one for every received
ACK packet.

(ii) Congestion avoidance phase: If w ≥ wth, TCP increases w by 1
w(t) for

every received ACK packet.

Note that, TCP receiver may advertise its maximum window size (wmax)
which does not fill its buffer too rapidly. This wmax acts as an upper-bound
for the above window increasing mechanism. In NS2, congestion window (ω)
evolves according to the above two phases, regardless of ωmax. However, TCP
uses the minimum of ω and ωmax to determine amount of data it can transmit.

Packet Loss Detection Mechanism

In the literature, various TCP variants use different combinations of the fol-
lowing packet loss detection mechanisms:

• Timeout: As discussed earlier, TCP starts its retransmission timer for
every transmitted packet, and assumes a packet loss upon timer expiration.

• Fast Retransmit: By default, an RTO has granularity of 0.5 seconds,
which could lead to large latency in packet loss detection. Fast Retransmit
expedites the packet loss detection by means of duplicated acknowledge-
ment detection. Upon detection of the kth (which is equal to 3 by default)
duplicated acknowledgement (excluding the first one which is a new ac-
knowledgement), the TCP sender stops waiting for the timeout, assumes
a packet loss, and retransmits the lost packet. From Fig. 9.2, if the fast
retransmit mechanism is used, the TCP sender will assume that packet 3
is lost and retransmits packet 3 upon receiving the 4th A2 packet (i.e., the
3rd duplicated acknowledgement). Note that based on the cumulative ac-
knowledgement principle, upon receiving the retransmitted packet 3, TCP
receiver sends A6 back to the sender, since packets 4, 5, and 6 have been
successfully received earlier.

Window Decreasing Mechanism

Originally conceived to combat congestion in a wired network, TCP assumes
that all packet losses occurs due to congestion (i.e., buffer overflow at the
routers in the network). It reacts to every packet loss by reducing its transmis-
sion rate (or window size) to lessen the congestion. The following approaches
are among the most popular window decreasing mechanisms for a TCP variant
used in the literature.

• Reset to 1: Conventionally, TCP reacts to packet loss by resetting the
window size to 1, and setting the slow-start threshold to half of the current
congestion window size. However, this option is usually deemed too radical
and could lead to TCP throughput degradation in presence of random
packet loss.
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• Fast Recovery: Upon detection of a packet loss, the fast recovery mech-
anism sets both current window size and slow-start threshold to half of
the current congestion window size. Then, it increases the window size
by one for each incoming duplicated acknowledgement. At this moment,
the sender may transmit a new packet if the congestion window allows.
Upon receiving a new acknowledgement, the sender exits Fast Recovery
and sets the window size to the slow-start threshold value, after which
TCP operates normally in a congestion avoidance phase.

TCP Variants

There are numerous TCP variants in the literature. This section discusses only
de facto TCP variants namely Old Tahoe, Tahoe, Reno, and new Reno. These
TCP variants utilize the same window increasing mechanism (i.e., slow start
and congestion avoidance). However, they differ in how they detect a packet
loss and decrease the window size. Table 9.1 shows the differences in window
size adjustment mechanism, when packet loss is detected through timeout and
Fast Retransmit (i.e., duplicated ACKs).

Table 9.1. Differences among basic TCP variants: Different window closing mech-
anisms upon detection of a packet loss.

TCP Variant Loss Detection
Timeout Fast Retransmit

Old-Tahoe Reset w to 1 N/A
Tahoe Reset w to 1 Reset w to 1
Reno Reset w to 1 Fast Recovery (single packet)

New Reno Reset w to 1 Fast Recovery (all packets)

The very first TCP variant, Old-Tahoe, detects packet loss through time-
out only. When packet loss is detected it always resets congestion window
size to 1. Developed from Old-Tahoe, TCP Tahoe uses the Fast Retransmit
mechanism to expedite packet loss detection rather than waiting for the time-
out. It always sets the window size to 1 upon detection of a packet loss. Both
TCP Reno and New-Reno reset the window size to 1, when a packet loss is
detected through timeout. However, they will employ Fast Recovery if packet
loss is detected through Fast Retransmit. The difference between TCP Reno
and TCP New- Reno is that TCP Reno exits the fast recovery process as soon
as the lost packet which triggered Fast Retransmit is acknowledged. If there
are multiple packet losses within a congestion window, Fast Recovery could
be invoked for several times, and the window size will decrease significantly.
To avoid the multiple window closures, TCP New-Reno stays in the Fast Re-
covery phase until all packets in the loss window are acknowledged or until
timeout occurs.
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9.2 Basic Agents

An agent is an NsObject which is responsible for creating and destroying pack-
ets. There are two main types of NS2 agents: routing agents and transport-
layer agents. A routing agent creates and receives routing control packets, and
commands routing protocols to act accordingly. Connecting an application to
a low level network, a transport-layer agent controls the congestion and reli-
ability of a data flow based on an underlying transport layer protocol (e.g.,
UDP or TCP). This book focuses on transport layer agents only

Program 9.1 Class AgentClass which binds OTcl and C++ class Agent.

//~/ns/common/agent.cc

1 static class AgentClass : public TclClass {

2 public:

3 AgentClass() : TclClass("Agent") {}

4 TclObject* create(int, const char*const*) {

5 return (new Agent(PT_NTYPE));

6 }

7 } class_agent;

NS2 implements agents in a C++ class Agent, which is bound to an OTcl
class with the same name (see Program 9.1). In the following, we first discuss
the relationship among a transport-layer agent, an application, and a low-
level network in Section 9.2.1. Agent configuration and internal mechanisms
are discussed in Sections 9.2.2 and 9.2.3, respectively. Finally, Section 9.2.4
provides guidelines to define a new transport-layer agent.

9.2.1 Applications, Agents, and a Low-level Network

An agent acts as a bridge which connects an application and a low-level net-
work. Based on the user demand provided by an application, a sending agent
constructs packets and transmits them to a receiving agent through a low-level
network. Figure 9.3 shows an example of such a connection.

Consider Fig. 9.3. On the top level, a CBR (constant bit rate) application,
which models a user demand to periodically transmit data, is used as an appli-
cation. The demand is passed to a UDP sending agent, which in turn creates
UDP packets. Here, the UDP agent stores source and destination IP addresses
and transport layer ports in the packet header, and forwards the packet to the
attached node (e.g., Node 1 in Figure 9.3). Using the pre-calculated routing
table, the low-level network delivers the packet to the destination node (e.g.,
Node 3 in Fig. 9.3) specified in the packet header. The destination node em-
ploys its demultiplexer to forward the packet to the agent attached to the port
specified in the packet header. Finally, a Null receiving agent simply destroys
the received packet.
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Fig. 9.3. A CBR application over UDP configuration.

From the above discussion, an agent can be used as a sending agent (e.g.,
a UDP agent) or a receiving agent (e.g., a Null agent). A sending agent has
connections to both an application and a low-level network, while a receiving
agent may not have a connection to an application (because it does not need
any). An application (e.g., CBR) uses its variable agent_ as a reference to
an agent (e.g., UDP and Null agents), while an agent uses its variable app_

as a reference to an application. It is mandatory to configure the variables
agent_ and app_ (i.e., create the connection) for a sending agent, while it is
optional for a receiving agent. This is mainly because the application needs to
inform the agent of user demand (i.e., by invoking function sendmsg(...)),
and the sending agent needs to inform the application of the completion of
data transmission (i.e., by invoking function resume()). Since a receiving
agent simply destroys the received packet, it does not need a connection to
an application.

Both sending and receiving agents connect to a low-level network in the
same manner. They use a pointer target_, to point to the attached node.
The Node, on the other hand, installs the agent slot number “port” of its
demultiplexer dmux_ (which is of class PortClassifier), where “port” is the
corresponding port number of the agent (see Section 6.6.3).
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Table 9.2. Key differences between a sending and a receiving agent.

Sending agent Receiving agent

Upstream
- object Application Node

- packet forwarding function sendmsg recv

Downstream object
- object Node N/A
- packet forwarding function recv N/A

Table 9.2 shows the key differences between a sending agent and a receiving
agent. The upstream object of a sending agent is an application, which informs
a sending agent of incoming user demand through function sendmsg(...) of
the sending agent. The upstream object of a receiving agent, on the other
hand, is a Node object, which forwards packets to the receiving agent via
function recv(p,h). The downstream object of a sending agent is a Node

object. The sending agent passes a packet *p to a Node object by executing
target_->recv(p,h). A receiving agent usually has no downstream object,
since it simply destroys the received packets.

9.2.2 Agent Configuration

From Fig. 9.3, agent configuration consists of four main steps:

(i) Create a sending agent, a receiving agent, and an application using
“new{...}”.

(ii) Attach agents to the application using OTcl Command attach-agent-
{agent} of class Application.

(iii) Attach agents to the a low-level network using instproc attach-agent-
{node agent} of class Simulator.

(iv) Associate the sending agent with the receiving agent using instproc
connect{src dst} of class Simulator.

Example 9.1 (A Network Construction Example). The example network in
Fig. 9.3 employs CBR, a UDP agent, and a Null agent as an application,
a sending agent, and a receiving agent, respectively. To setup the example
network, we may use the Tcl simulation script in Program 9.2.

While Lines 1–7 create a low-level network (see the details in Chapters 6
and 7), Lines 8–14 set up a CBR application, a UDP agent, and a Null agent
on top of the low-level network. Again, there are 4 major steps to create
connections among agent, an application, a low-level network:

(i) Create agent and application objects (Lines 8–10).
(ii) Use command attach-agent of class Application to create a connection

between an application and a sending agent (Line 11).
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Program 9.2 A simulation script which creates the network in Fig. 9.3.

1 set ns [new Simulator]

2 set n1 [$ns node]

3 set n2 [$ns node]

4 set n3 [$ns node]

5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail

7 $ns duplex-link $n1 $n3 5Mb 2ms DropTail

#=== UDP-Null peering starts here ===

8 set udp [new Agent/UDP]

9 set null [new Agent/Null]

10 set cbr [new Application/Traffic/CBR]

11 $cbr attach-agent $udp

12 $ns attach-agent $n1 $udp

13 $ns attach-agent $n3 $null

14 $ns connect $udp $null

(iii) Use instproc attach-agent{node agent} of class Simulator to create
a connection between each agent and a node entry (Lines 12 and 13).

(iv) Use instproc connect{src dst} of class Simulator to associate a send-
ing agent with a receiving agent (Line 14).

9.2.3 Internal Mechanism for Agents

The internal mechanisms for agents are defined in the C++ domain as follows:

• A sending agent: Receive user demand by having the associated applica-
tion invoke its function sendmsg(...). From within sendmsg(...), create
packets using function allocpkt() and forward the created packets to the
low-level network by executing target_->recv(p,h).

• A receiving agent: Receive packets by having a low-level network demulti-
plexer invoke its function recv(p,h). Destroy received packets by invoking
function free(p) of class Packet.

In this section, we will discuss the detail of variables and functions required
to perform the above mechanisms.

Related C++ and OTcl Variables

The main variables of C++ class Agent and their bound OTcl instvars are
shown in Table 9.3. Of type ns_addr_t (see Section 8.3.3), variables here_

and dst_ contain addresses and ports of the Node attached to the agent and
the peering agent, respectively. An IPv6 priority level is stored in variable
prio_. Variable app_ acts as a reference to an Application object. Since
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Table 9.3. The list of C++ and OTcl variables of class Agent.

C++ Type C++ variable OTcl instvar Description

ns_addr_t here_

here_.addr_ agent_addr_ Address of the attached node
here_.port_ agent_port_ Port where the agent is attached

ns_addr_t dst_

dst_.addr_ dst_addr_ Address of the node attaching to a
peering agent

dst_.port_ dst_port_ Port where the peering agent is at-
tached

int fid_ fid_ Flow ID

int prio_ prio_ IPv6 priority field (e.g., 0 = unspec-
ified, 1 = background traffic)

int flags_ flags_ Flags

int defttl_ ttl_ Default time to live value

int size_ N/A Packet size

packet_t type_ N/A Packet type

int seqno_ N/A Current sequence number

Application* app_ N/A A pointer to an application

int uidcnt_ N/A Total number of packets generated
by all agents

class Agent is responsible for packet generation, it must assign a unique ID to
every packet. Therefore, it maintains a static variable uidcnt_, which counts
the total number of generated packets. When a packet is created, an Agent

object sets the unique ID of the packet to be uidcnt_, and increases uidcnt_
by one (see function initpkt(p) in Line 10 of Program 9.3).

Key C++ Functions

A list of key C++ functions with their descriptions is given below (see the
declaration of class Agent in file ˜ns/common/agent.cc,h). Since class Agent
is a template for transport layer agents, it provides no implementation for
some of its functions. The child classes of class Agent are responsible for
implementing these functions.

recv(p,h) Receive a packet “*p”.
send(p,h) Send a packet “*p”.

send(nbytes) Send a message with “nbytes” bytes.
sendmsg(nbytes) Send a message with “nbytes” bytes (no implementa-

tion).
timeout(tno) Action to be performed at timeout (No implementation)
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connect(dst) Connect to a dynamic destination dst (no implementa-
tion).

close() Close a connection-oriented session (no implementation).

listen() Wait for a connection-oriented session (no implementa-
tion).

attachApp(app) Store app in the variable app_.
allocpkt() Create a packet.
initpkt(p) Initialize the input packet “*p”.

recvBytes(bytes) Send data of “bytes” bytes to the attached application.
idle() Tell the application that the agent has nothing to trans-

mit.

The Constructor

Class Agent has no default constructor. Its only constructor takes a packet_t

(see Section 8.3.4 and Program 8.9) object as an input argument (see Line 1
of Program 9.3). The constructor sets the variable type_ to be as specified
in the input argument, and resets other variables to zero. This packet type
setting implies that one agent is able to transmit packets of one type only. We
need several agents to transmit packets of several types.

Functions allocpkt() and initpkt(p)

Shown in Program 9.3, function allocpkt() is the main packet construction
function. It creates a packet by invoking function alloc() of class Packet in
Line 4, and initializes the packet by invoking function initpkt(p) in Line
5. After initialization, function allocpkt() returns the constructed packet
pointer p to the caller.

The details of function initpkt(p) are shown in Lines 8–20 of Pro-
gram 9.3. Function initpkt(p) sets the initial values in the packet header
of the input packet “*p” to the default values. The uniqueness of the unique
ID field uid_ in the common header is assured by setting uid_ to be the total
number of packets allocated so far. Class Agent stores the total number of
allocated packet in its static variable unicnt_. Since the variable unicnt_ is
distinct and unique to all agents, assigning this variable to the field uid_ of
the common header (Line 11) assures the uniqueness of packet unique ID.

Other initialization includes setting up the packet type in the common
header to be as specified in the variable type_ (Line 12). Also, Lines 14–
18 configure source and destination IP addresses and port numbers in the
variables here_ and dst_.

Function attachApp(app)

Lines 1–4 in Program 9.4 show the details of function attachApp(app). To
bind an application to an agent, function attachApp(app) stores the input
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Program 9.3 Constructor, function allocpkt, and function initpkt of class
Agent.

//~/ns/common/agent.cc

1 Agent::Agent(packet_t pkttype):size_(0),type_(pkttype),app_(0){}

2 Packet* Agent::allocpkt() const

3 {

4 Packet* p = Packet::alloc();

5 initpkt(p);

6 return (p);

}

7 void Agent::initpkt(Packet* p)

{

8 hdr_cmn* ch = hdr_cmn::access(p);

9 ch->uid() = uidcnt_++;

10 ch->ptype() = type_;

11 ...

12 hdr_ip* iph = hdr_ip::access(p);

13 iph->saddr() = here_.addr_;

14 iph->sport() = here_.port_;

15 iph->daddr() = dst_.addr_;

16 iph->dport() = dst_.port_;

17 ...

18 }

pointer “app” in its pointer to a Application object, app_. After this point,
the agent may invoke public functions of the attached application through
the pointer app_.

Program 9.4 Functions attachApp and recv of class Agent.

//~/ns/common/agent.cc

1 void Agent::attachApp(Application *app)

2 {

3 app_ = app;

4 }

5 void Agent::recv(Packet* p, Handler*)

6 {

7 if (app_)

8 app_->recv(hdr_cmn::access(p)->size());

9 Packet::free(p);

10 }
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Functions recv(p,h), send(p,h), and sendmsg(nbytes)

These functions are used by sending and receiving agents in the packet for-
warding process. On the sender side, an application informs a sending agent of
user demand by invoking functions send(nbytes), and sendmsg(...) of class
Agent. As an NsObject, the sending agent forwards an incoming packet *p

to a downstream NsObject by executing target_->recv(p,h). As discussed
earlier, these functions send(nbytes) and sendmsg(...) have no implemen-
tation in the scope of class Agent, and must be implemented by the child
classes of class Agent.

On the receiver side, an NsObject forwards packets to a receiving agent
by invoking its function recv(p,h). Shown in Lines 5–10 of Program 9.4,
function recv(p,h) deallocates the received packet (Line 9) and may inform
the attached application (if it exists) of packet reception by invoking function
recv(size) of the attached Application object (Lines 7–8), where size is
the size of packet *p.

9.2.4 Guidelines to Define a New Transport Layer Agent

Class Agent provides the basic functionalities necessary for most agents. A new
agent can be created based on these functionalities, following the guidelines
below:

(i) Define an inheritance structure: Select a base class and derive a new
agent class from the selected base class. Bind the C++ and OTcl agent
class names together.

(ii) Define necessary C++ variables and OTcl instvars.
(iii) Implement the constructors of both C++ and OTcl classes. Bind the

variables and the instvars if necessary.
(iv) Implement the necessary functions including functions send(nbyte),

send- msg(...), recv(p,h), and timeout(tno). Also define OTcl inst-
procs if necessary.

(v) Define necessary OTcl commands as interfaces to the C++ domain from
the OTcl domain.

(vi) [Optional]Define a timer (see Section 12.1).

9.3 UDP (User Datagram Protocol) and Null Agents

UDP (User Datagram Protocol) is a connectionless transport layer protocol,
which provides neither congestion control nor error control. In NS2, a UDP
agent is used as a sending agent. It is usually peered with a Null (receiving)
agent, which is responsible for packet destruction. Figure 9.3 shows a net-
work configuration example where a CBR (Constant Bit Rate) traffic source
employs a UDP agent and a Null agent as its transport later agents. Here,
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the CBR asks the UDP agent to transmit a burst of packets for every fixed
interval. The UDP agent creates and forwards packets to the low-level net-
work, irrespective of the network condition. On the receiving end, the Null
agent simply destroys the packets received from the low-level network. In the
following, we will discuss the details of UDP and Null agents.

9.3.1 Null (Receiving) Agents

A Null agent is the simplest but one of the most widely-used receiving agents.
The main responsibility of a Null agent is to deallocate packets, through func-
tion free(p) of class Packet (see Line 9 in Program 9.4). A Null agent is
represented by an OTcl class Agent/Null which is derived directly from an
OTcl class Agent (see file ˜ns/tcl/lib/ns-agent.tcl). Due to its simplicity, Null
agents have no implementation in the C++ domain.

9.3.2 UDP (Sending) Agent

A UDP agent is perhaps the simplest form of sending agents. It receives
user demand to transmit data by having the attached application invoke its
function (e.g., sendmsg(...)), creates packets based on the demand, and
forwards the created packet to a low-level network. An application may use
three following ways to tell a UDP agent to send out packets: via a C++
function sendmsg(...) of class UdpAgent, via an OTcl command send{...}
of OTcl class Agent/UDP, or via an OTcl command sendmsg{...} of OTcl
class Agent/UDP.

Again, NS2 defines a UDP sending agent based on the guideline in Sec-
tion 9.2.4. Since a UDP agent implements no acknowledgement mechanism
and needs no timer, we can skip the last step in the guideline.

Step 1: Define Inheritance Structure

A UDP agent is represented by a C++ class UdpAgent and an OTcl class
Agent/UDP. These two classes derive from class Agent in their domains, and
are bound by using a mapping class UdpAgentClass (see Program 9.5).

Step 2: Define C++ Variables and OTcl Instvars

The key variable of class UdpAgent is seqno_ (Line 12 in Program 9.6), which
counts the number of packets generated by a UdpAgent object. Note that every
packet has a unique ID uid_. Also, every packet generated by the same agent
has a unique sequence number seqno_. However, two packets generated by
different agents may have the same sequence number seqno_ but they must
have different unique ID uid_.
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Program 9.5 Mapping class UdpAgentClass which binds a C++ class
UdpAgent to an OTcl class Agent/UDP.

//~/ns/apps/udp.cc

1 static class UdpAgentClass : public TclClass {

2 public:

3 UdpAgentClass() : TclClass("Agent/UDP") {}

4 TclObject* create(int, const char*const*) {

5 return (new UdpAgent());

6 }

7 } class_udp_agent;

Step 3: Implement the Constructors in the C++ and OTcl
Domains

NS2 implements constructors for a UDP agent in the C++ domain only. From
Program 9.6, the default constructor in Lines 14–16 feeds UDP packet type
(i.e., PT_UDP) to constructor of class Agent, essentially storing PT_UDP in the
variable type . It also sets the sequence number (i.e., seqno ) to be –1. By
specifying the packet type, the constructor in Lines 17–19 sets the packet
type to be as specified in the input argument. The constructor in this case
does not set the value of seqno_ since the packets of specified type may
not have sequence number. For both constructors, the C++ variable size_,
which specifies the packet size, is bound to instvar packetSize_ in the OTcl
domain (Lines 15 and 19). By default, the packet size is set to 1,000 bytes in
file ˜ns/tcl/lib/ns-default.tcl (Line 20).

Step 4: Define the Necessary C++ Functions

As a sending agent, a UDP agent needs to define a function sendmsg(...) to
receive a user demand from the application. Program 9.7 shows the details of
function sendmsg(nbytes,data,flags), which takes three input arguments:
nbytes, data, and flags. Function sendmsg(...) divides data payload with
size nbytes bytes into “n” (see Line 4) or “n+1” parts (depending on nbytes),
stores each part into a UDP packet (which contains a payload of size_ bytes),
and transmits all (“n” or “n+1”) packets to a low-level network.

Since NS2 rarely sends actual payload along with a packet (see Section 8.4),
Line 8 only sets the size of packet created in Line 6 to be size_. Line 11
sends out the created packet, by executing target_->recv(p).1 Lines 6–11
are repeated for “n” times to transmit all “n” packets.

After transmitting the first “n” packets, the entire application payload is
left with nbytes % size_, where % is a modulus operator. If the remainder is

1 Variable target is configured to point to a node entry during the network con-
figuration phase (see Section 9.2.2).
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Program 9.6 Declaration and the constructors of class UdpAgent as well as
the default value of the instvar packetSize of class Agent/UDP.

//~/ns/apps/udp.h

1 class UdpAgent : public Agent {

2 public:

3 UdpAgent();

4 UdpAgent(packet_t);

5 virtual void sendmsg(int nbytes, const char *flags = 0){

6 sendmsg(nbytes, NULL, flags);

7 }

8 virtual void sendmsg(int nbytes, AppData* data, ...

const char *flags = 0);

9 virtual void recv(Packet* pkt, Handler*);

10 virtual int command(int argc, const char*const* argv);

11 protected:

12 int seqno_;

13 };

//~/ns/apps/udp.cc

14 UdpAgent::UdpAgent() : Agent(PT_UDP), seqno_(-1){

15 bind("packetSize_", &size_);

16 }

17 UdpAgent::UdpAgent(packet_t type) : Agent(type){

18 bind("packetSize_", &size_);

19 }

//~/ns/tcl/lib/ns-default.tcl

20 Agent/UDP set packetSize_ 1000

nonzero, Lines 15–20 will transmit the remaining application payload in an-
other packet. Finally, Line 22 invokes function idle() to inform the attached
application that the UDP agent has finished data transmission. From Line
24, function idle() does so by invoking function resume() of the attached
application (if any).

There are two important notes for UDP agents. First, since a UDP agent
is a sending agent its function recv(p,h) is generally not to be used. Sec-
ondly, in Program 9.7, function sendmsg(...) transmits packets, irrespective
of network condition.

Step 5: Define OTcl Commands and Instprocs

Class Agent/UDP defines the two following OTcl commands defined in
Program 9.8:



214 9 Transport Control Protocols Part 1– An Overview

Program 9.7 Function sendmsg of class UdpAgent and function idle of class
Agent.

//~/ns/apps/udp.cc

1 void UdpAgent::sendmsg(int nbytes,AppData* data,const char* flags)

2 {

3 Packet *p;

4 int n = nbytes / size_;

5 while (n-- > 0) {

6 p = allocpkt();

7 /* packet header configuration */

8 hdr_cmn::access(p)->size() = size_;

9 ...

10 /* --------------------------- */

11 target_->recv(p);

12 }

13 n = nbytes % size_;

14 if (n > 0) {

15 p = allocpkt();

16 /* packet header configuration */

17 hdr_cmn::access(p)->size() = n;

18 ...

19 /* --------------------------- */

20 target_->recv(p);

21 }

22 idle();

23 }

//~/ns/common/agent.cc

24 void Agent::idle() { if (app_) app_->resume(); }

25 }

• send{nbytes str}: Send a payload of size “nbytes” containing a message
“str”.

• sendmsg{nbytes str flags}: Similar to the command send but also
passes the input flag “flags” when sending a packet.

Lines 5–8 in Program 9.8 show the details of the OTcl command send{...}.
Line 5 creates a PacketData object. Line 6 stores the input message str in the
created PacketData object. Line 7 sends out the application payload by in-
voking function sendmsg(...). Note that the size of application payload does
not depend on the size of the message in the PacketData object (i.e., argv[3]
or str). Rather, it is specified in the first input argument (i.e., argv[2] or
nbytes). The implementation of the OTcl command sendmsg(...) is similar
to that of an OTcl command send{...}. However, it also feeds a flag “flags”
as an input argument of function sendmsg(...) (see Line 14).
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Program 9.8 OTcl Commands send and sendmsg of class Agent/UDP.

//~/ns/apps/udp.cc

1 int UdpAgent::command(int argc, const char*const* argv)

2 {

3 if (argc == 4) {

4 if (strcmp(argv[1], "send") == 0) {

5 PacketData* data = new PacketData(1 + strlen(argv[3]));

6 strcpy((char*)data->data(), argv[3]);

7 sendmsg(atoi(argv[2]), data);

8 return (TCL_OK);

9 }

10 } else if (argc == 5) {

11 if (strcmp(argv[1], "sendmsg") == 0) {

12 PacketData* data = new PacketData(1 + strlen(argv[3]));

13 strcpy((char*)data->data(), argv[3]);

14 sendmsg(atoi(argv[2]), data, argv[4]);

15 return (TCL_OK);

16 }

17 }

18 return (Agent::command(argc, argv));

19 }

9.3.3 Setting Up a UDP Connection

A UDP connection can be created by the network configuration method pro-
vided in Section 9.2.2. An example connection where a UDP agent, a Null
agent, and a CBR traffic source are used as a sending agent, a receiving
agent, and an application is shown in Example 9.1.

9.4 Chapter Summary

An agent is a connector which bridges an application to a low-level network.
Its main responsibilities are to create packets based on user demand received
from an application, to forward packets to a low-level network, and to destroy
packets received from a low-level network. From this point of view, an agent
can be used to model transport layer protocols and routing protocols. This
chapter focuses on transport layer (protocol) agents only.

Class Agent is a base class, which represents both sending and receiving
agents. It connects to an application and a low-level network using pointers
app_ and target_. An application also has a pointer agent_ to an agent,
while a low-level network uses a pointer target_ as a reference to an agent.
Class Agent provides basic functionalities for creating, forwarding, and de-
stroying packets. Its functions send(...) and sendmsg(...) are invoked by
an attached application to pass on user demand. An agent creates packets
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based on the demand, and forwards the created packet to a low-level network
by executing target_->recv(p,h). A low level network sends a packet to a
receiving agent which may destroy the packet by invoking function recv(p,h)

of the receiving agent.
User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)

are among the most widely used transport layer protocols. UDP is a simple
transport layer protocol and it can be flexibly used by other protocols. In NS2,
UDP is implemented in the C++ class UdpAgent which is bound to an OTcl
class Agent/UDP. A UDP agent is usually peered with a Null agent, which
simply destroys a received packet.

TCP is a reliable transport control protocol. Its main features are end-to-
end error control and network congestion control. It implements timeout and
acknowledgement to provide end-to-end error control, and adopts a window-
based rate adjustment to control network congestion. We will discuss the
details of TCP implementation in NS2 in the next chapter.
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Transport Control Protocols

Part 2 – Transmission Control Protocol (TCP)

As a transport control protocol, TCP (Transmission Control Protocol) bridges
an application to a low-level network, controls network congestion, and pro-
vides reliability to an end-to-end connection. This chapter discusses the de-
tails of TCP agents. Section 10.1 gives an overview of TCP agents. Here,
we show a TCP network configuration method, a brief overview of TCP in-
ternal mechanism, TCP header format, and the main steps in defining TCP
senders and TCP receivers. Sections 10.2 and 10.3 discuss the implementa-
tion of TCP receivers and senders, respectively. Sections 10.4–10.7 presents
the implementation of four main functionalities of a TCP sender. Finally, the
chapter summary is provided in Section 10.8.

10.1 An Overview of TCP Agents in NS2

Based on user demand from an application, a TCP sender creates and for-
wards packets to a low-level network. It controls the congestion by limiting
the rate (i.e., by adjusting the congestion window) at which packets are fed
to the low-level network. It enforces an acknowledgment mechanism to pro-
vide connection reliability. A TCP receiver must acknowledge every received
TCP packet. Based on the acknowledgment pattern, a TCP sender determines
whether the transmitted packet was lost or not. If so, it will retransmit the
packet. A TCP sender is responsible for sending packets as well as control-
ling the transmission rate, while the role of a TCP receiver is only to return
acknowledgments to the associated TCP sender.

10.1.1 Setting Up a TCP Connection

As a transport layer agent, TCP can be incorporated into a network by using
the method discussed in Section 9.2.2.

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,
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Example 10.1. Consider Fig. 9.3. Replace the CBR application with FTP (File
Transfer Protocol), the UDP agent with a TCP sender, and the Null agent
with a TCP receiver. The modified network can be created by using the fol-
lowing Tcl simulation script.

1 set ns [new Simulator]

2 set n1 [$ns node]

3 set n2 [$ns node]

4 set n3 [$ns node]

5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail

7 $ns duplex-link $n1 $n3 5Mb 2ms DropTail

#=== TCP connection setup starts here ===

8 set tcp [new Agent/TCP]

9 set sink [new Agent/TCPSink]

10 set ftp [new Application/FTP]

11 $ns attach-agent $n1 $tcp

12 $ns attach-agent $n3 $sink

13 $ftp attach-agent $tcp

14 $ns connect $tcp $sink

15 $ns at 0.0 "$ftp start"

Similar to those in Example 9.1, Lines 8–14 above create a TCP connection
on top of a low-level network.

10.1.2 Packet Transmission and Acknowledgment Mechanism

TCP provides connection reliability by means of acknowledgment and packet
retransmission. Figure 10.1 shows a diagram for TCP packet transmission and
acknowledgment mechanisms. The process starts when an application (e.g.,
FTP) informs a TCP sender (e.g., TcpAgent) of user demand by invoking func-
tion sendmsg(nbytes) of the TcpAgent object through its variable agent_.
The TCP sender creates TCP packets, and forwards them to its downstream
object by executing target_->recv(p,h). The low-level network delivers the
packets to the destination node attached to the TCP receiver (i.e., TcpSink).
The destination node forwards the packet to the TCP receiver (i.e., a TcpSink

object) by invoking function recv(p,h) of the TCP receiver installed in
its demultiplexer (e.g., dmux_). Upon receiving a TCP packet, the TCP re-
ceiver creates an ACK packet and returns it to the TCP sender by executing
target_->recv(p,h). The low-level network delivers the ACK packet to the
sending node, which forwards the ACK packet to the TCP sender via its
demultiplexer.

If a TCP packet or an ACK packet is lost (or delayed for a long period of
time), the TCP sender will assume that the packet is lost. In this case, the
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Fig. 10.1. TCP packet transmission and acknowledgment mechanisms.

TCP sender will retransmit the lost TCP packet using target_->recv(p,h)

(see the description of the retransmission process in Section 9.1.2).

10.1.3 TCP Header

TCP packet header is defined in the “hdr_tcp” struct data type shown in
Program 10.1. The key variables of hdr_tcp include

seqno_ TCP sequence number
ts_ Timestamp: The time when the packet was generated

ts_echo_ Timestamp echo: The time when the peering TCP received the
packet

reason_ Reason for packet transmission (e.g., 0 = normal transmission)

In common with other packet header, hdr_tcp contains function access(p)

(Lines 8–10), which can be used to obtain the reference to a TCP header stored
in the input packet *p. This reference can then be used to access the attributes
of a TCP packet header.

10.1.4 Defining TCP Sender and Receiver

We follow the guidelines provided in Section 9.2.4 to define a TCP sender and
a TCP receiver.
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Program 10.1 Declaration of hdr tcp struct data type.

//~/ns/tcp/tcp.h

1 struct hdr_tcp {

2 double ts_; /*time packet generated (at source)*/

3 double ts_echo_; /*the echoed timestamp*/

4 int seqno_; /*sequence number */

5 int reason_; /*reason for a retransmit */

6 static int offset_; // offset for this header

7 inline static int& offset() { return offset_; }

8 inline static hdr_tcp* access(Packet* p) {

9 return (hdr_tcp*) p->access(offset_);

10 }

11 int& seqno() { return (seqno_); }

12 ...

13 };

Step 1: Define the Inheritance Structure

NS2 defines TCP sender in a C++ class TcpAgent which is bound to an OTcl
class Agent/TCP through a mapping class TcpClass, as shown in Lines 1–7
of Program 10.2. Similarly, TCP receiver is defined in a C++ class TcpSink
which is bound to an OTcl class Agent/TCPSink through a mapping class
TcpSinkClass, as shown in Lines 8–14 of Program 10.2.

Step 2: Define Necessary C++ and OTcl Variables

While class TcpSink has only one C++ key variable acker_ which is of class
Acker,1 class TcpAgent has several variables. We classify the key C++ vari-
ables of class TcpAgent into four categories. First, C++ variables, whose
values change dynamically during a simulation, are shown in Table 10.1.
Secondly, C++ variables, which are usually configured once, are listed in
Table 10.2. Thirdly, Table 10.3 shows variables which are related to TCP
timer mechanism. Finally, Table 10.4 shows the other non-classified variables
of class TcpAgent.

Step 3: Implement the Constructor

The constructors of both TCP senders and TCP receivers set their variables
to the default values, and bind C++ variables to OTcl instvars as specified in
Tables 10.1–10.3. In addition, the constructor of the TCP sender invokes the
constructor of its parent class (i.e., Agent) with an input argument PT_TCP,
setting the instantiated TcpAgent object to transmit TCP packet only. It
also initializes the retransmission timer rtx_timer_ with the pointer “this”

1 We will be discuss the details of class Acker later in Section 10.2.1.
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Program 10.2 Class TcpClass which binds a C++ class TcpAgent and an
OTcl class Agent/TCP together, class TcpSinkClass, which binds a C++ class
TcpSink and an OTcl class Agent/TCPSink together, and the constructor of
class TcpSink.

//~/ns/common/tcp.cc

1 static class TcpClass : public TclClass {

2 public:

3 TcpClass() : TclClass("Agent/TCP") {}

4 TclObject* create(int , const char*const*) {

5 return (new TcpAgent());

6 }

7 } class_tcp;

//~/ns/common/tcp-sink.cc

8 static class TcpSinkClass : public TclClass {

9 public:

10 TcpSinkClass() : TclClass("Agent/TCPSink") {}

11 TclObject* create(int, const char*const*) {

12 return (new TcpSink(new Acker));

13 }

14 } class_tcpsink;

15 TcpSink::TcpSink(Acker* acker) : Agent(PT_ACK),

acker_(acker) {...}

to itself. The details of TcpAgent construction and timers are given in file
˜ns/tcp/tcp.cc and Section 12.1.

A TCP receiver is somewhat different from a TCP sender, since it does
not have a default constructor. From Line 15 of Program 10.2, the constructor
takes a pointer to an Acker object as an input argument (see Section 10.2.1),
and initializes its variable ack_ with this input pointer. It also initializes its
parent constructor with PT_ACK, an ACK packet type. Finally, it binds few
C++ variables to OTcl instvars (see the detailed construction of class TcpSink
in file ˜ns/tcp/tcp-sink.cc).

Steps 3, 4, and 5: Implement Necessary Functions, OTcl
Commands, and Instprocs, and Define Timers if Necessary

The detailed implementation of C++ functions of TCP receivers are shown in
the next section, while those of TCP senders are given in Sections
10.3–10.7. For brevity, we will not discuss the details of implementation of
OTcl command and instproc. The readers are encouraged to study the details
of TCP senders and TCP receivers in files ˜ns/tcp/tcp.cc,h, ˜ns/tcp/tcp-
sink.cc,h, and ˜ns/tcl/lib/ns-agent.tcl.
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Table 10.1. Key operating variables of class TcpAgent.

C++ variable OTcl variable
Default
value

Description

t_seqno_ t_seqno_ 0 Current TCP sequence number
curseq_ seqno_ 0 Total number of packets need to be trans-

mitted specified by the application. A TCP
sender transmits packets as long as its se-
quence number is less than curseq_.

highest_ack_ ack_ 0 Highest ACK number (not frozen during
Fast Recovery)

lastack_ N/A 0 Highest ACK number (frozen during Fast
Recovery)

cwnd_ cwnd_ 0 Congestion window size in packets

ssthresh_ ssthresh_ 0 Slow-start threshold

dupacks_ dupacks_ 0 Duplicated ACK counter

maxseq_ maxseq_ 0 Highest transmitted sequence number

t_rtt_ rtt_ 0 RTT sample

t_srtt_ srtt_ 0 Smoothed RTT

t_rttvar_ rttvar_ 0 RTT deviation

t_backoff_ backoff_ 0 Current RTO backoff multiplicative factor

rtt_active_ N/A 0 Status of the RTT collection process

rtt_ts_ N/A –1 Time at which the packet is transmitted

rtt_seq_ N/A 0 Sequence number of the tagged packet

t_rtxcur_ N/A 0 Current value of unbounded retransmis-
sion timeout

ts_peer_ N/A 0 Latest timestamp provided by the peering
TCP receiver

rtx_timer_ N/A N/A Retransmission timer object

10.2 TCP Receiver

A TCP receiver is responsible for deallocating received TCP packets and re-
turning cumulative ACK packets to the TCP sender. As discussed in Sec-
tion 9.1.2, a cumulative ACK packet acknowledges a TCP packet with the
highest contiguous sequence number. Upon receiving a cumulative ACK
packet, the TCP sender assumes that all packets whose sequence numbers
are lower than or equal to that of the ACK packet have been successfully
received. A cumulative ACK packet has the capability of acknowledging mul-
tiple packets. For example, suppose Packet 3 in Fig. 9.2 is not lost but is
delayed and that it arrives the receiver right after Packet 6 is received. Upon
receiving Packet 3, the receiver acknowledges with A6, since it has received
Packets 4–6 earlier.
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Table 10.2. Key variables of class TcpAgent.

C++ variable OTcl variable
Default
value

Description

wnd_ window_ 20 Upper bound on window
size

numdupacks_ numdupacks_ 3 Number of duplicated
ACKs which triggers Fast
Retransmit

wnd_init_ windowInit_ 2 Initial value of window size

size_ packetSize_ 1,000 TCP packet size in bytes

tcpip_base_ tcpip_base_hdr_size_ 40 TCP basic header size in
bytes

useHeaders_ useHeaders_ true If true, TCP and IP
header size will be added to
packet size

maxburst_ maxburst_ 0 Maximum number of bytes
that a TCP sender can
transmit in one transmis-
sion

maxcwnd_ maxcwnd_ 0 Upper bound on cwnd_

control_ control_increase_ 0 If set to 1, do not open the
congestion window when
the network is limited (See
Section 10.5).

increase_

Table 10.3. Timer related variables of class TcpAgent.

C++ variable OTcl variable
Default
value

Description

srtt_init_ srtt_init_ 0 Initial value of t_srtt_
rttvar_init_ rttvar_init_ 12 Initial value of t_rttvar_
rtxcur_init_ rtxcur_init_ 3.0 Initial value of t_rtxcur_
T_SRTT_BITS T_SRTT_BITS 3 Multiplicative factor for smoothed RTT
T_RTTVAR_BITS T_RTTVAR_BITS 2 Multiplicative factor for RTT deviation
rttvar_exp_ rttvar_exp_ 2 Multiplicative factor for RTO computation
decrease_num_ decrease_num_ 0.5 Window decreasing factor
increase_num_ increase_num_ 1.0 Window increasing factor
tcpTick_ tcpTick_ 0.01 Timer granularity in seconds
maxrto_ maxrto_ 100,000 Upper bound on RTO in seconds
minrto_ minrto_ 0.2 Lower bound on RTO in seconds
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Table 10.4. Miscellaneous variables of class TcpAgent.

C++ variable
Default
value

Description

cong_action_ 0 true when the congestion has occurred.

sigledup_ 1 If set to 1, the TCP sender will transmit new pack-
ets upon receiving first few duplicated ACK pack-
ets.

prev_highest_ack_ N/A Sequence number of an ACK packet received prior
to the current ACK packet.

last_cwnd_action_ N/A The latest action on congestion window

recover_ N/A The highest transmitted sequence number during
the previous packet loss event

In NS2, C++ implementation of TCP receivers involves two main classes:
Acker and TcpSink. Class Acker is a helper class responsible for generating
ACK packets. Class TcpSink contains an Acker object, and acts as interfaces
to a peering TCP sender and the OTcl domain.

10.2.1 Class Acker

Program 10.3 Declaration of class Acker.

//~/ns/tcp/tcp-sink.h

1 class Acker {

2 public:

3 Acker();

4 virtual ~Acker() { delete[] seen_; }

5 inline int Seqno() const { return (next_ - 1); }

6 inline int Maxseen() const { return (maxseen_); }

7 int update(int seqno, int numBytes);

8 protected:

9 int next_;

10 int maxseen_;

11 int wndmask_;

12 int *seen_;

13 int is_dup_;

14 };

Program 10.3 shows the declaration of a C++ class Acker.2 Class Acker
stores necessary information required to generate cumulative ACK packets in
the following variables:

2 Class Acker is not implemented in the OTcl domain.
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seen_ An array whose index and value are the sequence number and the
corresponding packet size, respectively

next_ Expected sequence number
maxseen_ Highest sequence number ever received
wndmask_ Modulus mask, initialized to maximum window size-1 (set to 63

by default; see Section 12.4.1)
is_dup_ True if the latest received TCP packet was received earlier

Figure 10.2 shows an example of information stored in an Acker object.
In this case, Packets 1, 2, 3, 5, and 7 are received, but Packets 4 and 6 are
missing. Therefore, next_ and maxseen_ are set to 4 and 7, respectively. Also,
variable seen_ stores the size in bytes of Packets 1–7 in its respective entries.
To determine whether packet n is missing, class Acker checks the value of
seen_[n]. The packet is missing if and only if seen_[n] is zero. Suppose a
TCP receiver receives a TCP packet number 4 when the status of the Acker

object is as in Fig. 10.2. The Acker object will generate an ACK packet
with sequence number 5. However, if the sequence number of the received
packet is not 4, the Acker object will create an ACK packet with sequence
number 3.

As discussed in Section 9.1.2, a TCP connection can have at most w unac-
knowledged packets in a network, where w is the current congestion window
size. Let MWS be the Maximum Window Size in a simulation (see Line 6 in
Program 10.4). Then, w ∈ {0, · · · , MWS} and there can be at most MWS unac-
knowledged packets during the entire simulation. An Acker object needs only
MWS entries in the array variable seen_ to store information about unacknowl-
edged packets.

Program 10.4 shows the constructor of the C++ class Acker. The con-
structor resets next_ and maxseen_ to zero in Line 1. Line 3 allocates memory
space for array variable seen_ with MWS entries. Line 4 clears the allocated
memory to zero. Also, wndmask_ is set to MWM (Maximum Window Mask which
is set to 63 in Line 7).

seen_ [seqno]
(bytes)

1 3 7
seqno

next_ = 4

Case II:
seq = [next_,maxseen_]

Case III:
seq > 7

Case I:
seq < 3

52

maxseen_ = 7

Fig. 10.2. Information necessary to generate a cumulative acknowledgement.
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Program 10.4 The constructor of class Acker.

//~/ns/tcp/tcp-sink.cc

1 Acker::Acker() : next_(0), maxseen_(0), wndmask_(MWM)

2 {

3 seen_ = new int[MWS];

4 memset(seen_, 0, (sizeof(int) * (MWS)));

5 }

//~/ns/tcp/tcp-sink.cc

6 #define MWS 64

7 #define MWM (MWS-1)

The above MWS (set by default to 64 in Line 6 of Program 10.4) entries
of seen_ are reused to store the packet size corresponding to all incoming
TCP sequence numbers. Class Acker employs a modulus operation to map
a sequence number to an array index. Upon receiving a TCP packet with
sequence number seqno, an Acker object stores the packet size in the entry
seqno % MWS (which is the remainder of seqno/MWS), of the array seen_,
where “%” is a modulus operator. When seqno exceeds MWS, seqno % MWS

will be restarted from the first entry to reuse the memory allocated to seen_.
As discussed in Section 12.4.1, a modulus operation can also be imple-

mented by bit masking. In particular, seqno % MWS is in fact equivalent to
seqno & wndmask_, where wndmask_ is set initially to MWM in the constructor
(Line 1 in Program 10.4), and MWM (Maximum Window Mask) is defined as
63 (Lines 6–7 in Program 10.4). To facilitate the understanding, readers may
simply regard seqno & wndmask_ as seqno % 63.

Class Acker has two key functions: Seqno() and update(seq,numBytes).
Function Seqno() (Line 5 in Program 10.3) returns the highest sequence num-
ber of a burst of contiguously received packets. As shown in Program 10.5,
function update(seq,numBytes) updates its internal variables according to
the input arguments.

Function update(seq,numBytes) takes two input arguments: seq and
numBytes which are the sequence number and the size of an incoming
TCP packet, respectively. It updates variables next_, maxseen_, seen_, and
is_dup_ and returns the number of in-sequence bytes which is ready to be
delivered to the application. From Fig. 10.2, “seq” can be (I) less than next_,
(II) between next_ and maxseen_, and (III) greater than maxseen_. Function
update(seq,numBytes) reacts to these three cases as follows:

(i) If seq < next_, function update(seq,numBytes) will set is_dup_ to be
true (Line 17). This case implies that this packet was received earlier,
and therefore, this packet is a duplicated packet.

(ii) If seq lies in between next_ and maxseen_, function update(seq,

numBytes) will execute Lines 19–26. Line 19 determines whether seq

was received earlier. This happens to be true under the two following
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Program 10.5 Function update of class Acker.

//~/ns/tcp/tcp-sink.cc

1 int Acker::update(int seq, int numBytes)

2 {

3 bool just_marked_as_seen = FALSE;

4 is_dup_ = FALSE;

5 int numToDeliver = 0;

6 if (seq > maxseen_) {

7 int i;

8 for (i = maxseen_ + 1; i < seq; ++i)

9 seen_[i & wndmask_] = 0;

10 maxseen_ = seq;

11 seen_[maxseen_ & wndmask_] = numBytes;

12 seen_[(maxseen_ + 1) & wndmask_] = 0;

13 just_marked_as_seen = TRUE;

14 }

15 int next = next_;

16 if (seq < next)

17 is_dup_ = TRUE;

18 if (seq >= next && seq <= maxseen_) {

19 if (seen_[seq & wndmask_] && !just_marked_as_seen)

20 is_dup_ = TRUE;

21 seen_[seq & wndmask_] = numBytes;

22 while (seen_[next & wndmask_]) {

23 numToDeliver += seen_[next & wndmask_];

24 ++next;

25 }

26 next_ = next;

27 }

28 return numToDeliver;

29 }

conditions: (1) the corresponding entry of seen_ is nonzero and (2) just_
marked_as_seen is false. The latter condition is added since seen_

could have been set by Line 11. In this case, is_dup_ is set to true.
Line 21 stores the packet size in seen_[seq & wndmask_].3 Lines 22–
26 update next_ by advancing next_ until seen_[next_ & wndmask_] is
empty. Also, Line 23 keeps adding the packet size to numToDeliver, which
are returned in Line 28. Essentially, the returned value is the number of
bytes which corresponds to next_ advancement.

(iii) If seq > maxseen_, implying a new TCP packet, function update(...)

will execute Lines 7–13. Lines 8–9 and 12 clear the seen_[maxseen_+1]

through seen_[seq-1]. It updates maxseen_ in Line 10 and stores the

3 Bit masking with wndmask has the same impact as a modulus with wndmask +1

does.
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packet size in seen_[seq & wndmask_] in Line 11. Since Line 10 stores
seq in maxseen_, the condition in Line 18 is satisfied and Lines 19–26 are
to be executed. If Case (iii) is executed, Case (ii) will also be executed.
Therefore, Line 13 sets just_marked_as_seen to be true, which simply
indicates that the current packet is not a duplicated packet, and Line 20
should be skipped.

10.2.2 Class TcpSink

Representing TCP receivers, class TcpSink reacts to received TCP packets as
follows:

(i) Extract the sequence number (seq) from the received TCP packet,
(ii) Inform the Acker object of the sequence number (seq) and the size of

the TCP packet (numBytes) through function update(seq,numBytes) of
class Acker,

(iii) Create and send an ACK packet to the TCP sender by invoking function
ack(p) of class TcpSink. The sequence number in the ACK packet is
obtained from function Seqno() of the Acker object (invoked from within
function ack(p)).

Program 10.6 shows the declaration of a C++ class Tcpsink, which
is bound to an OTcl class Agent/TCPSink. The only key variable of class
TcpSink is a pointer to an Acker object, acker_ in Line 8. Two main func-
tions of class TcpSink include recv(p,h) and ack(p).

Program 10.6 Declaration of class TcpSink.

//~/ns/tcp/tcp-sink.cc

1 class TcpSink : public Agent {

2 public:

3 TcpSink(Acker*);

4 void recv(Packet* pkt, Handler*);

5 int command(int argc, const char*const* argv);

6 protected:

7 void ack(Packet*);

8 Acker* acker_;

9 };

Shown in Program 10.7, function recv(p,h) is invoked by an upstream
object to hand a TCP packet over to a TcpSink object. Lines 4–6 inform
the Acker object, acker_, of an incoming TCP packet “pkt”. Here, the se-
quence number (i.e., th->seqno()) and packet size (i.e., numBytes) are passed
to acker_ through this function. Again, function update(seq,numBytes) re-
turns the number of in-order bytes which can be delivered to the application. If
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this number is nonzero, it will be delivered to the application through function
recvBytes(bytes) in Line 8. Line 9 invokes function ack(pkt) to generate
an ACK packet and send it to the TCP sender. Finally, Line 10 deallocates
the received TCP packet.

Program 10.7 Function recv of class TcpSink.

//~/ns/tcp/tcp-sink.cc

1 void TcpSink::recv(Packet* pkt, Handler*)

2 {

3 int numToDeliver;

4 int numBytes = hdr_cmn::access(pkt)->size();

5 hdr_tcp *th = hdr_tcp::access(pkt);

6 numToDeliver = acker_->update(th->seqno(), numBytes);

7 if (numToDeliver)

8 recvBytes(numToDeliver);

9 ack(pkt);

10 Packet::free(pkt);

11 }

Program 10.8 shows the details of function ack(p). In this function, vari-
ables whose name begins with “o” and “n” are used for an old packet and a new
packet, respectively. Line 6 puts an ACK number in the ACK packet. Lines
7–8 and 9–11 configure timestamp and flow ID of the ACK packet, respec-
tively. Finally, the configured packet is sent out using function send(npkt,0)

of class Agent in Line 12, where a new packet npkt is transmitted along with
a Null handler.

Program 10.8 Function ack of class TcpSink.

//~/ns/tcp/tcp-sink.cc

1 void TcpSink::ack(Packet* opkt)

2 {

3 Packet* npkt = allocpkt();

4 hdr_tcp *otcp = hdr_tcp::access(opkt);

5 hdr_tcp *ntcp = hdr_tcp::access(npkt);

6 ntcp->seqno() = acker_->Seqno();

7 double now = Scheduler::instance().clock();

8 ntcp->ts() = now;

9 hdr_ip* oip = hdr_ip::access(opkt);

10 hdr_ip* nip = hdr_ip::access(npkt);

11 nip->flowid() = oip->flowid();

12 send(npkt, 0);

13 }
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10.3 TCP Sender

A TCP sender has the following four main responsibilities:

• Packet transmission: Based on user demand from an application, a TCP
sender creates and forwards TCP packets to a TCP receiver.

• ACK processing: A TCP sender observes a received ACK pattern and
determines whether transmitted packets were lost. If so, it will retransmit
the lost packets. From the ACK pattern, it can also estimate the network
condition (e.g., end-to-end bandwidth) and adjust the congestion window
accordingly.

• Timer related mechanism: A retransmission timer is used to provide
connection reliability. Unless reset by an ACK packet arrival, the retrans-
mission timer informs the TCP sender of packet loss after the packet has
been transmitted for a period of Retransmission TimeOut (RTO).

• Window adjustment: Based on the ACK pattern and timeout event, a
TCP sender adjusts its congestion window to fully utilize network resource
and prevent network congestion.

The details of these four responsibilities will be discussed in the next four
sections.

10.4 TCP Packet Transmission Functions

Class TcpAgent provides the following four main packet transmission func-
tions:

• sendmsg(nbytes): Send nbytes of application payload. If nbytes=-1, the
payload is assumed to be infinite.

• sendmuch(force,reason,maxburst): out a packet whose sequence num-
ber is t_seqno_. Keep sending out packets as long as the congestion win-
dow allows and the total number of transmitted packets during a function
invocation does not exceed maxburst.

• output(seqno,reason): Create and send a packet with a sequence number
and a transmission reason as specified by seqno and reason, respectively.

• send_one(): Send a TCP packet with a sequence number t_seqno_.

Among the above functions, function sendmsg(nbytes) is the only public

function derived from class Agent, while the other three functions are internal
to class TcpAgent. Again, function sendmsg(nbytes) is invoked by an applica-
tion to inform a TcpAgent object of user demand. Function sendmsg(nbytes)

does not directly send out packets. Rather, it computes the number of TCP
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packets required to hold “nbytes” of data payload, and increases variable
curseq_ by the computed value. In NS2, a TcpAgent object keeps transmitting
TCP packets as long as the sequence number does not exceed curseq_. In-
creasing curseq_ is therefore equivalent to feeding data payload to a TcpAgent
object.

Another important variable is t_seqno_, which contains the default TCP
sequence number. Unless otherwise specified, a TCP sender always trans-
mits a TCP packet with the sequence number stored in t_seqno_. Both
functions sendmuch(force,reason,maxburst) and send_one() use function
output(t_seqno_,reason) to send out a TCP packet whose sequence num-
ber is t_seqno_.

Function send_much(...) acts as a foundation for TCP packet transmis-
sion. In most cases, TCP agent first stores the sequence number of packet
to be transmitted in t_seqno_. Then, it invokes function send_much(...)

to send TCP packets starting with that with sequence number t_seqno_ as
long as the transmission window permit. As we shall see in Program 10.10,
each packet transmission is carried out using function output(t_seqno_,

reason).

10.4.1 Function sendmsg(nbytes)

Function send_msg(nbytes) is the main data transmission interface function
derived from class Agent. A user (e.g., application) informs a TCP sender
of transmission demand through this function. Function sendmsg(nbytes)

usually takes one input argument, nbytes, which is the amount of application
payload in bytes that a user needs to send to the TCP receiver. When the
user has infinite demand, nbytes is specified as –1.

Program 10.9 shows the details of function sendmsg(nbytes). Lines
4–7 transform the input user demand to the number of TCP packets to be

Program 10.9 Function sendmsg of class TcpAgent.

//~/ns/tcp/tcp.h

1 #define TCP_MAXSEQ 1073741824

//~/ns/tcp/tcp.cc

2 void TcpAgent::sendmsg(int nbytes, const char* /*flags*/)

3 {

4 if (nbytes == -1 && curseq_ <= TCP_MAXSEQ)

5 curseq_ = TCP_MAXSEQ;

6 else

7 curseq_ += (nbytes/size_ + (nbytes%size_ ? 1 : 0));

8 send_much(0, 0, maxburst_);

9 }
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transmitted (i.e., curseq_). Line 8 starts data transmission by invoking func-
tion send_much(0,0,maxburst_). Note that Line 1 specifies the limit (i.e.,
TCP_MAXSEQ) on the number of TCP sequence numbers which can be cre-
ated by a certain TCP sender. Again, if nbytes = -1, the TCP sender will
be backlogged until “TCP_MAXSEQ” TCP packets are transmitted. If nbytes
is greater than –1, Line 7 will compute the number of TCP packets (each
with size “size_” bytes) which can accommodate nbytes of application
payload.

10.4.2 Function send much(force,reason,maxburst)

There are three important points in regards to function send_much(force,

reason,maxburst). First, it creates and sends out as many packets as the cur-
rent transmission window allows, but not greater than maxburst packets. Sec-
ondly, every packet is transmitted by executing output(t_seqno_,reason).
Finally, function send_much(...) always sends out TCP packets with a
sequence number t_seqno_.

Function send_much(force,reason,maxburst) takes three following in-
put arguments, where a typical invocation of this function is send_much(0,0,
maxburst_):

• force: This value is usually set to zero. When force = 1, TCP sender will
try to transmit data packets even if some conditions are not met.4

• reason: This value specifies the reason for data transmission. For a normal
transmission, reason is set to 0. Other possible values of reason are shown
in Lines 1–4 in Program 10.10. This input argument is later placed in the
field reason_ of TCP packet header (i.e., hdr_tcp::reason_) and will be
used for various purposes in simulation.

• maxburst: The maximum number of packets which can be transmitted for
each invocation of function send_much(force,reason,maxburst).

Program 10.10 shows the details of function send_much(force, reason,

maxburst). Function send_much(force,reason,maxburst) first stores the
current congestion window5 in a variable win and sets the variable npackets

to zero in Line 7. Then, Line 8 checks whether the TCP sender is allowed

4 For example, variable overhead adds a certain delay time specified by a
DelSndTimer object before data transmission. By default, TCP sender does
not transmit when overhead is nonzero. However, it can transmit packets im-
mediately when force = 1. Note that we do not discuss the details of class
DelSndTimer here. The readers may find the details of class DelSndTimer in files
˜ns/tcp/tcp.cc,h.

5 From Lines 19–22 of Program 10.10, function window() returns the minimum of
window (the maximum window size) and cwnd (the current congestion window
size) as the current bounded congestion window.
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Program 10.10 Function send much of class TcpAgent.

//~/ns/tcp/tcp.h

1 #define TCP_REASON_TIMEOUT 0x01 //Timeout

2 #define TCP_REASON_DUPACK 0x02 //Duplicated ACK

3 #define TCP_REASON_RBP 0x03 //Rate Based Pacing

4 #define TCP_REASON_PARTIALACK 0x04 //Partial ACK

//~/ns/tcp/tcp.cc

5 void TcpAgent::send_much(int force, int reason, int maxburst)

6 {

7 int win = window(), npackets = 0;

8 while (t_seqno_ <= highest_ack_ + win && t_seqno_ < curseq_) {

9 if (overhead_ == 0 || force ) {

10 output(t_seqno_, reason);

11 npackets++;

12 t_seqno_++;

13 }

14 win = window();

15 if (maxburst && npackets == maxburst)

16 break;

17 }

18 }

19 int TcpAgent::window()

20 {

21 return (cwnd_ < wnd_ ? (int)cwnd_ : (int)wnd_);

22 }

to send a TCP packet with sequence number t_seqno_. If so, Line 10 will
invoke function output(t_seqno_,reason) to send out a TCP packet. Again,
a TCP sender is allowed to transmit a packet if the following three conditions
are satisfied:

(i) Congestion window allows packet transmission: Function window() in
Line 7 returns the minimum of the current congestion window and the
maximum window size. This minimum value is stored in the variable
win in Line 7. Since the latest received ACK number is highest_ack_,
TCP sender can transmit TCP packets with sequence numbers t_seqno_
through highest_ack_+win.

(ii) TCP sender still has data to transmit: The sender will send TCP packets
unit the sequence number reaches curseq_. specified by user demand,
curseq_ is the highest TCP sequence number that the sender needs to
transmit.
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After a packet transmission, the default sequence number “t_seqno_”
(Line 12) and the congestion window size “win” (Line 14) are updated. Lines
15–17 stops the transmission, if TCP sender has sent out maxburst packets.
The above process repeats until the condition in Line 8 becomes false.

10.4.3 Function output(seqno,reason)

Taking two input arguments, function output(seqno,reason) creates a
packet, sets the sequence number and the reason field of TCP header to the
input arguments seqno and reason, respectively, and forwards the packet to
the low-level network by using function send(p,h) of class Agent.

Programs 10.11 and 10.12 show the details of function output(seqno,

reason), which consists of five main parts. First, Line 5 creates a packet “p”
by using function allocpkt() of class Agent. Secondly, Lines 6–26 config-
ure common, TCP, and flag headers of the created packets. For the common
packet header, function output(...) configures packet size (Lines 18–26) to
be 1,000 bytes (by default). If useHeaders_ is true, tcpip_base_hdr_size_
(40 bytes by default) will be added to the packet size align. Since a SYN

Program 10.11 Function output of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::output(int seqno, int reason)

2 {

3 int force_set_rtx_timer = 0;

4 int is_retransmit = (seqno < maxseq_);

5 Packet* p = allocpkt();

6 hdr_tcp *tcph = hdr_tcp::access(p);

7 tcph->seqno() = seqno;

8 tcph->ts() = Scheduler::instance().clock();

9 tcph->ts_echo() = ts_peer_;

10 tcph->reason() = reason;

11 tcph->last_rtt() = int(int(t_rtt_)*tcp_tick_*1000);

12 int databytes = hdr_cmn::access(p)->size();

13 if (cong_action_ && !is_retransmit) {

14 hdr_flags* hf = hdr_flags::access(p);

15 hf->cong_action() = TRUE;

16 cong_action_ = FALSE;

17 }

18 if (seqno == 0) {

19 if (syn_) {

20 databytes = 0;

21 curseq_ += 1;

22 hdr_cmn::access(p)->size() = tcpip_base_hdr_size_;

23 }

24 } else if (useHeaders_ == true) {

25 hdr_cmn::access(p)->size() += headersize();

26 }
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Program 10.12 Function output of class TcpAgent (Cont.).

27 send(p, 0);

28 ++ndatapack_;

29 ndatabytes_ += databytes;

30 if (seqno == curseq_ && seqno > maxseq_)

31 idle();

32 if (seqno > maxseq_) {

33 maxseq_ = seqno;

34 if (!rtt_active_) {

35 rtt_active_ = 1;

36 if (seqno > rtt_seq_) {

37 rtt_seq_ = seqno;

38 rtt_ts_ = Scheduler::instance().clock();

39 }

40 }

41 } else {

42 ++nrexmitpack_;

43 nrexmitbytes_ += databytes;

44 }

45 if (highest_ack_ == maxseq_)

46 force_set_rtx_timer = 1;

47 if (!(rtx_timer_.status() == TIMER_PENDING)

|| force_set_rtx_timer)

48 set_rtx_timer();

49 }

packet (with seqno =0 and syn =1) contains no pay-load, its size is set to
be tcpip_base_hdr_size_ bytes (Line 22). The following TCP header fields
are configured in Lines 6–12: sequence number, timestamp, timestamp echo,
transmitting reason, and latest observed round trip time (RTT). Finally, func-
tion output(...) configures only the congestion flag in the flag header (Lines
13–16). This congestion flag is set to be true if both of the following conditions
are true (i.e., Line 13 is true):

(i) Congestion has occurred: During network congestion, TCP sender closes
the congestion window by invoking function slowdown(how), within which
the variable cong_action_ is set to true. If variable cong_action_ is
true, Lines 13–17 will presume that congestion has occurred.

(ii) TCP sender is transmitting a new packet (is_retx = false): This flag
set to true, when a regular packet (not a retransmitted packets) is expe-
riencing congestion.6

6 For example, a router in the network may drop packets marked with a congestion
action flag to help relieve network congestion. However, dropping a retransmitted
packet may lead to TCP connection reset. Therefore, a TCP sender does not
mark retransmitted packets with congestion action.
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The third part of function output(seqno,reason) is used to send out
the configured packet using function send(p,h) of class Agent in Line 27.
The fourth part updates the relevant variables of the TcpAgent object in
Lines 28–48. If the condition in Line 30 is true, TCP sender will no longer
have data to transmit. In this case, Line 31 informs the application so by
invoking function idle() of class Agent. Relevant variables to be updated
are ndatapack_, ndatabytes_, nrexmitpack_, nremitbytes_, in Lines 28,
29, 42, and 43, respectively. The former two variables denote the data trans-
mitted by the TcpAgent object in packets and bytes, while the latter two are
those corresponding to the retransmitted packets only. Lines 33-39 update the
related variables when seqno > maxseq_. These variables include maxseq_ and
other RTT estimation variables. We will discuss about the RTT estimation
later in Section 10.6

The final part is to start the retransmission timer by invoking function
set_rtx_timer() in Line 48. Note that each TCP sender has only one re-
transmission timer. Under a normal situation, the timer is started only when it
is idle (i.e., its status is not TIMER_PENDING). However, it is also started when
highest_ack_ == maxseq_, regardless of the timer’s status (see Line 47).

Program 10.13 Function send one of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::send_one()

2 {

3 if (t_seqno_ <= highest_ack_ + wnd_ && t_seqno_ < curseq_ &&

t_seqno_ <= highest_ack_ + cwnd_ + dupacks_ ) {

4 output(t_seqno_, 0);

5 t_seqno_ ++ ;

6 }

7 }

10.4.4 Function send one()

Figure 10.3 shows the details of function send_one(). Function send_one()

is very similar to function send_much(...). It prepares sequence numbers
starting at t_seqno_ and passes them to function output(t_seqno_, 0) for
packet creation and transmission. The main difference is that while function
send_much(...)may send out several packets, function send_one(...) sends
out only one packet. Function send_one(...) is designed to send a packet
during a fast retransmit phase to indicate whether the TCP sender should send
out a new packet for every received duplicated ACK packet (see Section 10.5).
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In this case, Line 3 inflates the congestion windows with the number of dupli-
cated ACK (dupacks_). As will be discussed in Section 10.5, this function is
invoked if the option singledup_ is set to 1 during the reception of first and
second duplicated ACK packets.

10.5 ACK Processing Functions

The second responsibility of a TCP sender is to process the ACK packets.
An ACK packet could be a new ACK packet or a duplicated ACK packet.
A new ACK packet slides the congestion window to the right, and opens
the congestion window to allow the TCP sender to transmit more packets.
A duplicated ACK packet on the other hand indicates out-of-order packet
delivery or packet loss (see Fig. 9.2 for example). Again, TCP Tahoe assumes
that packet loss upon detecting the numdupacks_th (3rd by default) duplicated
ACK packet. It sets the slow-start threshold to half of the current congestion
window, sets the congestion window size to wnd_init_ (which is usually set to
1), and retransmits the lost packet. During a fast retransmit phase, the TCP
sender transmits a new packet for every received duplicated ACK packet (due
to inflated congestion window). When a new ACK packet is received, the TCP
sender sets its congestion window to e the same as slow start threshold, and
returns to its normal operation.

Class TcpAgent provides the four following key ACK Processing functions:

• recv(p,h): This is the main ACK reception function. It determines
whether the received packet (*p) is a new ACK packet or a duplicated
ACK packet, and acts accordingly.

• recv_newack_helper(p): This function is invoked from within function
recv(p,h) when a new ACK packet is received. It invokes function
newack(p) to update relevant variables, and opens the congestion win-
dow if necessary.

• newack(p): Invoked from within function recv_newack_helper(p), this
function updates variables related to sequence number, ACK number, and
RTT estimation process, and restarts the retransmission timer.

• dupack_action(): This function is invoked from within function recv(p,h)

when a duplicated ACK packet is received and Fast Retransmit process
is launched. It cuts down the congestion window, prepares the sequence
number of the lost packet for retransmission, and resets the retransmission
timer.
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Fig. 10.3. Function recv(p,h) of class TcpAgent.

10.5.1 Function recv(p,h)

Figure 10.3 and Program 10.14 show the diagram and implementation, respec-
tively, for function recv(p,h). Function recv(p,h) pre-processes the received
ACK packets in Lines 6–14, where t_seqno_ and cwnd_ are adjusted. De-
pending of the received ACK type (i.e., new or duplicated), Lines 6–14 (ACK
pre-processing) process an ACK packet according to the following three cases:

• Case I (New ACK): If a new ACK packet is received (i.e., Line 6 returns
true), Line 7 will invoke function recv_newack_helper(p) to adjust con-
gestion window (cwnd_) and prepare a new sequence number (t_seqno_)
for packet transmission.

• Case II (Duplicated ACK): In this case, a duplicated ACK packet is
received (i.e., Line 6 returns false) but the number of duplicated ACK
packets received so far has not reached numdupacks_ (i.e., Line 9 returns
false). Line 12 will invoke function send_one() to transmit new TCP
packets under the congestion window inflated by the number of received
duplicated ACK packets. Note that variable sigledup_ is an NS2 option
for congestion window inflation. The above actions are executed when
singledup_ is true only. If singledup_ is false, the TCP sender will
not send a new packet for every received ACK packet.
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• Case III (Fast retransmit): If the received ACK is the last (i.e.,
numdupacks_th) duplicated ACK packet, the TCP sender will enter the
Fast Retransmit phase, by invoking function dupack_action() (Line 10).
Note that an option flag noFastRetrans_ is an NS option for a fast
retransmit phase. The TCP sender will not enter a Fast Retransmit phase,
if noFastRetrans_ is true.

After executing one of the above three cases, Line 17 deallocates the ACK
packet *pkt by invoking function free(pkt). If the received ACK is valid (i.e.,
valid_ack_=1), Line 19 will create and transmit TCP packets using function
send_much(0,0,maxburst_). Here a received ACK packet is said to be valid
if it is a new ACK packet (i.e., tcph->seqno() > last_ack_) or a duplicated
ACK (i.e., tcph->seqno() = last_ack_). If an ACK packet is invalid, a TCP
sender will only destroy the ACK packet, but will not create and forward new
packets.

Program 10.14 Function recv of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::recv(Packet *pkt, Handler*)

2 {

3 hdr_tcp *tcph = hdr_tcp::access(pkt);

4 int valid_ack = 0;

5 ++nackpack_;

6 if (tcph->seqno() > last_ack_) {

7 recv_newack_helper(pkt);

8 } else if (tcph->seqno() == last_ack_) {

9 if (++dupacks_ == numdupacks_ && !noFastRetrans_) {

10 dupack_action();

11 } else if (dupacks_ < numdupacks_ && singledup_ ) {

12 send_one();

13 }

14 }

15 if (tcph->seqno() >= last_ack_)

16 valid_ack = 1;

17 Packet::free(pkt);

18 if (valid_ack)

19 send_much(0, 0, maxburst_);

20 }

10.5.2 Function recv newack helper(pkt)

Function recv_newack_helper(pkt) is a helper function invoked when a
new ACK packet is received. As shown in Program 10.15, the function
recv_newack_helper(pkt) first invokes function newack(pkt) in Line 2 to
update relevant variables and to process the retransmission timer. When Ex-
plicit Congestion Notification (ECN) is not enabled (i.e., by default ECT
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(ECN Capable Transport System) is set to zero), Line 5 will open the con-
gestion window (by invoking function opencwnd()) when at least one of the
following conditions is true (Line 4):

• control_increase_ = 0: Variable control_increase_, when set to 1,
suppresses the congestion window opening. When control_increase_ is
zero, a TCP sender can freely increase the congestion window.

Program 10.15 Function recv newack helper of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::recv_newack_helper(Packet *pkt) {

2 newack(pkt);

3 if (!ect_) {

4 if (!control_increase_ ||

(control_increase_ && (network_limited() == 1)))

5 opencwnd();

6 }

7 if ((highest_ack_ >= curseq_-1) && !closed_) {

8 closed_ = 1;

9 finish();

10 }

11 }

• control_increase_ �= 0 and network is limited: When control_

increase_ is 1, the TCP sender is allowed to open the congestion window
only when the previous congestion window is not sufficient to transmit the
current packet (i.e., the network is limited). In NS2, a network is said to
be limited when t_seqno_ is less than prev_highest_ack_ + win, where
prev_highest_ack_ is the ACK number prior to the reception of the
current ACK packet and win is the current congestion window (see Pro-
gram 10.16). In this case, it is necessary to open the congestion window,
even if control_increase_ is enabled. Note that if the TCP sender stops
transmission due to any reason other than the reason that the network is
limited, function recv_newack_helper(pkt) will not open the congestion
window.

Program 10.16 Function network limited of class TcpAgent.

//~/ns/tcp/tcp.cc

1 int TcpAgent::network_limited() {

2 int win = window () ;

3 if (t_seqno_ > (prev_highest_ack_ + win))

4 return 1;

5 else

6 return 0;

7 }
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Finally, if the TCP sender no longer has data to transmit, Line 8 in Pro-
gram 10.15 will close the connection by setting closed_ to 1, and Line 9 will
invoke function finish().

10.5.3 Function newack(pkt)

Program 10.17 shows the details of function newack(pkt). Lines 5–10 up-
date variables dupack_, last_ack_, prev_highest_ack_, highest_ack_, and
t_seqno_. Lines 12–19 update RTT estimation variables and timeout back-
off value. Finally, Line 20 starts a retransmission timer for the transmitting
packet. Again, we will discuss the details of RTT estimation and retransmis-
sion timer later in Section 10.6.

Program 10.17 Function newack of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::newack(Packet* pkt)

2 {

3 double now = Scheduler::instance().clock();

4 hdr_tcp *tcph = hdr_tcp::access(pkt);

5 dupacks_ = 0;

6 last_ack_ = tcph->seqno();

7 prev_highest_ack_ = highest_ack_ ;

8 highest_ack_ = last_ack_;

9 if (t_seqno_ < last_ack_ + 1)

10 t_seqno_ = last_ack_ + 1;

11 hdr_flags *fh = hdr_flags::access(pkt);

12 if (rtt_active_ && tcph->seqno() >= rtt_seq_) {

13 if (!ect_) {

14 t_backoff_ = 1;

15 ecn_backoff_ = 0;

16 }

17 rtt_active_ = 0;

18 rtt_update(now - rtt_ts_);

19 }

20 newtimer(pkt);

21 }

Function dupack action()

The main responsibilities of function dupack_action() are to: (1) decrease
congestion window size, (2) set t_seqno_ to the sequence number of the
lost TCP packet, and (3) restart retransmission timer. Program 10.18 shows
the details of function dupack_action(). Line 5 registers fast retransmission
event (i.e., FAST_RETX) for tracing. Line 6 records CWND_ACTION_DUPACK as the



242 10 Transport Control Protocols Part 2 – Transmission Control Protocol

latest window adjustment action (i.e., last_cwnd_action_). Line 7 closes the
congestion window by invoking function slowdown( CLOSE_SSTHRESH_HALF |

CLOSE_CWND_ONE), feeding how the slow start threshold and congestion win-
dow are to be configured as an input argument. Finally, Line 8 invokes function
reset_rtx_timer(0,0) to set t_seqno_ to highest_ack_+1, and restarts the
retransmission timer. The details of functions reset_rtx_timer(...) and
slowdown(...) will be discussed in Sections 10.6 and 10.7, respectively.

Program 10.18 Function dupack action of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::dupack_action()

2 {

3 if (highest_ack_ > recover_) {

4 recover_ = maxseq_;

5 trace_event("FAST_RETX");

6 last_cwnd_action_ = CWND_ACTION_DUPACK;

7 slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_ONE);

8 reset_rtx_timer(0,0);

9 return;

10 }

TCP Tahoe reacts to a duplicated ACK packet differently. Lines 4–9 in
Program 10.18 are executed only when all the packets transmitted during the
previous packet loss have been acknowledged. Here, variable recover_ records
the highest TCP sequence number (i.e., maxseq_) transmitted during the pre-
vious packet loss event. Line 4 sets recover_ to be maxseq_ so that it can be
used in the next packet loss event. The condition in Line 3, highest_ack_ >

recover_, implies that the TCP packet with highest sequence number trans-
mitted during the previous loss must be acknowledged. If this condition is not
satisfied, the TCP sender will wait for timeout and retransmit the lost packet.

10.6 Timer Related Functions

Another responsibility of a TCP sender is to use a retransmission timer to
provide connection reliability. The main components of this part include esti-
mation of smoothed RTT (round trip time) and RTT variation, computation
of RTO (retransmission timeout), implementation of BEB (binary exponen-
tial backoff), utilization of a retransmission timer, and defining actions to be
performed at timeout.

10.6.1 RTT Sample Collection

A TCP sender needs to collect RTT samples in order to estimate smoothed
RTT and RTT variation, and to compute retransmission timeout (RTO) value.
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ACTIVE INACTIVE

RTT Sample = 
now – rtt_ts_

output(seqno,reason)

dupack_action() 

reset_rtx_timer(mild, backoff)

newack(pkt) & 
     seqno = rtt_seq _

Fig. 10.4. The RTT sampling process.

An RTT sample is measured as the time difference between the point where a
packet is transmitted and the point where the associated ACK packet arrives
the sender.

In NS2, each TCP sender has only one set of variables including variables
rtt_active_,rtt_ts_, and rtt_seq_ (see Table 10.1) to track RTT samples.
It can collect only one RTT sample at a time – meaning not all the packets
are used to collect RTT samples.

Figure 10.4 shows the diagram of the RTT collection process. The pro-
cess starts in the inactive state where rtt_active_=0. The collection is acti-
vated (i.e., the process enters the active state) when a TCP sender sends out
a new packet using function output(seqno,reason). From Program 10.2,
Line 35 sets rtt_active_ to be 1.7 Lines 37 and 38 record the TCP se-
quence number and the current time in the variables rtt_seq_ and rtt_ts_,
respectively.

An RTT sample is collected when the associated ACK packet returns (see
Lines 12–19 of function newack(pkt) in Program 10.17). Given that the col-
lection process is active (i.e., rtt_active_=1), Line 12 determines whether
the incoming ACK packet belongs to the same collecting sample. It is so if
the sequence number in the received ACK packet is the same as that stored
in rtt_seq_ (set at the beginning of the collecting process). Note that the
logical relation here is “>=” rather than “==”, since some TCP variants may
not generate an ACK packet for every received TCP packet. At the end of the
collection process, Line 17 sets rtt_active to zero indicating that the col-
lecting process has completed (i.e., the process moves back to inactive state),
and Line 18 takes an RTT sample by invoking rtt_update(now-rtt_ts_)

(defined in Program 10.22).
The above RTT collection process operates fairly well under normal situ-

ations. However, a packet loss may inflate an RTT sample, and affect the
collecting accuracy. In this case, the measured RTT would be the RTT
value plus the time used to retransmit the lost packets. To avoid compli-
cation, NS2 simply cancels the RTT collection process, when a packet loss

7 If the rtt active is nonzero, TCP sender will skip the collection process.
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occurs. In particular, functions dupack_action() (Line 8 in Program 10.18)
and timeout(tno) (Lines 14 and 16 in Program 10.26) invoke function
reset_rtx_timer(...) to set rtt_active_ to zero, essentially cancelling the
RTT collecting process.

10.6.2 RTT Estimation

After collecting an RTT sample, a TCP sender feeds a sample “tao” to func-
tion rtt_update(tao) to estimate smoothed RTT (t_srtt_), RTT variation
(t_rttvar_), and unbounded RTO (t_rtxcur_)8 based on Eqs. (9.1)–(9.3),
where α = 7/8, β = 3/4 and γ = 1. Instead of directly computing these
three variables, NS2 manipulates Eqs. (9.1)–(9.3) such that each term in these
equations is multiplied with 2n, where n is an integer. As discussed in Sec-
tion 12.4.2, multiplication and division by 2n can be implemented in C++ by
shifting the binary value to the left and right, respectively, by n bits. This bit
shifting technique is used in function rtt_update(tao) to compute t_srtt_,
t_rttvar_, and t_rtxcur_.

At time k, let t(k) be the RTT sample, t(k) be the smoothed RTT value,
σt(k) be the RTT variation, and ∆ refer to t(k + 1)− t(k). From (9.1)–(9.3),

t(k + 1) =
1

8

(
7t(k) + t(k + 1)

)

=
1

8

(
7t(k) + t(k) + t(k + 1) − t(k)

)

=
1

8

(
8t(k) + ∆

)
(10.1)

σt(k + 1) =
1

4
(3σt(k) + |∆|)

=
1

4
(3σt(k) − 4σt(k) + 4σt(k) + |∆|)

=
1

4
(−σt(k) + 4σt(k) + |∆|) (10.2)

RTOu(k + 1) = γ × [t(k + 1) + 4σt(k + 1)] (10.3)

where RTOu(k + 1) is an unbounded RTO. Equations (10.1)–(10.3) are now
arranged in the multiple of 2n, n = {0, 2, 3} (i.e., the multiple of 1, 2, and
4). NS2 uses bit shifting operation in place of multiplication to implement
Eqs. (10.1)–(10.3).

10.6.3 Overview of State Variables

State variables contain the current status of a TCP agent. Related timer
state variables are shown in Tables 10.1 and 10.3. Most the variables are well

8 An actual value of RTO must be bounded by a minimum and a maximum value.
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explained by their description. We now discuss a few points related to these
variables.

First, C++ timer variables are initialized in function rtt_init() (Lines
1–8 in Program 10.19). OTcl timer instvars, on the other hand, are initialized
in file ˜ns/tcl/lib/ns-default.tcl shown in Lines 9–19 of Program 10.19.

Program 10.19 Default values for the timer-related variables.

//~/ns/tcp/tcp.cc

1 void TcpAgent::rtt_init()

2 {

3 t_rtt_ = 0;

4 t_srtt_ = int(srtt_init_ / tcp_tick_) << T_SRTT_BITS;

5 t_rttvar_ = int(rttvar_init_ / tcp_tick_) << T_RTTVAR_BITS;

6 t_rtxcur_ = rtxcur_init_;

7 t_backoff_ = 1;

8 }

//~/ns/tcl/lib/ns-default.tcl

9 Agent/TCP set T_SRTT_BITS 3 #in bits

10 Agent/TCP set T_RTTVAR_BITS 2 #in bits

11 Agent/TCP set srtt_init_ 0 #in seconds

12 Agent/TCP set rttvar_init_ 12 #in seconds

13 Agent/TCP set rtxcur_init_ 3.0 #in seconds

14 Agent/TCP set T_SRTT_BITS 3 #in bits

15 Agent/TCP set T_RTTVAR_BITS 2 #in bits

16 Agent/TCP set rttvar_exp_ 2 #in bits

17 Agent/TCP set tcp_tick_ 0.1 #in seconds

18 Agent/TCP set maxrto_ 100000 #in seconds

19 Agent/TCP set minrto_ 0.2 #in seconds

Secondly, tcp_tick is a simulation time unit (i.e., granularity) in seconds.
Hereafter, we will refer to a simulation time unit as a “tick”. The default value
of tcp_tick_ is 100 ms. In other words, one “tick” is set by default to 0.01
(see Line 17 in Program 10.23).

Thirdly, t_back_off_ is used as a binary exponential backoff factor (i.e.,
γ in Eq. (10.3)). A TCP sender doubles its retransmission timer for every
timeout event. In NS2, a TCP sender doubles t_backoff_ for every timeout
event, and computes the unbounded RTO as t_rtxcur_ * t_backoff_ (see
Line 7 in Program 10.23).

Finally, there are two main points related to variables t_srtt_ and
t_rttvar_. One is that these variables are stored in “ticks”, rather than sec-
onds. However, their initial values are in seconds. Lines 4–5 in Program 10.19
divides the initial values of smoothed RTT and RTT variation by tcp_tick

to obtain the time in “ticks” (rather than in seconds). Another point is the
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division operation (by 8 and 4, respectively). To avoid round-off error dur-
ing a division, these two variables are multiplied by 8 and 4, respectively, at
the initialization. Again, Lines 4 and 5 in Program 10.19 shift t_srtt_ and
t_rttvar_ to the left by T_SRTT_BITS=3 bits and T_RTTVAR_BITS = 2 bits,
respectively. This bit shifting is equivalent to multiplying 8 and 4 to t_srtt_

and t_rttvar_, respectively.

10.6.4 Retransmission Timer

A TCP sender employs a retransmission timer to provide end-to-end relia-
bility. When transmitting a packet, it starts a retransmission timer. Upon
the timer expiration, the timer informs the TCP sender of a packet timeout.
Here the TCP sender assumes that the packet is lost and retransmits the lost
packet. If an ACK packet is received prior to the timeout, the timer will be
stopped (i.e., cancelled). The details of NS2 timer implementation is given in
Section 12.1.

Program 10.20 Class RtxTimer and related components.

//~/ns/tcp/tcp.h

1 class RtxTimer : public TimerHandler {

2 public:

3 RtxTimer(TcpAgent *a) : TimerHandler() { a_ = a; }

4 protected:

5 virtual void expire(Event *e);

6 TcpAgent *a_;

7 };

//~/ns/tcp/tcp.cc

8 void RtxTimer::expire(Event*)

9 {

10 a_->timeout(TCP_TIMER_RTX);

11 }

12 void TcpAgent::set_rtx_timer()

13 {

14 rtx_timer_.resched(rtt_timeout());

15 }

NS2 models retransmission timers using a C++ class RtxTimer shown in
Program 10.20. Derived from class TimerHandler, class RtxTimer has one
variable a_ which is a pointer to a TcpAgent object. It derives three main
functions – sched(delay), resched(delay), and cancel() – and overrides
one function expire(e) of class TimerHandler. Function sched(delay) starts
the timer and sets the timer to expire at “delay” seconds in future. Function
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cancel() stops the pending the timer. Function resched(delay) restarts
the timer and again sets the timer to expire at “delay” seconds in future.
Finally, function expire(e) defines a set of actions which are taken at the
timer expiration.

Program 10.21 Components of TcpAgent related to TCP retransmission
timer.

//~/ns/tcp/tcp.h

1 class TcpAgent : public Agent {

2 ...

3 protected:

4 RtxTimer rtx_timer_;

5 ...

6 }

//~/ns/tcp/tcp.cc

7 TcpAgent::TcpAgent() : ... rtx_timer_(this), ...

8 { ... }

NS2 creates a two-way connection between TcpAgent and RtxTimer ob-
jects by using the following mechanism. First, class TcpAgent declares an
RtxTimer object (rtx_timer_ in Line 4 in Program 10.21) as its member
variable. Every TcpAgent object therefore has a direct access to an RtxTimer

object. Secondly, on the reverse direction, class RtxTimer declares a pointer
“a_” to a TcpAgent object in Line 6 of Program 10.20 as its member vari-
able. Finally, a TcpAgent object is specified as a target of the pointer a_ in
the constructor of the RtxTimer object. From Line 7 in Program 10.21, the
constructor of class TcpAgent creates a rtx_timer_ by feeding this (i.e.,
a pointer to itself) as an input argument. From Line 3 in Program 10.20,
the constructor of rtx_timer_ stores “this” in its variable “a_”, creating a
connection from the rtx_timer_ back to the TcpAgent object.

Note that in Line 4 in Program 10.21, a TCP sender has only one retrans-
mission timer. Therefore, the TCP timeout mechanism applies to only one
packet at a time. The retransmission timer is started when a new packet is
transmitted (by function output(...); see Line 48 in Program 10.12). Here,
the timer is not allowed to start if it is in use (i.e., its status is TIMER_PENDING).
This is in contrast to the actual TCP implementation where retransmission
timers are set for all transmitted packets.

10.6.5 Function Overview

Class TcpAgent provides the following seven key timer-related functions:

• rtt_update(tao): Take an RTT sample “tao” as an input argument,
updates smoothed RTT (t_srtt_), RTT variation (t_rttvar_), and
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unbounded RTO (t_rtxcur_) according to Eqs. (10.1), (10.2), and (10.3),
respectively.

• rtt_timeout(): Computes the bounded RTO value based on t_rtxcur_,
minrto_, and maxrto_, as well as TCP binary exponential backoff (BEB)
mechanism which make use of the current value of t_backoff_.

• rtt_backoff(): Double the binary exponential backoff multiplicative fac-
tor t_backoff_.

• set_rtx_timer(): Restart the retransmission timer.

• reset_rtx_timer(mild,backoff): Restart the retransmission counter
and cancel the RTT sample collecting process. If mild is zero, set t_seqno_
to highest_ack_+1. Also, it invokes function rtt_backoff() if backoff
is nonzero.

• newtimer(pkt): Take an ACK packet “pkt” as an input argument. Start
the retransmission timer if TCP connection is active,9 cancel the timer,
otherwise.

• timeout(tno): If the connection is active, close the congestion window,
adjust t_backoff_, retransmit the lost packet, and restart the retrans-
mission timer. Otherwise, restart the retransmission timer (but does not
perform other action).10

10.6.6 Function rtt update(tao)

Function rtt_update(tao) updates three main timer variables: smoothed
RTT (t_srtt_), RTT variable (t_rttvar_), and Retransmission TimeOut
(RTO; t_rtxcur_). Shown in Program 10.22, function rtt_update(tao)

takes an RTT sample as an input argument. It is invoked from within function
newack(pkt), when a new ACK packet is received and a new RTT sample is
now - rtt_ts_ (see Line 18 in Program 10.17).

Function rtt_update(tao)aligns the input argument taowith tcp_tick_

and stores the aligned valued in variable t_rtt_ as the latest RTT sample
(Lines 4–6). Before proceeding further, let us define the following variables

9 A TCP connection is said to be active and idle when it has data to transmit and
does not have data to transmit, respectively.

10 As we will see, a retransmission timer does not stop when a TCP connection
becomes idle. At the expiration, a TCP sender does nothing but restarts the
timer. By keeping the timer running, the timer will be available as soon as the
TCP sender becomes active.
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Program 10.22 Function rtt update of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::rtt_update(double tao)

2 {

3 double now = Scheduler::instance().clock();

4 double tickoff = fmod(now-tao+boot_time_, tcp_tick_);

5 if ((t_rtt_ = int((tao + tickoff) / tcp_tick_)<1);

6 t_rtt_ = 1;

7 if (t_srtt_ != 0) {

8 register short delta = t_rtt_ - (t_srtt_ >> T_SRTT_BITS);

9 if ((t_srtt_ += delta) <= 0)

10 t_srtt_ = 1;

11 if (delta < 0)

12 delta = -delta;

13 delta -= (t_rttvar_ >> T_RTTVAR_BITS);

14 if ((t_rttvar_ += delta) <= 0)

15 t_rttvar_ = 1;

16 } else {

17 t_srtt_ = t_rtt_ << T_SRTT_BITS;

18 t_rttvar_ = t_rtt_ << (T_RTTVAR_BITS-1);

19 }

20 t_rtxcur_ = (((t_rttvar_ << (rttvar_exp_ + (T_SRTT_BITS -

T_RTTVAR_BITS))) + t_srtt_) >> T_SRTT_BITS ) * tcp_tick_;

21 return;

22 }

t =
t srtt

8
= t srtt >>T SRTT BITS (10.4)

σt =
t rttvar

4
= t rttvar >>T RTTVAR BITS (10.5)

∆ = t rtt − t = t rtt − (t srtt >>T SRTT BITS) (10.6)

where T_SRTT_BITS, T_RTTVAR_BITS, and rttvar_exp_ are defined in Pro-
gram 10.19 as 3, 2, and 2, respectively. Again, variables t_srtt_ and t_rttvar_

are stored in multiples of 8 and 4 (see Lines 4–5 in Program 10.19). Therefore,
their relationship to actual smoothed RTT (t) and RTT variation (σt) is given
by Eqs. (10.4) and (10.5), respectively.

Based on the above variables, Lines 8–15 compute the smoothed RTT
value. In Eqs. (10.1) and (10.2), we rearrange the variables t_srtt_ and
t_rttvar_ as follows:

t srtt (k + 1) = 8t(k + 1) = 8t(k) + ∆(k) = t srtt (k) + ∆(k) (10.7)

t rttvar (k + 1) = 4σt(k + 1) = |∆| − σt(k) + 4σt(k)

= |∆| − [t rttvar >>T SRTT BITS] (k) + t rttvar (k).

(10.8)
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In Program 10.22, Line 8 computes delta (i.e., ∆) as indicated in (10.6).
Line 9 updates t_srtt_ according to Eq. (10.7) and Lines 11–12 compute |∆|.
Lines 13–14 update t_rttvar_ according to Eq. (10.8). From Lines 9–10 and
14–15, both t_srtt_ and t_rttvar_ will be set to 1, if their updated values
are less than zero. Also, Lines 8–15 are invoked when t_srtt_ is nonzero only.
When t_srtt_ is zero, t_srtt_ and t_rttvar_ are simply set to 8 times (Line
17) and twice of (Line 18) the RTT sample (i.e., t_rtt_), respectively.

NS2 computes (using Eq. (10.3)) and stores the unbounded value of RTO
in variable t_rtxcur_ (Line 20). It is computed as t+4σt shown in Eq. (9.3).
The upper-bound and the lower-bound in Eq. (9.3) will be implemented when
an unbounded RTO is assigned to the retransmission timer (e.g., in function
rtt_timeout()). The computation of t_rtxcur_ in Line 20 consists of 4 steps:

(i) Scale t_rttvar_: Variables t_srtt_ and t_rttvar_ are stored as mul-

tiples of 2T SRTT BITS = 8 and 2T RTTVAR BITS = 4, respectively. Line
20 converts the scale of t_rtt_var_ into the same scale of t_srtt_ as
follows:

t rttvar → t rttvar ×
8

4
= t rttvar >>T RTTVAR BITS<<T SRTT BITS

= t rttvar <<(T SRTT BITS− T RTTVAR BITS)

(ii) Multiply 2rttvar exp = 22 = 4 to the value obtained from Step (i).
Denote the result from Step (i) as t_rtt_var_(1).

t rttvar (1) → 4 × t rttvar (1)

= t rttvar (1)<<rttvar exp

(iii) Denote the value computed in Step (ii) be t_rtt_var_(2). Add t_srtt_

to t_rtt_var_(2).

t rttvar (2) → t rttvar (2) + t srtt

(iv) Convert the computed value to seconds: Let t_rtt_var_(3) be the value
computed in Step (iii). This value is stored in “ticks” and is in the scale
of t_srtt_ (i.e., multiple of 8). To change the unit of t_rtt_var_(3) to
seconds,

t rttvar (3) → t rttvar (3)>>T SRTT BITS*tcp tick

which is equivalent to Line 20 in Program 10.22.

10.6.7 Function rtt timeout()

Shown in Program 10.23, function rtt_timeout() computes the bounded
RTO, based on unbounded RTO (t_rtxcur_), RTO lower-bound (minrto_),
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RTO upper-bound (maxrto_), and TCP binary exponential backoff (BEB)
mechanism. NS2 implements the BEB mechanism by using a multiplicative
factor t_backoff_. The timeout value which is used by the retransmission
timer is a product of t_rtxcur_ and t_backoff_ (see Line 7). The lower-
bound and the upper-bound are implemented in Lines 3–7 and Lines 8–9,
respectively. Note that, while the lower-bound applies to t_rtxcur_ before
applying the BEB mechanism, the upper-bound does so after the BEB. Hence,
Lines 11–12 place another lower-bound constraint (i.e., 2.0*tcp_tick_) for
the value after the BEB.

Program 10.23 Functions rtt timeout and rtt backoff of class TcpAgent.

//~/ns/tcp/tcp.cc

1 double TcpAgent::rtt_timeout()

2 {

3 double timeout;

4 if (t_rtxcur_ < minrto_)

5 timeout = minrto_ * t_backoff_;

6 else

7 timeout = t_rtxcur_ * t_backoff_;

8 if (timeout > maxrto_)

9 timeout = maxrto_;

10 if (timeout < 2.0 * tcp_tick_)

11 timeout = 2.0 * tcp_tick_;

12 return (timeout);

13 }

14 void TcpAgent::rtt_backoff()

15 {

16 if (t_backoff_ < 64)

17 t_backoff_ <<= 1;

18 if (t_backoff_ > 8) {

19 t_rttvar_ += (t_srtt_ >> T_SRTT_BITS);

20 t_srtt_ = 0;

21 }

22 }

10.6.8 Function rtt backoff()

Function rtt_backoff() applies TCP binary exponential backoff (BEB)
mechanism to a multiplicative factor t_backoff_. As discussed in Section 9.1.2,
t_backoff_ is doubled for every timeout and is reset to its initial value when
a new ACK packet is received. As we will see, function rtt_backoff() is in-
voked by function reset_rtx_timer(mild,backoff) to double t_backoff_.
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Program 10.23 shows the details of function rtt_backoff(). If the current
t_backoff_ is less than 64 (Line 16), it will be doubled (i.e., shifted to the left
by one bit in Line 17). Also, a large value of t_backoff_ (e.g., > 8 in Line 18)
implies a long interval between two RTT samples. In this case, smoothed RTT
and RTT variation may not well represent the actual network RTT. In this
case, RTT should be a function of the most recent RTT sample only. Therefore,
Line 20 sets t_srtt_ to zero. After this point, function rtt_update(tao)will
invoke Lines 17–18 (rather than Lines 8–15) in Program 10.22 to estimate
network RTT.

10.6.9 Function set rtx timer() and Function reset rtx timer(

mild,backoff)

Programs 10.20 and 10.24 show the details of functions set_rtx_timer()

and reset_rtx_timer(mild,backoff), respectively. From Line 4 in Pro-
gram 10.20, function set_rtx_timer() simply sets the timer to expire at
t seconds in future, where t is the timeout value returned from function
rtt_timeout() (see also Program 10.23).

Program 10.24 Function reset rtx timer of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::reset_rtx_timer(int mild, int backoff)

2 {

3 if (backoff)

4 rtt_backoff();

5 set_rtx_timer();

6 if (!mild)

7 t_seqno_ = highest_ack_ + 1;

8 rtt_active_ = 0;

9 }

From Program 10.24, function reset_rtx_timer(mild,backoff)has four
main tasks:

(i) Restart the retransmission timer (Line 5).
(ii) Update the backoff multiplicative factor t_backoff_, if the input argu-

ment backoff is nonzero (Lines 3–4).
(iii) Update the next transmitting sequence number. Store highest_ack_+1

in t_seqno_, if the input argument “mild” is zero (Lines 6–7).
(iv) Cancel the pending RTT sample collection process by setting rtt_active_

to zero (Line 8).
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10.6.10 Function newtimer(pkt)

Function newtimer(pkt) is invoked from within function newack(pkt) when
a new ACK packet is received and the TCP sender is about to send out
another packet. As shown in Program 10.25, it takes an ACK packet *pkt

as an input argument. If the TCP sender still has data to transmit (i.e.,
Line 4 returns true), Line 5 will restart the retransmission timer by invok-
ing set_rtx_timer(). Otherwise, Line 7 will cancel the timer by invoking
cancel_rtx_timer().

Program 10.25 Function newtimer of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::newtimer(Packet* pkt)

2 {

3 hdr_tcp *tcph = hdr_tcp::access(pkt);

4 if (t_seqno_ > tcph->seqno() || tcph->seqno() < maxseq_)

5 set_rtx_timer();

6 else

7 cancel_rtx_timer();

8 }

10.6.11 Function timeout(tno)

Function timeout(tno) is invoked when a retransmission timer expires. It
adjusts congestion window as well as slow start threshold, and retransmits
the lost packet. Again, function expire(e) is invoked when the timer expires.
From Line 10 in Program 10.20, function expire(e) of class RtxTimer sim-
ply invokes function timeout(TCP_TIMER_RTX) of the associated TcpAgent

object. As shown in Lines 1–19 of Program 10.26, function timeout(tno)

takes a timer option (tno) as an input argument, where the possible val-
ues of tno are defined in Lines 20–25 of Program 10.26. In this section, we
are interested in TCP Tahoe. Therefore, we will discuss the case where only
timeout(TCP_TIMER_RTX) is invoked.

The basic operation of function timeout(tno) is to close the conges-
tion window (in Line 10), restart the retransmission timer (in Lines 14
and 16), and retransmits the lost packet (in Line 18). We will discuss
the details of function slowdown(...) which closes the congestion window
in Section 10.7. The retransmission timer is restarted by using the func-
tion reset_rtx_timer(mild,backoff) (see Program 10.24). For zero value
of “mild” this function sets t_seqno_ to highest_ack_+1. The zero and
nonzero values of the second input argument “backoff” inform function
reset_rtx_timer(mild,backoff) to and not to (respectively) update the
binary exponential backoff multiplicative factor (t_backoff_). Again, the
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Program 10.26 Function timeout of class TcpAgent and the possible values
of its input argument tno.

//~/ns/tcp/tcp.cc

1 void TcpAgent::timeout(int tno)

2 {

...

3 if (cwnd_ < 1) cwnd_ = 1;

4 if (highest_ack_ == maxseq_ && !slow_start_restart_) {

5 } else {

6 recover_ = maxseq_;

7 if (highest_ack_ < maxseq_) {

8 ++nrexmit_;

9 last_cwnd_action_ = CWND_ACTION_TIMEOUT;

10 slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_RESTART);

11 }

12 }

13 if (highest_ack_ == maxseq_)

14 reset_rtx_timer(0,0);

15 else

16 reset_rtx_timer(0,1);

17 last_cwnd_action_ = CWND_ACTION_TIMEOUT;

18 send_much(0, TCP_REASON_TIMEOUT, maxburst_);

19 }

//~/ns/tcp/tcp.h

20 #define TCP_TIMER_RTX 0

21 #define TCP_TIMER_DELSND 1

22 #define TCP_TIMER_BURSTSND 2

23 #define TCP_TIMER_DELACK 3

24 #define TCP_TIMER_Q 4

25 #define TCP_TIMER_RESET 5

TCP sender assumes that all packets with sequence number lower than
highest_ack_ are successfully transmitted. At a timeout event, it assumes
that the first lost packet (i.e., the packet to be retransmitted) is the packet
with sequence number highest_ack_+1. After preparing t_seqno_ (i.e., set to
highest_ack_+1) for retransmission, Line 18 invokes function send_much(0,

TCP_REASON_TIMEOUT, maxburst_) to transmit the lost packet.
After a TCP sender transmits all the packets provided by an attached

application, its variable t_seqno_ is equal to variable curseq_, and vari-
able maxseq_ stops increasing. After the last packet (with sequence number
maxseq_) is acknowledged, variable highest_ack_ is equal to maxseq_. At
this point, the TCP sender enters an idle state. Its retransmission timer,
however, does not stop at this moment. It keeps expiring for every period
of RTO. From Line 14 of Program 10.26, function timeout(tno) will invoke
reset_rtx_timer(0,0), which stores the value of highest_ack_+1 in vari-
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able t_seqno_ but does not change the multiplicative factor t_backoff_.
Also, function send_much(0, TCP_REASON_TIMEOUT, maxburst_) will not
send out any packet since t_seqno is not less than curseq_ (see Pro-
gram 10.10).

When the application sends more user demand (i.e., data payload) by
invoking sendmsg(nbytes), variable curseq_ is incremented and the TCP
connection becomes active. In this case, function send_much(0,0,maxburst_)

will send out packets, starting with the packet with sequence number
t_seqno_= max_seq_+1 = highest_ack_ + 1.

There are two important details in function timeout(tno). One is that
regardless of whether connection is busy or idle, Line 17 sets the variable
last_cwnd_action_ which records the latest action imposed on the con-
gestion window to be CWND_ACTION_TIMEOUT. Another is related to variable
recover_. Recall that recover contains the highest sequence number among
all the transmitted TCP packets at the latest loss event (i.e., either timeout
or Fast Retransmit). Line 6 hence records the highest TCP sequence number
transmitted so far in the variable recover_.

10.7 Window Adjustment Functions

From Section 9.1.2, a TCP sender dynamically adjusts congestion window to
fully utilize the network resource. When the network is under utilized, a TCP
sender increases transport-level transmission rate by opening the congestion
window. In the slow start phase, where the congestion window (cwnd_) is
less than the slow start threshold (ssthresh_), a TCP sender increases the
congestion window by one for every received ACK packet. If cwnd_ is not less
than ssthresh_, on the other hand, a TCP sender will be in the congestion
avoidance phase, and the congestion window is increased by 1/cwnd_ for every
received ACK packet.

When the network is congested, a TCP sender closes the congestion win-
dow to help relieve network congestion. As discussed in Section 9.1.2, TCP
may decrease the window by half or may reset the congestion window size to
one, depending on the situation.

Class TcpAgent provides two main functions, which can be used to adjust
the congestion window:

• opencwnd(): Increases the size of the congestion window. The increasing
method depends on cwnd_ and ssthresh_.

• slowdown(how): Decreases the size of the congestion window by the
method specified in “how”.

The possible values of “how” are defined in Program 10.27. All possible
values of how contain 32 bits, and conform to the following format: 1 of “one”
bit and 31 of “zero” bits. The difference among the values defined in Pro-
gram 10.27 lies in the position of the “one” bit. This format acts as a simple
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identification of the input method “how” through an “AND” operator. For ex-
ample, suppose the input argument how is set to CLOSE_CWND_ONE (=2). Let x
be a variable which can be any value in Program 10.27. Then, how & x would
be nonzero if and only if x=CLOSE_CWND_ONE. This assignment is also able to
contain several slowdownmethods in one variable using an “OR” operator. For
example, let how be CLOSE_CWND_ONE|CLOSE_SSTHRESH_HALF. Then, how & x

would be nonzero if and only if x=CLOSE_CWND_ONE or x=CLOSE_SSTHRESH_

HALF.

Program 10.27 Possible values of how – the input argument of function
slowdown.

//~/ns/tcp/tcp.h

1 #define CLOSE_SSTHRESH_HALF 0x00000001

2 #define CLOSE_CWND_HALF 0x00000002

3 #define CLOSE_CWND_RESTART 0x00000004

4 #define CLOSE_CWND_INIT 0x00000008

5 #define CLOSE_CWND_ONE 0x00000010

6 #define CLOSE_SSTHRESH_HALVE 0x00000020

7 #define CLOSE_CWND_HALVE 0x00000040

8 #define THREE_QUARTER_SSTHRESH 0x00000080

9 #define CLOSE_CWND_HALF_WAY 0x00000100

10 #define CWND_HALF_WITH_MIN 0x00000200

11 #define TCP_IDLE 0x00000400

12 #define NO_OUTSTANDING_DATA 0x00000800

10.7.1 Function opencwnd()

Function opencwnd() is invoked when a new ACK packet is received (see
function recv_newack_helper() in Line 5 of Program 10.15). It opens the
congestion window, and allows the TCP sender to transmit more packets
without waiting for acknowledgement. Program 10.28 shows the details of
function opencwnd(). From Line 3, if cwnd_ is less than ssthresh_, the TCP
sender will be in the slow start phase and cwnd_ will be increased by 1.
Otherwise, the TCP sender must be in a congestion avoidance phase, and
cwnd_ will be increased by 1/cwnd_ (Lines 6–7), where increase_num_ is
usually set to 1. In both cases, Lines 9–10 bound cwnd_ within maxcwnd_, the
predefined maximum congestion window size.

10.7.2 Function slowdown(how)

Function slowdown(how) closes the congestion window based on the method
specified in the input argument how. It is invoked from within function
dupack_action() and timeout(tno) to decrease transport layer transmission
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Program 10.28 Function opencwnd of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::opencwnd()

2 {

3 if (cwnd_ < ssthresh_) {

4 cwnd_ += 1;

5 } else {

6 double increment = increase_num_ / cwnd_;

7 cwnd_ += increment;

8 }

9 if (maxcwnd_ && (int(cwnd_) > maxcwnd_))

10 cwnd_ = maxcwnd_;

11 }

rate. Function dupack_action() invokes function slowdown(how) feeding how

= CLOSE_SSTHRESH_HALF | CLOSE_CWND_ONE (Line 7 in Program 10.18) as an
input argument. From Program 10.29, this invocation halves the current slow
start threshold (Lines 9–13) and resets the congestion window to 1 (Line 26).
Function timeout(tno) on the other hand invokes function slowdown(how)

with an input argument how = CLOSE_SSTHRESH_HALF | CLOSE_CWND_RESTART
as an input argument (Line 10 in Program 10.26). From Program 10.29, this
invocation halves the current slow start threshold (Lines 9–13) and resets the
congestion window to a predifined window-restart value (Line 24). In both
cases, NS2 employs an “OR” operator to combine how to adjust slow start
threshold and how to adjust congestion window, and feed it as an input ar-
gument to function slowdown(how).

The details of function slowdown(how) are shown in Program 10.29.
In this function, Lines 4–6 first set a variable slowstart to zero and one
when TCP is in the slow start phase (i.e., cwnd_< ssthresh_) and in the
congestion avoidance phase (i.e., cwnd_>= ssthresh_), respectively. Line
7 stores half of the window size in a variable halfwin and the window
size in a variable win. Variable decrease_num_ in Line 8 is set to 0.5
by default. Therefore, the local variable decreasewin is half of the cur-
rent congestion window. The variable decrease_num_ provides an option
for window decrement, where different TCP variants may set the value of
decrease_num_ differently (e.g., 0.3, 0.7). Lines 9–26 show different window
closing method, which will be invoked according to the input argument “how”.
Line 27 ensures that the minimum slow start threshold is 2. Line 29 sets
the variable cong_action_ to be true if the window adjustment method,
how, is either of CLOSE_CWND_HALF, CLOSE_CWND_RESTART, CLOSE_CWND_INIT,
or CLOSE_CWND_ONE. Again, the variable cong_action_ is used in function
output(seqno,reason) to set the congestion flag of the transmitted packet.
Finally, Line 32 sets first_decrease_ to zero, indicating TCP has decreased
the congestion window at least once.
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Program 10.29 Function slowdown of class TcpAgent.

//~/ns/tcp/tcp.cc

1 void TcpAgent::slowdown(int how)

2 {

3 double win, halfwin, decreasewin;

4 int slowstart = 0;

5 if (cwnd_ < ssthresh_)

6 slowstart = 1;

7 halfwin = windowd() / 2; win = windowd();

8 decreasewin = decrease_num_ * windowd();

9 if (how & CLOSE_SSTHRESH_HALF)

10 if (first_decrease_ == 1||slowstart ||

last_cwnd_action_ == CWND_ACTION_TIMEOUT)

11 ssthresh_ = (int) halfwin;

12 else

13 ssthresh_ = (int) decreasewin;

14 else if (how & THREE_QUARTER_SSTHRESH)

15 if (ssthresh_ < 3*cwnd_/4) ssthresh_ = (int)(3*cwnd_/4);

16 if (how & CLOSE_CWND_HALF)

17 if (first_decrease_==1||slowstart||decrease_num_==0.5){

18 cwnd_ = halfwin;

19 } else

20 cwnd_ = decreasewin;

21 else if (how & CWND_HALF_WITH_MIN) {

22 cwnd_ = decreasewin;

23 if (cwnd_ < 1) cwnd_ = 1;

24 } else if (how & CLOSE_CWND_RESTART) cwnd_=int(wnd_restart_);

25 else if (how & CLOSE_CWND_INIT) cwnd_ = int(wnd_init_);

26 else if (how & CLOSE_CWND_ONE) cwnd_ = 1;

27 if (ssthresh_ < 2) ssthresh_ = 2;

28 if (how & (CLOSE_CWND_HALF|CLOSE_CWND_RESTART|

CLOSE_CWND_INIT|CLOSE_CWND_ONE))

29 cong_action_ = TRUE;

30 if (first_decrease_ == 1) first_decrease_ = 0;

31 }

Lines 9–15 adjust the slow start threshold (ssthresh_) based on the value
of “how”:

• CLOSE_SSTHRESH_HALF (Lines 11 and 13): Sets the slow start threshold
ssthresh_ to the half of the current congestion window size cwnd_.

• THREE_QUARTER_SSTHRESH (Line 15): Sets the slow start threshold ssthresh_

to at least 3/4 of its current value.
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Similarly, Lines 16–29 adjust the congestion window (cwnd_) based on the
value of “how”:

• CLOSE_CWND_HALF (Lines 17–20): Decreases the current congestion window
size (i.e., cwnd_) by half (i.e., either halfwin or decreasewin).

• CWND_HALF_WITH_MIN (Lines 22–23): Sets the current congestion window
size to decreasewin but not less than 1.

• CLOSE_CWND_RESTART (Line 24): Sets the current congestion window size
to the predifined window-restart value wnd_restart_.

• CLOSE_CWND_INIT (Line 25): Sets the current congestion window size to
wnd_init_ (i.e., initial value of congestion window size).

• CLOSE_CWND_ONE (Line 26): Sets the current congestion window size to 1.

10.8 Chapter Summary

TCP is a reliable connection-oriented transport layer protocol. It provides
a connection with end-to-end error control and congestion control. NS2
implements TCP senders and TCP receivers using C++ classes TcpAgent and
TcpSink, which are bound to OTcl classes Agent/TCP and Agent/TCPSink,
respectively. A TCP sender has four main responsibilities. First, based on
user demand, it creates and forwards packets to a TCP receiver. Secondly,
it provides an end-to-end connection with reliability by means of packet
retransmission. Thirdly, it implements timer-related components to estimate
round trip time (RTT) and retransmission timeout (RTO), used to deter-
mine whether a packet is lost. Finally, it dynamically adjusts transport-level
transmission rate to fully utilize the network resource without causing net-
work congestion. ATCP receiver is responsible for creating (cumulative) ACK
packets and forwards them back to the TCP sender.
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Application: User Demand Indicator

Operating on top of a transport layer agent, an application models user de-
mand for data transmission. A user is assumed to create bursts of data payload
or application packets. These payload bursts are transformed into transport
layer packets which are then forwarded to a transport layer receiving agent.
Applications can be classified into traffic generator and simulated application.
A traffic generator creates user demand based on a predefined schedule. A sim-
ulated application, on the other hand, creates the demand as if the application
is running.

In the followings, we first discuss the relationship between an application
and a transport layer agent in Section 11.2. Sections 11.3 and 11.4 discuss
the detailed implementation of traffic generators and simulated applications,
respectively. Finally, the chapter summary is given in Section 11.5.

11.1 Relationship Between an Application
and a Transport Layer Agent

From time to time, an application needs to exchange user demand information
with a transport layer agent. An application declares a pointer agent_ to an
attached agent. Similarly, an agent defines a pointer app_ to an attached ap-
plication. The user demand information is exchanged between an application
and an agent through these two pointers. Section 9.2.2 gives a four-step agent
configuration method, which binds an application and a transport layer agent
together. The details of these four steps are given below:

Step 1: Create a Sending Agent, a Receiving Agent, and an
Application

An agent and an application can be created by using instproc new{..} as
follows:

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 11, c© Springer Science+Business Media, LLC 2009
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set agent [new Agent/<agent_type>]

set app [new Application/<app_type>]

where <agent_type> and <app_type> denote the type of an agent (e.g., TCP
or UDP) and an application (e.g. Traffic/CBR or FTP), respectively.

Step 2: Connect an Agent to an Application

A two way connection between an application and an agent can be created
by using of class Application whose syntax is shown below:

$app attach-agent $agent

where $app and $agent are Application and Agent objects. The details
of instproc attach-app{s_type} are shown in Program 11.1. Line 7 stores
an input Agent object in the variable agent_. Line 12 invokes function
attachApp(this) of class Agent, while Lines 19–22 create a connection
from the Agent object to the Application object. From Line 21, function

Program 11.1 An OTcl command attach-agent of class Application and
function attachApp of class Agent.

//~/ns/apps/app.cc

1 int Application::command(int argc, const char*const* argv)

2 {

3 Tcl& tcl = Tcl::instance();

4 ...

5 if (argc == 3) {

6 if (strcmp(argv[1], "attach-agent") == 0) {

7 agent_ = (Agent*) TclObject::lookup(argv[2]);

8 if (agent_ == 0) {

9 tcl.resultf("no such agent %s", argv[2]);

10 return(TCL_ERROR);

11 }

12 agent_->attachApp(this);

13 return(TCL_OK);

14 }

15 ...

16 }

17 return (Process::command(argc, argv));

18 }

//~/ns/common/agent.cc

19 void Agent::attachApp(Application *app)

20 {

21 app_ = app;

22 }
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attachApp(app) stores an input Application object app in the variable
app_ of the Agent object. Since Line 12 feeds the pointer this to function
attachApp(...) of the Application object, which simply sets the pointer
agent_->app_ to point to itself.

Step 3: Attaching an Agent to a Low-Level Network

Here, we consider the case where an agent is connected to a node in a low-level
network. As discussed in Section 6.6.3, an agent can be attached to a node by
using instproc attach-agent{node agent} of class Simulator, where node

and agent are the Node, and Agent objects, respectively. This instproc creates
a two-way connection between a Node object node and an Agent object agent.
It sets variable agent::target_ to point to node and installs agent in the
demultiplexer (i.e., instvar dmux_) of node.

The process of attaching an agent to a node involves three OTcl classes:
Simulator, Node, and RtModule. Figure 11.1 shows the main operation when
“$ns attach-agent $node $agent” is invoked:

(i) Instproc attach-agent{node agent} of class Simulator invokes $node
attach $agent.

(ii) Instproc attach{agent} of class Node allocates a port for an input agent
$agent, configures instvar agent_addr_ and agent_port_ of the input

Class RtModule

Class Node

Class Simulator

$ns attach-agent $node $agent

Instproc attach-agent {node agent}

$node attach $agent

Instproc add-target{agent port}

foreach m [$self set ptnotif_] {
     $m attach $port $agent
}

Instproc attach {agent port}

- $agent target [[$self node] entry]
- [[$self node] dmux] install $port $agent

Instproc attach {agent port}

- set port [$dmux_ alloc-port [[Simulator instance] nullagent]]
- $agent set agent_addr_ [AddrParams addr2id $address_]
- $agent set agent_port_ $port
- $self add-target $agent $port

(i)

(ii)

(iii)

(iv)

Fig. 11.1. Internal mechanism of instproc attach-agent{node agent} of class
Simulator.
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agent $agent, and invokes instproc add-target{agent port} to inform
every routing module stored in the instvar ptnotif_.

(iii) Instproc add-target{agent port} of class Node invokes instproc
attach{ agent port} of each routing module (of class RtModule) stored
in the instvar ptnotif_.

(iv) Instproc attach{agent port} of class RtModule creates a connection
between a node and an agent. Here, $agent sets its $target_ to point
to the entry of $node, while $node installs $agent in the slot “port” of
its demultiplexer “dmux_”. This connection is created for both sending
and receiving agents.

Step 4: Associating a Sending Agent with a Receiving Agent

To associate a sending agent with a receiving agent, NS2 employs instproc
connect of class Simulator, whose syntax is shown below:

$ns connect $s_agent $r_agent

where $ns, $s_agent, and $r_agent are Simulator, sending Agent, and re-
ceiving Agent objects, respectively.

Program 11.2 shows the details of instproc connect{src dst}. Lines 3
and 4 invoke instproc simplex-connect{src dst}, which set up a connec-
tion from src to dst_1, and simplex-connect{dst src} which creates a
connection from dst back to src.

Program 11.2 Instprocs connect and simplex-connect of class Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc connect {src dst} {

2 ...

3 $self simplex-connect $src $dst

4 $self simplex-connect $dst $src

5 ...

6 }

7 Simulator instproc simplex-connect { src dst } {

8 ...

9 $src set dst_addr_ [$dst set agent_addr_]

10 $src set dst_port_ [$dst set agent_port_]

11 ...

12 }

1 From Table 9.3, instvars dst addr and dst port are bound to the C++ variables
dst ::addr and dst ::port , respectively, in the C++ domain.
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Instvars dst_addr_ and dst_port_ are configured in Lines 9–10. When
an agent creates a packet, it stores values in variables dst_.addr_ and
dst_.port_ in the packet header. During a packet forwarding process, a low-
level network delivers packets to the agent corresponding to whose address
and port are specified in the packet header.

11.2 Details of Class Application

An application is defined in a C++ class Application as shown in Pro-
gram 11.3. Class Application has only one key variable agent_ which is a
pointer to class Agent. Other two variables, enableRecv_ and enableResume_,
are flag variables, which indicate whether an Application object should re-
act to functions recv(nbytes) and resume(), respectively. These two flag
variables are set to zero by default.

Program 11.3 Declaration of class Application.

//~/ns/apps/app.h

1 class Application : public Process {

2 public:

3 Application();

4 virtual void send(int nbytes);

5 virtual void recv(int nbytes);

6 virtual void resume();

7 protected:

8 virtual int command(int argc, const char*const* argv);

9 virtual void start();

10 virtual void stop();

11 Agent *agent_;

12 int enableRecv_;

13 int enableResume_;

14 };

11.2.1 Functions of Classes Application and Agent

After their connection is created, an application and an agent may invoke
public functions of each other through the pointers agent_ and app_, re-
spectively. The key public functions of class Application include functions
send(nbytes), recv(nbytes), and resume(), while those of class Agent

are functions send(nbytes), sendmsg(nbytes), close(), listen(), and
set_pkttype(pkttype).

Apart from these public functions, class Application also provides
protected functions start() and stop() to start and stop an Application
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object, respectively. Finally, there are five key OTcl commands for class
Application which can be invoked from the OTcl domain: start{}, stop{},
agent{}, send{nbytes}, and attach-agent{agent}.

11.2.2 Public Functions of Class Application

Program 11.4 shows the details of the three following public functions of
class Application:

• send(nbytes): Inform the attached transport layer agent that a user needs
to send nbytes of data payload. Line 3 sends the demand to the attached
agent by executing “agent_->sendmsg(nbytes)”.

• recv(nbytes): Receive “nbytes” bytes from a receiving transport layer
agent. A UDP agent specifies nbytes as the number of bytes in a received
packet. In case of UDP, nbytes is equal to packet size; on the other hand,
TCP specifies “nbytes” as the number of in-sequence received bytes. Due
to possibility of out-of-order packet delivery, nbytes can be greater than
the size of one packet.

• resume(): Invoked by a sending agent, this function indicates that the
agent has sent out all data corresponding to the user demand. For a TCP

Program 11.4 Implementation of functions send, recv, and resume of class
Application.

//~/ns/apps/app.cc

1 void Application::send(int nbytes)

2 {

3 agent_->sendmsg(nbytes);

4 }

5 void Application::recv(int nbytes)

6 {

7 if (! enableRecv_)

8 return;

9 Tcl& tcl = Tcl::instance();

10 tcl.evalf("%s recv %d", name_, nbytes);

11 }

12 void Application::resume()

13 {

14 if (! enableResume_)

15 return;

16 Tcl& tcl = Tcl::instance();

17 tcl.evalf("%s resume", name_);

18 }
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sender, this function is invoked when it sends out all the packets regardless
of whether the transmitted packets have been acknowledged.

Note that both functions recv(nbytes) and resume() will do nothing if
enableRecv_ = 0 and enableResume_ = 0, respectively. Otherwise, Line 10 and
17 in Program 11.5 will invoke OTcl commands or instprocs recv{nbytes}
(Line 10) and resume{} (Line 18) in the OTcl domain, respectively. By de-
fault, both enableRecv_ and enableResume_ are set to zero, and functions
recv(nbytes) and resume() simply do nothing.

A user may specify actions to be done upon invocation of functions
recv(nbytes) and resume() by

(i) Setting enableRecv_ and/or enableResume_ to one.
(ii) Specifying the actions in

(a) Functions recv(nbytes) and/or resume(),
(b) Instprocs recv{nbytes} and/or resume{} in the OTcl domain, or
(c) OTcl commands recv{nbytes} and/or resume{} in function

command().

It is important to perform both the steps above. Failing to perform the
second step will result in a run-time error, since commands or instprocs
recv{nbytes} and resume{} are undefined in class Application

Exercise 11.1. Modify (1) C++ functions, (2) OTcl commands, and (3)
OTcl instprocs. Force an application to print out a message when its functions
recv(nbyte) and resume() are invoked. Show simulation results to verify the
modification.

11.2.3 Related Public Functions of Class Agent

Class Application may invoke the following functions of class Agent through
variable agent_:

• send(nbytes): Send “nbytes” of application payload (i.e., user demand)
to a receiving agent. If nbytes=-1, the user demand would be infinite.

• sendmsg(nbytes,flags): Similar to function send(nbytes), but also feed
flags as an input variable.

• close(): Ask an agent to close the connection (applicable only to TCP)
• listen(): Ask an agent to listen to (i.e., wait for) a new connection (ap-

plicable only to Full TCP)
• set_pkttype(pkttype): Set the variable type_ of the attach agent to be

pkttype.
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11.2.4 OTcl Commands of Class Application

Defined in function command, OTcl commands associated with class
Application are as follows:

• start{}: Invoke function start() to start the application.
• stop{}: Invoke function stop() to stop the application.
• agent{}: Return the name of the attached agent.
• send{nbytes}: Send nbytes bytes of user payload to the attached agent

by invoking function send(nbytes).
• attach-agent{agent}: Create a two-way connection between itself and

the input Agent object (agent).

The details of the above OTcl command can be found in file ˜ns/apps/app.cc.

11.3 Traffic Generators

A traffic generator models user behavior which follows a predefined schedule.
In particular, it sends a demand to transmit one burst of user payload to an
attached agent at a time specified in the schedule, regardless of the state of
the agent. In NS2, there are four main traffic generators:

• Constant Bit Rate (CBR): Send a fixed size payload to the attached agent.
By default, the interval between two payloads (i.e., the sending rate) is
fixed, but it can be optionally randomized.

• Exponential On/Off: Send fixed size payloads for every randomized inter-
val to an attached agent during an ON period. Stop sending during an
OFF period. ON and OFF periods are exponentially distributed, and are
alternated when one period terminates.

• Pareto On/Off: Similar to the Exponential On/Off traffic generator. How-
ever, the durations of ON and OFF periods follow a Pareto distribution.

• Traffic Trace: Generate traffic according to a given trace file, which con-
tains a series of inter-burst transmission intervals and payload burst sizes.

11.3.1 An Overview of Class TrafficGenerator

NS2 implements traffic generators using class TrafficGenerator.
Program 11.5 shows the declaration of the abstract class TrafficGenerator,
where function next_interval(size) (Line 4) is pure virtual. Class Traffic
Generator consists of the following variables:

timer_ A TrafficTimer object, which determines when a new burst
of payload is created.

nextPkttime_ Simulation time that the next payload will be passed to the
attached transport layer agent
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Program 11.5 Declaration of class TrafficGenerator.

//~/ns/tools/trafgen.h

1 class TrafficGenerator : public Application {

2 public:

3 TrafficGenerator();

4 virtual double next_interval(int &) = 0;

5 virtual void init() {}

6 virtual double interval() { return 0; }

7 virtual int on() { return 0; }

8 virtual void timeout();

9 virtual void recv() {}

10 virtual void resume() {}

11 protected:

12 virtual void start();

13 virtual void stop();

14 double nextPkttime_;

15 int size_;

16 int running_;

17 TrafficTimer timer_;

18 };

size_ Application payload size
running_ true if the TrafficGenerator object is running

Class TrafficGenerator derives and overrides the following four key func-
tions of class Application. It derives functions recv(nbytes) and resume()

(i.e., share the implementation) from class Application, and overrides func-
tions start(), and stop() of class Application. Functions start() and
stop() inform the TrafficGenerator object to start and stop, respectively,
generating user payload. In Program 11.6, function start() initializes the
TrafficGenerator object by invoking function init()2 in Line 3, and sets
running_ to 1 in Line 4. It computes and stores the time until the next pay-
load burst is generated in variable nextPkttime_ in Line 5. Finally, it sets the
timer_ to expire at nextPkttime_ seconds in future (Line 6). From Lines 8 to
13 in Program 11.6, function stop() does the opposite of function start(). It
cancels the pending timer (if any) in Line 11, and sets running_ to 0 in Line 12.

Class TrafficGenerator also defines the following three new functions:

next_interval(size) Takes payload size “size” as an input argument, and
returns the delay time after which a new payload
is generated (Line 4). This function is pure virtual
and must be implemented by the instantiable derived
classes of class TrafficGenerator.

2 In Line 5 of Program 11.5, function init() simply does nothing.
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Program 11.6 Functions start, stop, and timeout of class
TrafficGenerator.

//~/ns/tools/trafgen.cc

1 void TrafficGenerator::start()

2 {

3 init();

4 running_ = 1;

5 nextPkttime_ = next_interval(size_);

6 timer_.resched(nextPkttime_);

7 }

8 void TrafficGenerator::stop()

9 {

10 if (running_)

11 timer_.cancel();

12 running_ = 0;

13 }

14 void TrafficGenerator::timeout()

15 {

16 if (! running_)

17 return;

18 send(size_);

19 nextPkttime_ = next_interval(size_);

20 if (nextPkttime_ > 0)

21 timer_.resched(nextPkttime_);

22 else

23 running_ = 0;

24 }

init() Initializes the traffic generator.
timeout() Sends a user payload to the attached application and restart

timer_. This function is invoked when timer_ expires.

The details of function timeout() are shown in Lines 14–24 of Pro-
gram 11.6. Function timeout() does nothing if the TrafficGenerator object
is not running (Lines 16–17). Otherwise, it will send “size_” bytes of user
payload to the attached agent using function send(nbytes) (defined in Pro-
gram 11.4). Then, Line 19 will compute nextPkttime_. If nextPkttime_ > 0,
Line 21 will inform timer_ to expire after a period of nextPkttime_. Other-
wise, Line 23 will stop the TrafficGenerator by setting running_ to zero.

11.3.2 Main Mechanism of a Traffic Generator

Figure 11.2 illustrates the main mechanism of a traffic generator, which re-
lies heavily on the variable timer_ whose class is TrafficTimer derived from
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Fig. 11.2. Main mechanism of a traffic generator.

class TimerHandler. As discussed in Section 12.1, class TimeHandler consists
of three states: TIMER_IDLE, TIMER_PENDING, and TIMER_HANDLING. Each of
these states corresponds to one of two TrafficGenerator states: Idle (i.e.,
running_=0) and Active (i.e., running_=1). While state TIMER_IDLE corre-
sponds to the idle state of a TrafficGenerator object, the other two timer
states are within the active state of a TrafficGenerator object.

Starting in an idle state, a traffic generator moves to active state when
function start() is invoked. Here the timer_ state is set to TIMER_PENDING.
At the expiration, timer_ moves to state TIMER_HANDLING, and invokes
function timeout() of class TrafficGenerator. After executing function
timeout(), it reschedule itself, changes the state to TIMER_PENDING, resched-
ules itself, and repeats the above process. When timer_ state is TIMER_PENDING
or TIMER_HANDLING, the traffic generator can be stopped by invoking function
stop().

Program 11.7 shows the declaration of class TrafficTimer, which derives
from class TimerHandler (see Section 12.1). Class TrafficTimer has a key
variable tgen_, a pointer to a TrafficGenerator object (Line 6). At the
expiration, NS2 invokes function expire(e) of timer_ (Lines 8–11), which in
turn invokes function timeout() of the associated TrafficGenerator object
(i.e., *tgen_).

A two-way connection between TrafficGenerator and TrafficTimer ob-
jects is created as follows. Class TrafficGenerator declares timer_ as its
pointer to a TrafficTimer object (Line 17 in Program 11.5). A Traffic-
Generator object instantiates timer_ by feeding a pointer to itself (i.e., this)
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Program 11.7 Declaration of class TrafficTimer, function expire of class
TrafficTimer, and the constructor of class TrafficGenerator.

//~/ns/tools/trafgen.h

1 class TrafficTimer : public TimerHandler {

2 public:

3 TrafficTimer(TrafficGenerator* tg) : tgen_(tg) {}

4 protected:

5 void expire(Event*);

6 TrafficGenerator* tgen_;

7 };

//~/ns/tools/trafgen.cc

8 void TrafficTimer::expire(Event *)

9 {

10 tgen_->timeout();

11 }

12 TrafficGenerator::TrafficGenerator() :

nextPkttime_(-1), running_(0), timer_(this) {}

as an input argument (Line 12 in Program 11.7). The construction of vari-
able timer_ in turn assigns the input pointer (i.e., this) to its pointer to a
TrafficGenerator object, tgen_ (Line 3 in Program 11.7), creating a con-
nection back to the TrafficTimer object.

11.3.3 Built-in Traffic Generators in NS2

Constant Bit Rate (CBR)

A CBR traffic generator creates a fixed size payload burst for every fixed
interval. As shown in Program 11.8, NS2 implements CBR traffic genera-
tors by using a C++ class CBR_Traffic which is bound to an OTcl class
Application/Traffic/CBR, whose key instvars with their default values are
shown in Table 11.1.

Note that, by default the inter-burst transmission interval, which is the
interval between the beginning of two successive payload bursts, can be com-
puted by dividing the payload burst size by the sending rate. By default, the
inter-burst transmission interval is 210 × 8/488.000 ≈ 3.44ms. The detailed
mechanism for class CBR_Traffic will be discussed in Section 11.3.4.
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Program 11.8 Class CBRTrafficClasswhich binds C++ class CBR Traffic

and OTcl class Application/Traffic/CBR together.

//~/ns/tools/cbr_traffic.cc

1 static class CBRTrafficClass : public TclClass {

2 public:

3 CBRTrafficClass() : TclClass("Application/Traffic/CBR") {}

4 TclObject* create(int, const char*const*) {

5 return (new CBR_Traffic());

6 }

7 } class_cbr_traffic;

Table 11.1. Instvars of a CBR traffic generator.

Instvar Default value Description

packetSize_ 210 Application payload size in bytes

rate_ 488 × 103 Sending rate in bps

random_ 0 (false) If true, introduce a random time (either positive or
negative) to the inter-burst transmission interval.

maxpkts_ 167 Maximum number of application payload packet that
CBR can send

Exponential On/Off

An exponential on/off traffic generator acts as a CBR traffic genera-
tor during an ON interval and does not generate any payload during an
OFF interval. ON and OFF periods are both exponentially distributed. As
shown in Program 11.9, NS2 implements Exponential On/Off traffic genera-
tors by using a C++ class EXPOO_Traffic which is bound to an OTcl class

Program 11.9 Class EXPTrafficClass which binds C++ class
EXPOO Traffic and OTcl class Application/Traffic/Exponential to-
gether.

//~/ns/tools/expoo.cc

1 static class EXPTrafficClass : public TclClass {

2 public:

3 EXPTrafficClass() : TclClass("Application/

Traffic/Exponential") {}

4 TclObject* create(int, const char*const*) {

5 return (new EXPOO_Traffic());

6 }

7 } class_expoo_traffic;
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Application/Traffic/Exponential, whose key instvars with their default
values are shown in Table 11.2.

Table 11.2. Instvars of an exponential on/off traffic generator.

Instvar Default value Description

packetSize_ 210 Application payload size in bytes
rate_ 64 × 103 Sending rate in bps during an ON period
burst_time_ 0.5 Average ON period in seconds
idle_time_ 0.5 Average OFF period in seconds

Pareto On/Off

A Pareto On/Off traffic generator does the same as an Exponential On/Off
generator but the ON and OFF periods conform to a Pareto distribution.
As shown in Program 11.10, NS2 implements Pareto On/Off traffic gener-
ators by using a C++ class POO_Traffic which is bound to an OTcl class
Application/Traffic/Pareto, whose key instvars with their default values
are shown in Table 11.3.

Program 11.10 Class POOTrafficClass which binds C++ class
POO Traffic and OTcl class Application/Traffic/Pareto together.

//~/ns/tools/pareto.cc

1 static class POOTrafficClass : public TclClass {

2 public:

3 POOTrafficClass() : TclClass("Application/Traffic/Pareto") {}

4 TclObject* create(int, const char*const*) {

5 return (new POO_Traffic());

6 }

7 } class_poo_traffic;

Table 11.3. Instvars of a Pareto/Off traffic generator.

Instvar Default value Description

packetSize_ 210 Application payload in bytes
rate_ 64 × 103 Sending rate in bps during an ON period
burst_time_ 0.5 Average ON period in seconds
idle_time_ 0.5 Average OFF period in seconds
shape_ 1.5 A “Shape” parameter of a Pareto distribution
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Traffic Trace

A traffic trace generates payload bursts according to a given trace file. As
shown in Program 11.11, NS2 implements traffic trace by using the C++ class
TrafficTracewhich is bound to an OTcl class Application/Traffic/Trace.
Unlike other traffic generators described before, we need to specify a traffic
trace file in the OTcl domain using command attach-tracefile of class
Application/Traffic/Trace (see Example 11.2).

Program 11.11 Class TrafficTraceClass which binds C++ class
TrafficTrace and OTcl class Application/Traffic/Trace together.

//~/ns/trace/traffictrace.cc

1 static class TrafficTraceClass : public TclClass {

2 public:

3 TrafficTraceClass() : TclClass("Application/Traffic/Trace") {}

4 TclObject* create(int, const char*const*) {

5 return(new TrafficTrace());

6 }

7 } class_traffictrace;

Example 11.2. A CBR traffic generator in Example 9.1 can be replaced with
a traffic trace traffic generator by substituting Lines 10–12 in Program 9.2
with the following lines:

set tfile [new Tracefile]

$tfile filename example-trace

set tt [new Applicaiton/Traffic/Trace]

$tt attach-tracefile $tfile

$tt attach-agent $udp

A traffic trace file is a pure binary file. A codeword in the binary file
consists of two 32-bits fields. The first field indicates inter-burst transmission
interval in microseconds, while the second is the payload size in bytes (see file
˜ns/tcl/ex/example-trace as an example traffic trace file).

11.3.4 Class CBR Traffic: An Example Traffic Generator

This section presents a C++ implementation of class CBR_Traffic whose
declaration is shown in Program 11.12). Class CBR_Traffic derives from class
TrafficGenerator, and has the following main variables:

rate_ CBR sending rate in bps
interval_ Packet inter-arrival time in seconds
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random_ If true, the inter-arrival time will be random
seqno_ CBR sequence number

maxpkts_ Upper bound on the sequence number

Based on the main mechanism discussed in Section 11.3.2, NS2 activates
a traffic generator by invoking function start(). When activated, a traf-
fic generator invokes its function timeout(), which generates an application
payload, periodically. An interval between two consecutive timeout() invo-
cations is determined by the function next_interval(size). The timeout()
invocations occur repeatedly until the traffic generator is deactivated (by an
invocation of function close()).

As shown in Program 11.12, function start() invokes function init()

(Line 17) to initialize the traffic generator, sets running_ to 1 (Line 18), and

Program 11.12 Functions start and init of class CBR Traffic.

//~/ns/tools/cbr_traffic.cc

1 class CBR_Traffic : public TrafficGenerator {

2 public:

3 CBR_Traffic();

4 virtual double next_interval(int&);

5 inline double interval() { return (interval_); }

6 protected:

7 virtual void start();

8 void init();

9 double rate_;

10 double interval_;

11 double random_;

12 int seqno_;

13 int maxpkts_;

14 };

15 void CBR_Traffic::start()

16 {

17 init();

18 running_ = 1;

19 timeout();

20 }

21 void CBR_Traffic::init()

22 {

23 interval_ = (double)(size_ << 3)/(double)rate_;

24 if (agent_)

25 if (agent_->get_pkttype() != PT_TCP &&

agent_->get_pkttype() != PT_TFRC)

26 agent_->set_pkttype(PT_CBR);

27 }
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invokes function timeout() (Line 19). The details of function init() are
shown in Lines 21–28 of Program 11.12. Line 23 computes the inter-burst
transmission interval as transmission rate (rate_) divided by payload burst
size “size_<<3” (in bits).3 Function init() would also set the packet type
of the attached agent to be PT_CBR, unless the packet type has already been
set to PT_TCP or PT_TFRC (Lines 25–26).

From Program 11.6, function timeout(), sends out “size_” bytes of ap-
plication payload (Line 8), recomputes nextPkttime_ as a value returned
from function next_interval(size_) (Line 19), and schedules the timer
timer_ to expire at nextPkttime_ seconds in future (Line 21). Again, func-
tion next_interval(size_) is pure virtual and must be implemented by
instantiable child classes of class TrafficGenerator. Class CBR_Traffic im-
plements this function (Program 11.13), by returning the packet inter-arrival
time converted from payload size “size_” and CBR transmission rate “rate_”
(Lines 3 and 9). Optionally, Line 6 may add or subtract a random value to the
computed interval if random_ is set to true. Also, if the application payload
are greater than maxpkts_, Line 11 will return -1 rather than the computed
interval.

Program 11.13 Function next interval of class CBR Traffic.

//~/ns/tools/cbr_traffic.cc

1 double CBR_Traffic::next_interval(int& size)

2 {

3 interval_ = (double)(size_ << 3)/(double)rate_;

4 double t = interval_;

5 if (random_)

6 t += interval_ * Random::uniform(-0.5, 0.5);

7 size = size_;

8 if (++seqno_ < maxpkts_)

9 return(t);

10 else

11 return(-1);

12 }

11.4 Simulated Applications

Unlike traffic generators, a simulated application does not have a predefined
schedule for payload generation. Rather, it acts as if an actual application is
running. NS2 provides two built-in simulated applications: FTP and Telnet.

3 Since the units of the variables size and rate are “bytes” and “bits per second”,
respectively, Line 9 multiplies size with 8 by shifting size to the left by 3 bits
(see Section 12.4.2).
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11.4.1 FTP (File Transfer Protocol)

File Transfer Protocol (FTP) is a protocol which divides a given file into
small pieces and transfers them to a destination host. Unlike a general FTP
in practice, an NS2 FTP module does not need an input file. It simply informs
an attached sending transport layer agent of a file size in bytes. Upon receiving
user demand (e.g., file size), the agent creates packets which can accommodate
the file and forwards them to a connected receiving transport layer agent
through a low-level network. Also, an NS2 FTP module is not responsible for
specifying a destination host. Destination host identification is responsible by
a transport layer agent which identifies the destination by using (through the
instproc connect{src dst}; Section 11.1).

Due to its simplicity, an FTP module is implemented in the OTcl domain
only. Defined in class Application/FTP which derives class Application, its
main OTcl commands and instprocs include

attach-agent{agent} Register the input “agent” as an attached agent.
start{} Inform the attached agent of a demand to transmit

a file with infinite size by executing “send -1”.
stop{} Stop the pending file transfer session.

send{nbytes} Send the file with size “nbytes” bytes by invoking
function sendmsg(nbytes) of the attached agent.

produce{nbytes} Inform the attached agent to transmit until its
sequence number has reached the minimum of
“nbytes” and “maxseq_”.

producemore {nbytes} Inform the attached agent to transmit “nbytes”
more packets.

11.4.2 Telnet

Telnet is an interactive client-server text-based application. A Telnet client
logs on to a server, and sends text messages to the server. The server in turn
executes the received message and returns the result to the client. Clearly, Tel-
net is not implemented based on a predefined schedule, since its data traffic
is created in response to user demand. However, NS2 models a Telnet appli-
cation in the same way as it does for traffic generators: sending a fixed size
packet for every randomized interval.

NS2 defines a Telnet application in C++ class TelnetApp and OTcl class
Application/Telnet, which derives from class Application. It uses the value
stored in variable size_ of the attached agent as the size of each Telnet packet,
and computes the inter-burst transmission interval as follows:

• Case I: If interval_ is nonzero, the inter-burst transmission interval is
chosen from an exponential distribution with mean interval_.
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• Case II: If interval_ is zero, the inter-burst transmission interval is
chosen from an empirically generated distribution tcplib defined in file
˜ns/tcp/tcplib-telnet.cc.

Telnet has only one configurable variable interval_. In common with
other Application objects, it can be started and stopped by using command
start{} and stop{}, respectively.

11.5 Chapter Summary

Sitting on top of a transport layer agent, an application informs the attached
agent of user demand. Applications can be classified into traffic generators
and simulated applications. A traffic generator creates user demand based on a
predefined schedule, while a simulated application does so as if the application
is running.

Built-in traffic generators in NS2 include CBR (constant bit rate), ex-
ponential on/off, Pareto on/off, and Traffic Trace. A CBR traffic generator
creates fixed size payloads for every fixed interval. Exponential on/off and
Pareto on/off traffic generators create fixed size payloads during an ON pe-
riod and create no payload during an OFF period. The ON and OFF durations
are chosen from an exponential distribution and a Pareto distribution, respec-
tively. Finally, payload size and inter-burst transmission interval for a traffic
trace traffic generator are obtained from an input trace file.

NS2 has two built in simulation application: FTP (File Transfer Protocol)
and Telnet. FTP informs the attached agent of the file size (in bytes) to
be transferred. The attached agent is responsible for creating packets which
can accommodate a file, and choosing the destination of the FTP session.
In practice, Telnet is a client-server application, whose traffic depends on
the interaction between client and server. However, NS2 implements a Telnet
as a traffic generator. In particular, it creates a fixed size payload for every
random interval, whose distribution is either exponential or tcplib defined
in ˜ns/tcp/tcplib-telnet.cc.

Class Application is the base class for all the above applications. It pro-
vides few key OTcl commands and instprocs to configure Application ob-
jects. An instproc attach-agent{agent} registers the input “agent” as an
attached agent. Instprocs start{} and stop{} inform an application to start
and stop generating data payload. Derived classes of class Application reuse
these functionalities, and defines their own functionalities for their own pur-
poses.
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Related Helper Classes

Helper classes generally not a part of a network, but are used in NS2 as
an internal mechanism and/or are network components in a special case. This
chapter discusses the details of three main NS2 helper classes. In Section 12.1,
we first discuss class Timer, which is widely used by other NS2 modules such
as TCP to implement conditional time-based actions. In Section 12.2, we
demonstrate a random number generation process in NS2. In Section 12.3, we
explain the details of class ErrorModel, which can be used to simulate packet
error. Section 12.4 discusses bit masking and bit shifting operations used in
various places in NS2. Finally, the chapter summary is given in Section 12.5.

12.1 Timers

Timer is a component which can be used to delay actions. Unless cancelled
or restarted, a timer takes actions after it has been started for a given period
of time (i.e., at the expiration). For example, a sender starts a retransmission
timer as soon as it transmits a packet. Unless cancelled by a reception of an
acknowledgement packet, the timer assumes packet loss and asks the sender
to retransmit the lost packet at the timer expiration.

12.1.1 Implementation Concept of Timer in NS2

As shown in Fig. 12.1, a timer consists of four following states: IDLE, SET
WAITING TIME, WAITING, and EXPIRED. A transition from one state to another
occurs immediately when the operation in the current state is complete (i.e.,
by default), or when the timer receives a start message, a restart message, or
a cancel message.

When a timer is created, it sets the state to be IDLE. Upon receiving a
start message, the timer moves to state SET WAITING TIME, where it sets its
waiting time to be delay seconds and moves to state WAITING. The timer
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Fig. 12.1. Timer life cycle.

stays in state WAITING for delay seconds, and moves to state EXPIRED. At
this point, the timer takes predefined expiration actions and moves back to
state IDLE. Hereafter, we will say that the timer expires as soon as it enters
state EXPIRED. Also, we shall refer to the actions taken in state EXPIRED as
expiration actions.

The above timer life cycle occurs by default when message start is received.
When a cancel messages is received, the timer will stop waiting and move back
to state IDLE. If a restart message is received, the timer will restart the waiting
process in state SET WAITING TIME.

Implementation of timer in NS2 is a very good example of the inheritance
concept in OOP. Each timer needs to implement the three following mech-
anisms: (1) waiting mechanism, (2) interface functions to start, restart, and
cancel the waiting process, and (3) expiration actions. The first two mecha-
nisms are common to all timers; however, the last mechanism (i.e., expiration
actions) is what differentiates one timer from another. From an OOP point
of view, the timer base class must define the waiting mechanism and message
receiving interfaces, and leave the implementation of the expiration actions to
the derived classes.

In NS2, timers are implemented in both C++ and OTcl. However, both
C++ and OTcl timer classes are standalone (i.e., not bound together by
TclClass). Relevant functions and variables in both domains are shown in
Table 12.1. In both domains, NS2 implements the waiting process by utilizing
the Scheduler. Upon entering the state SET WAITING TIME, NS2 places a timer
expiration event on the simulation timeline. When the Scheduler fires the
expiration event, the timer enters state EXPIRED and executes the expiration
actions.
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Table 12.1. Timer implementation in C++ and OTcl domains.

Components of a timer C++ components OTcl components

State IDLE status_=TIMER_IDLE id_ unset
State SET WAITING TIME status_=TIMER_PENDING id_ set
State WAITING status_=TIMER_PENDING id_ set
State EXPIRATION status_=TIMER_HANDLING id_ set
Message start Function sched Instprocs sched and resched

Message restart Function resched Instprocs sched and resched

Message cancel Function cancel Instprocs cancel and destroy

Action at the expiration Function expire Instproc timeout

12.1.2 OTcl Implementation

In the OTcl domain, NS2 implements timers using an OTcl class Timer.
The implementation of class timer consists of three parts. First, the wait-
ing mechanism is implemented by placing a timer expiration event on the
simulation timeline using instproc Simulator::at{...} (See Lines 9 and
15 in Program 12.1). Secondly, the interface of class Timer is defined in
instprocs sched{delay}, resched{delay}, cancel{}, and destroy{}. Fi-
nally, the expiration actions are specified in instproc timeout{}, which is
implemented in child classes of class Timer (see class ConnTimer in file
˜ns/tcl/webcache/webtraf.tcl, for example).

Program 12.1 shows the details of various instprocs of OTcl class Timer.
Class Timer has two key instvars: ns_ in Line 6 and id_ in Line 7. Instvar ns_
is a reference to the Simulator. It is configured at the construction of a Timer

object (see Lines 2–4). The constructor of class Timer takes the Simulator as
its input argument and stores the input instance in its instvar ns_. Instvar
id_ (Line 7) indicates the state of the timer. If the timer is idle, id_ will not
exist (since it is unset). If the timer is active, id_ will contain the unique ID
of the timer expiration event on the simulation timeline.

Instprocs sched{delay} (Lines 5–10) and resched{delay} (Lines 11–13)
are NS2 implementation for receiving a start message and a restart message,
respectively. They take one input argument delay, and set the timer to ex-
pire after delay seconds. Regardless of the timer state, instproc sched{delay}
cancels the timer by using instproc cancel{} in Line 8. In Line 9, it tells the
timer to expire at delay seconds in future by invoking instproc after{ival
args} of class Simulator. Shown in Lines 14–16, instproc after{...} em-
ploys command at of class Simulator to place an OTcl command in fu-
ture.1 From Line 9, instproc sched{delay} schedules an invocation of instproc

1 As discussed in Section 4.2, the OTcl command “at{...}” places an AtEvent

object on the simulation timeline, and returns the unique ID of the scheduled
event to the caller.
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Program 12.1 Timer related OTcl instprocs.

//~/ns/tcl/mcast/timer.tcl

1 Class Timer

2 Timer instproc init { ns } {

3 $self set ns_ $ns

4 }

5 Timer instproc sched delay {

6 $self instvar ns_

7 $self instvar id_

8 $self cancel

9 set id_ [$ns_ after $delay "$self timeout"]

10 }

11 Timer instproc resched delay {

12 $self sched $delay

13 }

//~/ns/tcl/lib/ns-lib.tcl

14 Simulator instproc after {ival args} {

15 eval $self at [expr [$self now] + $ival] $args

16 }

//~/ns/tcl/mcast/timer.tcl

17 Timer instproc cancel {} {

18 $self instvar ns_

19 $self instvar id_

20 if [info exists id_] {

21 $ns_ cancel $id_

22 unset id_

23 }

24 }

25 Timer instproc destroy {} {

26 $self cancel

27 }

“timeout{}” at delay seconds in future and stores the unique ID correspond-
ing to the timer expiration event in instvar id_.

Lines 17–27 in Program 12.1 show the details of instprocs cancel{} and
destroy{} of class Timer. Both the instprocs act as an interface to receive
a cancel message. Note that, id_ exists only when a timer expiration event
is on the simulation timeline. Timer is cancelled only when id_ exists (i.e.,
the condition in Line 20 is true). In this case, Line 21 feeds id_ to instproc
cancel{id_} (see Program 12.2) of the Simulator instance to remove the
timer expiration event from the timeline. Finally, Line 22 unsets instvar id_

to indicate that the expiration event is no longer on the simulation timeline.
Program 12.2 shows the details of instproc cancel{...} of class Simulator

and OTcl command cancel{uid} of class Scheduler. Instproc cancel{...}



12.1 Timers 285

Program 12.2 Instproc cancel of class Simulator and an OTcl command
cancel of class Scheduler.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc cancel args {

2 $self instvar scheduler_

3 return [eval $scheduler_ cancel $args]

4 }

//~/ns/common/scheduler.cc

5 int Scheduler::command(int argc, const char*const* argv)

6 {

7 ...

8 if (strcmp(argv[1], "cancel") == 0) {

9 Event* p = lookup(STRTOUID(argv[2]));

10 if (p != 0) {

11 cancel(p);

12 AtEvent* ae = (AtEvent*)p;

13 delete ae;

14 }

15 }

16 ...

17 }

takes one input argument uid, which is the unique ID of an event to be can-
celled. Line 3 invokes command cancel{uid} of the Scheduler (stored in an
instvar scheduler_ of the Simulator), which removes the timer expiration
event whose unique ID is “uid” (see Lines 9–13).

12.1.3 C++ Based Class Implementation

This section explains the C++ implementation of a timer. We first show the
life cycle of a C++ timer based on C++ functions (in Table 12.1). Secondly,
we briefly discuss the declaration of C++ abstract class TimerHandler, which
represents timers in the C++ domain. Thirdly, we describe the details of three
main components of a timer: (1) internal waiting mechanism, (2) interface
functions, and (3) expiration actions. Fourthly, we demonstrate how a timer
is cross-referenced with another object. Finally, we conclude this section by
providing guidelines for implementing timers in NS2.

Timer Life Cycle

Based on Fig. 12.1 and Table 12.1, we redraw the life cycle of a TimerHandler

object (i.e., a C++ timer object) in Fig. 12.2. The default state of a timer
is TIMER_IDLE. Upon invoking functions sched(delay) or resched (delay),
the timer moves from state TIMER_IDLE to state TIMER_PENDING, where the
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sched(delay) or  

        resched(delay)

TIMER_PENDING:

Wait for a period of 

delay (seconds)

TIMER_HANDLING:

Expiration actions

(invoke function expire(e))
handle(e)

resched(delay)

default
TIMER_IDLE

cancel

Fig. 12.2. Life cycle of a TimerHandler object.

timer starts a waiting period of delay seconds. When the timer expires, it
moves to state TIMER_HANDLING and takes expiration actions by invoking
function expire(e). After taking expiration actions, the timer moves to state
TIMER_IDLE, and the cycle starts over again. Regardless of the state, func-
tion resched(delay) cancels the pending timer, and restarts the timer. In
state TIMER_PENDING, we may cancel the timer by invoking function cancel(),
which stops the active timer and changes the state of the timer to TIMER_IDLE.

Brief Overview of Class TimerHandler

Program 12.3 shows the declaration of abstract class TimerHandler, a C++
class which represents a timer. Line 7 defines three states of a TimerHandler

object as members of TimerStatus enum data type: TIMER_IDLE, TIMER_

PENDING, and TIMER_HANDLING. Class TimerHandler contains only two mem-
ber variables: status_ in Line 12 and event_ in Line 13. Variable status_

stores the current timer state (or status). It takes a value in {0, 1, 2}, which
corresponds to the values of members of the TimerStatus enum type shown
in Line 7. The default state of a timer is TIMER_IDLE. Therefore, variable
status_ is set to TIMER_IDLE at the timer construction (see Line 3). Another
variable event_ (of class Event) represents a timer expiration event. It acts
as a glue between a TimerHandler object and the Scheduler. The details of
variable event_ will be discussed in the next section.

The key functions of class TimerHandler along with their descriptions are
given below.

sched(delay) (Public) Start the timer and set the timer to expire at
delay seconds in future.

_sched(delay) (Private) Place a timer expiration event on the simula-
tion time line at delay seconds in future.

resched(delay) (Public) Restart the timer and set the timer to expire
at delay seconds in future.
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Program 12.3 Declaration of class TimerHandler.

//~/ns/common/timer-handler.h

1 class TimerHandler : public Handler {

2 public:

3 TimerHandler() : status_(TIMER_IDLE) { }

4 void sched(double delay); // cannot be pending

5 void resched(double delay); // may or may not be pending

6 void cancel(); // must be pending

7 enum TimerStatus { TIMER_IDLE, TIMER_PENDING, TIMER_HANDLING};

8 int status() { return status_; };

9 protected:

10 virtual void expire(Event *) = 0;

11 virtual void handle(Event *);

12 int status_;

13 Event event_;

14 private:

15 inline void _sched(double delay) {

16 (void)Scheduler::instance().schedule(this, &event_, delay);

17 }

18 inline void _cancel() {

19 (void)Scheduler::instance().cancel(&event_);

20 }

21 };

cancel() (Public) Cancel the pending timer.
_cancel() (Private) Remove a timer expiration event from the simula-

tion time line.
status() Return variable status_, the current state of the timer.

handle(e) Invokes function expire(e). It is used by the Scheduler to
dispatch a timer expiration event (see Chapter 4).

expire(e) Take expiration actions. It is a pure virtual function, and
must be implemented by child instantiable classes of class
TimerHandler.

Internal Waiting Mechanism

Class TimerHandler implements waiting mechanism through functions _sched
(delay) and _cancel(delay). Basically, these two functions place and re-
move event_ on the simulation timeline. In Line 16 of Program 12.3, function
_sched(delay) executes “schedule(this,code&event_,delay)”, where
“this” is the timer address, “event_” is an expiration dummy event (see
Section 4.3.6), and “delay” is the duration until the timer expires. Function
schedule(...) stores the address of timer “this” in variable handler_ of
the Event pointer event_, essentially setting event_->handler_ to point to
the TimerHandler object. Then, it places the object event_ on the simulation
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Fig. 12.3. A diagram which represents the timer waiting process (i.e., function
sched(delay)).

timeline at delay seconds in future. At the firing time, the Scheduler invokes
function dispatch(e), which in turn executes event_->handler_->handle

(...). Since variable handle_ of the dispatched event_ points to the Timer-

Handler object (see Fig. 12.3), NS2 invokes function handle(e) associated
with the TimerHandler object at the firing time. Function handle(e) of
class TimerHandler in turn invokes function expire(e) (Line 6 of Pro-
gram 12.4) which takes expiration actions specified by the derived classes
of class TimerHandler.

Function _cancel() does the opposite of what function _sched(delay)

does. It removes the timer expiration event from the simulation timeline.
From Line 19 in Program 12.3, it invokes function cancel(&event_) of class
Scheduler to remove the event “event” from the simulation timeline.

Expiration Actions

At the firing time, the Scheduler dispatches a timer expiration event by in-
voking function handle(e) of the associated timer (see also Fig. 12.3). The
details of function handle(e) are shown in Program 12.4. Line 3 first checks
whether the current status_ is TIMER_PENDING. If so, Line 5 will change
the variable status_ to TIMER_HANDLING, and Line 6 will invoke function
expire(e) to take expiration actions. After returning from the function
expire(e), variable status_ is set by default to TIME_IDLE (Line 8). How-
ever, if status_ has already changed (e.g., when the timer is rescheduled;
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status_ �=TIMER_HANDLING in Line 7), function handle(e) will not change
variable status_.

Program 12.4 Function handle of class TimerHandler.

//~/ns/common/timer-handler.cc

1 void TimerHandler::handle(Event *e)

2 {

3 if (status_ != TIMER_PENDING)

4 abort();

5 status_ = TIMER_HANDLING;

6 expire(e);

7 if (status_ == TIMER_HANDLING)

8 status_ = TIMER_IDLE;

9 }

In Line 10 of Program 12.3, function expire(e) is pure virtual. Therefore,
derived instantiable classes of class TimerHandler are responsible for provid-
ing expiration actions by overriding this function. For example, class MyTimer
below derives from class TimerHandler, and overrides function expire(e):

void MyTimer::expire(Event *e)

{

printf("MyTimer has just expired!!\n");

}

which prints the statement “MyTimer has just expired!!” on the screen
upon timer expiration.

Interface Functions to Start, Restart, and Cancel a Timer

Program 12.5 Function sched of class TimerHandler.

//~/ns/common/timer-handler.cc

1 void TimerHandler::sched(double delay)

2 {

3 if (status_ != TIMER_IDLE) {

4 fprintf(stderr,"Couldn’t schedule timer");

5 abort();

6 }

7 _sched(delay);

8 status_ = TIMER_PENDING;

9 }
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The details of function sched(delay) of class TimerHandler is shown in
Program 12.5. Function sched(delay) takes one input argument delay, and
sets the timer to expire at delay seconds in the future by feeding delay into
function _sched(delay) (Line 7). Note that function sched(delay) must be
invoked when the status_ of the timer is TIMER_IDLE. Otherwise, Lines 4-5
will show an error message and exit the program.

Program 12.6 shows the details of functions resched(delay) and cancel()

of class TimerHandler. Function resched(delay) is very similar to function
sched(delay). In fact, when invoked with status_ �= TIMER_PENDING, it
does the same as function sched(delay) does (i.e., starts the timer). How-
ever, when status_=TIMER_PENDING (Line 3)–meaning event_ was placed on
the simulation timeline prior to the invocation–function resched(delay) re-
moves the timer expiration event from the simulation time line, by invoking
function _cancel(), and (re)starts the timer (Lines 4 and 5, respectively).

Program 12.6 Functions resched and cancel of class TimerHandler.

//~/ns/common/timer-handler.cc

1 void TimerHandler::resched(double delay)

2 {

3 if (status_ == TIMER_PENDING)

4 _cancel();

5 _sched(delay);

6 status_ = TIMER_PENDING;

7 }

8 void TimerHandler::cancel()

9 {

10 if (status_ != TIMER_PENDING) {

11 ...

12 abort();

13 }

14 _cancel();

15 status_ = TIMER_IDLE;

16 }

Lines 8–16 of Program 12.6 show the details of function cancel() of class
TimerHandler. Function cancel() invokes function _cancel() in Line 14
to remove the pending timer expiration event from the simulation timeline.
Function cancel()must not be invoked, when event_ is not on the simulation
timeline (i.e., status_ is either TIMER_IDLE or TIMER_HANDLING). Otherwise,
NS2 will show an error message on the screen and exit the program (Lines
11-12).
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Cross Referencing a Timer with Another Object

In most cases, the usefulness of a timer stands out when it is cross-referenced
with another object. In this case, the object employs a timer as a waiting
tool, which starts, restarts, and cancels the waiting process as necessary. The
timer, on the other hand, informs the object of timer expiration, upon which
the object may take expiration actions.

A typical cross-reference between a timer and an object can be created as
follows:

(i) Declare a timer as a variable of an object class.
(ii) Declare a pointer to the object as a member of the timer class.
(iii) Define a non-default constructor for the timer class. Store the input ar-

gument of the constructor in its member pointer variable (which points
to the associated object).

(iv) Instantiate a timer object from within the constructor of the associated
object. Use the non-default constructor of the timer class defined above.
Feed the pointer this (i.e., the pointer to the object) as an input argu-
ment to the constructor of the timer.

We now conclude this section with a simple timer example.

Example 12.1. Consider a process of counting the number of customers who
enter a store during a day. Let class Store represent a convenience store (i.e.,
an object class), and let class StoreHour represent the number of opening
hours of a day (i.e., a timer class). The opening hours is specified when the
store is opened. The objective here is to count the number of visiting customers
during a day, and print out the result when the store is closed.

Classes Store and StoreHour

From Program 12.7, class Store also has 3 variables. First, hours_ (Line 17)
contains opening hours of the store and is set to zero at the construction.
Secondly, count_ (Line 18) records the number of customers who have en-
tered the store so far and is set to zero at the construction. Finally, variable
timer_ is a StoreHour object. Function close() (Lines 12–13) of class Store
is invoked when the store is being closed. It prints out the opening hours and
number of visiting customers for today on the screen. Declared in Line 1–8,
class StoreHour has only one variable store_ (Line 7) which is a pointer to
a Store object.

Cross-Referencing Store and StoreHour Objects

The process of cross-referencing a Store object and a StoreHour object is
shown in Fig. 12.4. The constructor of class Store constructs its variable
timer_ with the pointer this to the Store object (see Line 11). The con-
structor of class StoreHour stores the input pointer in variable store_. Since
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Program 12.7 Declaration of classes Store and StoreHour.

//store.h

1 class Store;

2 class StoreHour : public TimerHandler {

3 public:

4 StoreHour(Store *s) { store_ = s; };

5 virtual void expire( Event *e );

6 protected:

7 Store *store_;

8 };

9 class Store : public TclObject {

10 public:

11 Store() : timer_(this) { hours_ = -1; count_ = 0; };

12 void close(){

13 printf("The number of customers during

%2.2f hours is %d\n", hours_,count_);

14 };

15 int command(int argc, const char*const* argv);

16 protected:

17 double hours_;

18 int count_;

19 StoreHour timer_;

20 }

the input argument is the pointer to the Store object, the constructor of the
StoreHour object essentially sets the variable store_ to point back to the
Store object.

Due to the cross-referencing, the compiler needs to recognize one of these
two classes when declaring another. If Line 1 was removed, the compiler would
not recognize class Store when compiling Line 7, and would show a com-
pilation error message on the screen. After compiling Line 2, the compiler
recognizes class StoreHour and can compile Line 19 without error.

Fig. 12.4. A diagram which represents the process of cross-referencing a Store

object and a StoreHour object.
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Program 12.8 Function expire of class StoreHour as well as OTcl Com-
mands open and new-customer of class Store.

//store.cc

1 void StoreHour::expire(Event*) {

2 store_->close();

3 };

4 int Store::command(int argc, const char*const* argv)

5 {

6 if (argc == 3) {

7 if (strcmp(argv[1], "open") == 0) {

8 hours_ = atoi(argv[2]);

9 count_ = 0;

10 timer_.sched(hours_);

11 return (TCL_OK);

12 }

13 } else if (argc == 2) {

14 if (strcmp(argv[1], "new-customer") == 0) {

15 count_++;

16 return (TCL_OK);

17 }

18 }

19 return TclObject::command(argc,argv);

20 }

It is also important to note that when compiling Lines 2–8, the com-
piler recognizes only Store class name. Any attempt to invoke functions (e.g.,
close()) of class Store will result in a compilation error. This is the rea-
son why we need to separate C++ codes into header and C++ files. Again,
since a header file is included at the top of a C++ file, the compiler first goes
through the header file and recognizes all the variables and functions specified
in the header file. With this knowledge, the compiler can compile the C++
file without error.

Defining Expiration Actions

Derived from class TimerHandler, class StoreHour overrides function expire(

e) as shown in Lines 1–3 of Program 12.8. At the expiration, the timer (i.e.,
StoreHour object) simply invokes function close() of the associated Store

object.

Creating OTcl Interface

We bind the C++ class Store to an OTcl class with the same name using a
mapping class StoreClass shown in Program 12.9. Lines 4–20 in Program 12.8
also show OTcl interface commands open{hours} and new-customer{}. With



294 12 Related Helper Classes

opening hours hours as an input argument, the OTcl command open{hours}
(Lines 8–11) is invoked when the store is opened. Line 8 stores the opening
hours in variable hours_, Line 9 resets the number of visiting customers to
zero, and Line 10 tells timer_ to expire at “hours_” hours in future. The
OTcl command new-customer{} is invoked as a customer enters the store. In
Line 15, this command simply increases count_ by one. Again, at the timer
expiration, the timer invokes function close() through the pointer store_

and prints out the opening hours (i.e., hours_) as well as the number of vis-
iting customers (i.e., count_) for today (see function expire(e) in Line 2 of
Program 12.8).

Program 12.9 A mapping class StoreClass which binds C++ and OTcl
classes Store.

//store.cc

1 static class StoreClass : public TclClass {

2 public:

3 StoreClass() : TclClass("Store") {}

4 TclObject* create(int, const char*const*) {

5 return (new Store);

6 }

7 } class_store;

Testing the Codes

After defining files store.cc and store.h, we include store.o to the Make

File and run make at NS2 root directory to include classes Store and
StoreHour into NS2 (see Section 2.7).

For, define a test Tcl simulation script in a file store.tcl,

//store.tcl

1 set ns [new Simulator]

2 set my_store [new Store]

3 $my_store open 10.0

4 $ns at 1 "$my_store new-customer"

5 $ns at 5 "$my_store new-customer"

6 $ns at 6 "$my_store new-customer"

7 $ns at 8 "$my_store new-customer"

8 $ns at 11 "$my_store new-customer"

9 $ns run

We, run the script store.tcl, and obtain the following results:

>>ns store.tcl

The number of customers during 10.0 hours is 4
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From the above script, when Line 2 creates a Store object, NS2 automat-
ically creates a shadow C++ Store Object. Line 3 invokes command open

with input argument 10.0, essentially opening the store for 10.0 hours. From
Program 12.8, an OTcl command open{10.0} and tells the associated timer
to expire at 10.0 hours in future, and clears the variable count_. Lines 4–8
invoke command new-customer{} at 1st, 5th, 6th, 8th, and 11th hours. Each
of these lines increases the number of visiting customers (i.e., count_) by one.
By the end of 11th hour in future, variable count_ should be 5. However, the
program shows that the number of visiting customers is 4. This is because the
timer expires and invokes function close() at the 10th hour.

12.1.4 Guidelines for Implementing Timers in NS2

We now summarize the process of defining a new timer. Suppose that we would
like to define a new timer class StoreHour. Suppose further that a Store

object is responsible for starting, restarting, and canceling the StoreHour

object, and for taking expiration actions. Then, the implementation of the
above timer classes proceeds as follows:

From class StoreHour

• Step 1: Design class structure:
– Derive class StoreHour from class TimerHandler.
– Declare a pointer (e.g., store_) to class Store. The public function of

class Store is accessible through the above pointer (e.g., store_) to
class Store.

• Step 2: Bind the reference to class Store in the constructor.
• Step 3: Define expiration actions in function expire(e).

From class Store

• Step 1: Design class structure:
– Derive class Store from class TclObject only if an interface to OTcl

is necessary.
– Declare a StoreHour variable (e.g., timer_) as a member variable.

• Step 2: Instantiate the above StoreHour variable (e.g., timer_) with the
pointer “this”.

At runtime, we only need to instantiate a Store object. The internal mech-
anism of class Store will automatically create and configure a StoreHour

object. Also, we do not need any global (or OTcl) reference to the StoreHour
object, since the timer is usually manipulated by class Store.
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12.2 Implementation of Random Numbers in NS2

This section demonstrates implementation of random number generators in
NS2. In principle, NS2 employs so-called Random Number Generator (RNG)
to generate random numbers. An RNG sequentially picks numbers from a
stream of psudo-random numbers. A set of generated random numbers is
characterized by the point where the RNG starts picking the numbers–called
“seed”. By default, NS2 sets the seed to 1. Therefore, the results obtained
from every run are essentially the same.

Random numbers can also be transformed to conform to a given distri-
bution. Such the transformation is carried out through instprocs in the OTcl
domain, and through classes derived from class RandomVariable in the C++
domain. We will discuss the details of RNGs and the seeding mechanism in
Sections 12.2.1 and 12.2.2, respectively. Section 12.2.3 shows the implementa-
tion of RNGs in NS2. Section 12.2.4 discusses different simulation scenarios,
where RNGs are set differently. Section 12.2.5 explains the implementation of
a C++ class RandomVariable which transforms random numbers according
to a given distribution. Finally, Section 12.2.6 gives a guideline to define a
new RNG and a new random variable in NS2.

12.2.1 Random Number Generation

NS2 generates random numbers by sequentially picking numbers from a
stream of pseudo-random number (as discussed in Section 1.3.2). It uses the
combined multiple recursive generator (MRG32k3a) proposed by L’Ecuyer [22]
as a pseudo-random number generator. Generally speaking, an MRG32k3a
generator contains streams of pseudo-random numbers from which the num-
bers picked sequentially seem to be random. In Fig. 12.5, an MRG32k3a gen-
erator provides 1.8 × 1019 independent streams, each of which consists of
2.3 × 1015 substreams. Each substream contains 7.6 × 1022 random numbers
(i.e., the period of each substream is 7.6× 1022). In summary, an MRG32k3a
generator can create 3.1 × 1057 numbers which appear to be random.

12.2.2 Seeding a Random Number Generator

As mentioned in Section 1.3.2, “seed” is one of the main ingredients of Ran-
dom Number Generator (RNG). Loosely speaking, a seed specifies the location
on a stream of pseudo-random numbers, where an RNG starts picking ran-
dom numbers sequentially. When seeded differently, two RNGs start picking
pseudo-random numbers from different locations, and therefore generate two
distinct sets of random numbers. On the other hand, if seeded with the same
number, two RNGs will start picking random numbers from the same location,
and therefore, generate the same set of random numbers.

By default, NS2 always uses only one OTcl variable defaultRNG as a de-
fault RNG, and always seeds defaultRNG with 1. Therefore, the simulation
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Fig. 12.5. Streams and substreams of an MRG32k3a generator.

results for every run are essentially the same. To collect independent simula-
tion results, we must seed different runs differently.

Example 12.2. In the following, we run NS2 for three times to show NS2 seed-
ing mechanism.

1 >>ns

2 >>$defaultRNG seed

3 1

4 >>$defaultRNG next-random

5 729236

6 >>$defaultRNG next-random

7 1193744747

8 >>exit

### RESTART NS2 ###

9 >> ns

10 >>$defaultRNG seed

11 1

12 >>$defaultRNG next-random

13 729236

14 >>$defaultRNG next-random

15 1193744747

16 >>exit
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### RESTART NS2 ###

17 >>ns

18 >>$defaultRNG seed 101

19 >>$defaultRNG next-random

20 72520690

21 >>$defaultRNG next-random

22 308637100

23 >>exit

In the first run (Lines 1–8), variable defaultRNG (i.e., the default RNG)
is used to generate two random numbers. In Line 2, instproc seed returns
the current seed which is set (by default) to 1. Lines 4 and 6 use instproc
next-random{} to generate two random numbers, 729236 and 1193744747,
respectively. Finally, Line 8 exits the NS2 environment.

Lines 9–16 repeat the process in Lines 1–8. In Lines 10–11, we can observe
that the seed is still 1. As expected, the first and the second random numbers
generated are 729236 and 1193744747, respectively. These two numbers are
the same as those in the first run. Essentially, the first run and the second
run generate the same results. To generate different results, we need to seed
the simulation differently.

Lines 17–22 show the last run, where the seed is set differently (to 101).
The first and the second random number generated in this case are 72520690
and 308637100, respectively. These two numbers are different from those in
the first two runs, since Line 15 sets the seed of defaultRNG to 101.

The key points about seeding the mechanism in NS2 are as follows:

• A seed specifies the starting location on a stream of psudo-random num-
bers, and hence characterizes an RNG.

• To generate two independent simulation results, each simulation must be
seeded differently.

• At initialization, NS2 creates a variable defaultRNG as the default RNG,
and seeds defaultRNG with 1. By default, NS2 generates the same simu-
lation result for every run.

• When seeded with zero, an RNG replaces the seed with current time of the
day and counter. Despite their tendency to be independent, two runs may
pick the same seed and generate the same result. To ensure independent
runs, we must seed the RNG manually.

• NS2 seeds a new RNG object to the beginning of the next random stream.
Therefore, every RNG object is independent of each other.

12.2.3 OTcl and C++ Implementation

NS2 employs a C++ class RNG (which is bound to an OTcl class with the same
name) to generate random numbers (see Program 12.10). In most cases, it is



12.2 Implementation of Random Numbers in NS2 299

not necessary to understand the details of the MRG32k3a generator. This
section shows only the key configuration and implementation in the OTcl
and C++ domains. The readers may find the detailed implementation of an
MRG32k3a generator in files ˜ns/tools/rng.cc,h.

Program 12.10 A mapping class RNGClass which binds OTcl and C++
classes RNG.

//~/ns/tools/rng.cc

1 static class RNGClass : public TclClass {

2 public:

3 RNGClass() : TclClass("RNG") {}

4 TclObject* create(int, const char*const*) {

5 return(new RNG());

6 }

7 } class_rng;

OTcl Commands and Instprocs

In the OTcl domain, class RNG defines the following OTcl commands:

seed{} Return the seed of RNG.
seed{n} Set the the seed of RNG to be n.

next-random{} Return a random number.
next-substream{} Advance to the beginning of the next sub-

stream.
reset-start-substream{} Return to the beginning of the current sub-

stream.
normal{avg std} Return a random number normally dis-

tributed with average avg and standard de-
viation std.

lognormal{avg std} Return a random number log-normally dis-
tributed with average avg and standard de-
viation std.

Defined in file ˜ns/tcl/lib/ns-random.tcl, the following instprocs generate
random numbers with exponential distribution and uniform distribution:
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exponential{mu} Return a random number exponentially distributed
with mean mu.

uniform{min max} Return a random number uniformly distributed in
[min,max].

integer{k} Return a random integer uniformly distributed in
{0,1,...,k-1}.

C++ Functions

In the C++ domain, the key functions of class RNG include (see the details in
files ˜ns/tools/rng.cc,h):

set_seed(n) If n = 0, set the the seed of the RNG to be cur-
rent time and counter. Otherwise, set the seed
to be n.

seed() Return the seed of the RNG.
next() Return a random int in {0,1,..., MAX_INT}.

next_double() Return a random double in [0,1].
reset_start_substream() Move to the beginning of the current substream.
reset_next_substream() Move to the beginning of the next substream.

uniform(k) Return a random int number uniformly dis-
tributed in {0,1,...,k-1}.

uniform(r) Return a random double number uniformly dis-
tributed in [0,r].

uniform(a,b) Return a random double number uniformly dis-
tributed in [a,b].

exponential(k) Return a random number exponentially dis-
tributed with mean k.

normal(avg,std) Return a random number normally distributed
with average avg and standard deviation std.

lognormal(avg,std) Return a random number log-normally dis-
tributed with average avg and standard devi-
ation std.

12.2.4 Randomness in Simulation Scenarios

In most cases, a simulation falls into one of the following three scenarios.

Deterministic Setting

This type of simulation is usually used for debugging. Its purpose is to locate
programming errors in the simulation codes or to understand complex behav-
ior of a certain network. In both cases, it is convenient to run the program
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under a deterministic setting and generate the same result repeatedly. By de-
fault, NS2 seeds the simulation with 1. The deterministic setting is therefore
the default setting for NS2 simulation.

Single-Stream Random Setting

The simplest form of statistical analysis is to run a simulation for several times
and compute statistical measures such as average and/or standard deviation.
By default, NS2 always uses defaultRNG with seed “1” to generate random
numbers. To statistically analyze a system, we need to generate several dis-
tinct sets of results. Therefore, we need to seed different runs differently. In a
single-stream random setting, we need only one RNG. Hence, we may simply
introduce the diversity to each run by seeding different runs with different
values <n> (e.g., in Example 12.2, Line 18 seeds the default RNG with 101).

$defaultRNG <n>

which seeds the default RNG with a number <n>.

Multiple-Stream Random Setting

In some cases, we may need more than one independent random variable
for a simulation. For example, we may need to generate random values of
packet inter-arrival time as well as packet size. These two variables should be
independent and should not share the same random stream. We can create two
independent RNG using “new RNG”. Since NS2 seeds each RNG with different
random stream (see Section 12.2.2), the random processes with different RNGs
are independent of each other.

Example 12.3. Suppose that the inter-arrival time and packet size are expo-
nentially distributed with mean 5 and uniformly distributed within [100, 5000],
respectively. Print out the first 5 random values of inter-arrival time and
packet size.

Tcl simulation script:

1 $defaultRNG seed 101

2 set arrivalRNG [new RNG]

3 set sizeRNG [new RNG]

4 set arrival_ [new RandomVariable/Exponential]

5 $arrival_ set avg_ 5

6 $arrival_ use-rng $arrivalRNG

7 set size_ [new RandomVariable/Uniform]

8 $size_ set min_ 100
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9 $size_ set max_ 5000

10 $size_ use-rng $sizeRNG

11 puts "Inter-arrival time Packet size"

12 for {set j 0} {$j < 5} {incr j} {

13 puts [format "%-8.3f %-4d" [$arrival_ value] \

[expr round([$size_ value])]]

14 }

Results on the Screen:

Inter-arrival time Packet size

1.048 1880

7.919 116

8.061 3635

4.675 2110

7.201 1590

The details of the above Tcl simulation script are as follows. Lines 4 and 7
create an exponentially random variable2 arrival_ and a uniformly random
variable size_ whose parameters are defined in Lines 5–6 and Lines 8–10, re-
spectively. Lines 11–14 print out five random numbers generated by arrival_

and size_. In Section 12.2.5, we will see that the OTcl command “value”
of class RandomVariable returns a random number and the OTcl command
“use-rng” is used to specify an RNG for a random variable.

By default, defaultRNG is used to generate random numbers for both
arrival_ and size_. In this case, Lines 2 and 3 create two independent
RNGs: arrivalRNG and sizeRNG. NS2 specifies these two variables as RNGs
for arrival_ and size_ by using an OTcl command use-rng in Lines 6
and 10, respectively. Since the created RNG objects are independent, random
variable arrival_ and size_ are independent of each other.

Exercise 12.4. From Example 12.3,

(i) Change the seed to “999”. Re-run the script for a couple of times. Observe
and explain the output.

(ii) Change the seed to “0”. Re-run the script for a couple of times. Observe
and explain the output.

(iii) Print out values of arrival_ and size_ for (i) and (ii), and show that
they are exponentially and uniformly distributed (Hint: Set the seed
properly).

(iv) Change the mean of arrival_ to 10 and the interval of size_ to
[400, 2000], and repeat (iii).

(v) Remove Line 6 and repeat (iii). Observe and explain the output.
(vi) Remove Lines 6 an 10 and repeat (iii). Observe and explain the output.

2 We will discuss the details of random variables in the next section.
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12.2.5 Random Variables

In NS2, a random variable is a module which generates random values whose
statistics follow a certain distribution. It employs an RNG to generate random
numbers and transforms the generated numbers to values which conform to a
given distribution. This implementation is carried out in C++ abstract class
RandomVariable whose diagram and declaration are shown in Fig. 12.6 and
Program 12.11, respectively.

Fig. 12.6. A schematic diagram of class RandomVariable.

Consider the declaration of class RandomVariable in Program 12.11. Class
RandomVariable contains a pointer rng_ (Line 9) to an RNG object (used to
generate random numbers), and two pure virtual interface functions: value()
in Line 3 and avg() in Line 4. Function value() generates random numbers,
transforms the generated numbers to values conforming to a given distribu-
tion, and returns the transformed values to the caller. Function avg() returns
the average value of the underlying distribution. Since these two functions
are pure virtual, they must be overridden by all derived instantiable classes
of class RandomVariable. The list of key built-in instantiable C++ classes as
well as their bound OTcl classes is given in Table 12.2.

Program 12.11 Declaration of class RandomVariable.

//~/ns/tools/ranvar.h

1 class RandomVariable : public TclObject {

2 public:

3 virtual double value() = 0;

4 virtual double avg() = 0;

5 int command(int argc, const char*const* argv);

6 RandomVariable();

7 int seed(char *);

8 protected:

9 RNG* rng_;

10 };
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Table 12.2. Built-in C++ and OTcl random variable classes.

C++ class OTcl class

UniformRandomVariable RandomVariable/Uniform

ExponentialRandomVariable RandomVariable/Exponential

ParetoRandomVariable RandomVariable/Pareto

ParetoIIRandomVariable RandomVariable/ParetoII

NormalRandomVariable RandomVariable/Normal

LogNormalRandomVariable RandomVariable/LogNormal

ConstantRandomVariable RandomVariable/Constant

HyperExponentialRandomVariable RandomVariable/HyperExponential

WeibullRandomVariable RandomVariable/Weibull

EmpiricalRandomVariable RandomVariable/Empirical

Random Number Generator

A RandomVariable object utilizes variable rng_ to generate random numbers.
By default, every random variable uses the defaultRNG as its RNG. As shown
in Program 12.12, the constructor (Lines 1–4) of class RandomVariable stores
the default RNG returned from function RNG::defaultrng() in variable rng_.

To create multiple independent random variables, variable rng_ of each
random variable must be independent of each other. From Example 12.3, this
can be achieved by creating and binding a dedicated RNG to each random
variable. As will be discussed in the next section, the process of binding an
RNG to a random variable is carried out by using the OTcl command use-rng

associated with a RandomVariable object.

OTcl Commands

Shown in Program 12.12, class RandomVariable defines the following two
commands, which can be invoked from the OTcl domain:

• value{}: Returns a random number by invoking function value() (Lines
9–12).

• use-rng{rng}: Casts the input argument rng to type RNG*, and stores the
cast object in variable rng_ (Lines 15–19).
Note that an example use of the OTcl command use-rng{rng} is shown
in Lines 6 and 10 in Example 12.3.

Since class RandomVariable is abstract, it does not provide a shadow class
in the OTcl domain. However, all its derived classes do have shadow classes in
the OTcl domain. Table 12.2 lists 10 built-in C++ and OTcl random variable
classes.
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Program 12.12 The constructor, OTcl command value, and OTcl command
use-rng of class RandomVariable.

//~/ns/tools/ranvar.cc

1 RandomVariable::RandomVariable()

2 {

3 rng_ = RNG::defaultrng();

4 }

//~/ns/tools/ranvar.cc

5 int RandomVariable::command(int argc, const char*const* argv)

6 {

7 ...

8 if (argc == 2) {

9 if (strcmp(argv[1], "value") == 0) {

10 tcl.resultf("%6e", value());

11 return(TCL_OK);

12 }

13 }

14 if (argc == 3) {

15 if (strcmp(argv[1], "use-rng") == 0) {

16 rng_ = (RNG*)TclObject::lookup(argv[2]);

17 ...

18 return(TCL_OK);

19 }

20 }

21 ...

22 }

Exponential Random Variable

As an example, consider implementation of an exponentially random variable
in Program 12.13. From Table 12.2, NS2 implements an exponentially random
variable using the C++ class ExponentialRandomVariable and the OTcl
class RandomVariable/Exponential.

Since an exponential random variable is completely characterized by an
average value, class ExponentialRandomVariablehas only one member vari-
able avg_ (Line 9), which stores the average value. At the construction (see
Lines 18–20), class ExponentialRandomVariable binds variable avg_ to in-
stvar avg_ in the OTcl domain. Functions avg() in Line 6 and avgp() in
Line 5 return the value stored in avg_ and the address of avg_, respectively.
Function setavg(d) in Line 7 stores the value in “d” into variable “avg_”.
Function value() in Lines 21–23 returns a random number exponentially dis-
tributed with mean avg_. It invokes function exponential(avg_) of variable
rng_, feeding variable avg_ as an input argument to obtain an exponentially
distributed random number.
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Program 12.13 An implementation of class ExponentialRandomVariable.

//~/ns/tools/ranvar.h

1 class ExponentialRandomVariable : public RandomVariable {

2 public:

3 virtual double value();

4 ExponentialRandomVariable();

5 double* avgp() { return &avg_; };

6 virtual inline double avg() { return avg_; };

7 void setavg(double d) { avg_ = d; };

8 private:

9 double avg_;

10 };

//~/ns/tools/ranvar.cc

11 static class ExponentialRandomVariableClass : public TclClass {

12 public:

13 ExponentialRandomVariableClass() : TclClass(

"RandomVariable/Exponential") {}

14 TclObject* create(int, const char*const*) {

15 return(new ExponentialRandomVariable());

16 }

17 } class_exponentialranvar;

18 ExponentialRandomVariable::ExponentialRandomVariable(){

19 bind("avg_", &avg_);

20 }

21 double ExponentialRandomVariable::value(){

22 return(rng_->exponential(avg_));

23 }

Exercise 12.5. Write a simulation script which generates random numbers
exponentially distributed with mean 1.0. To verify the script, plot the proba-
bility density function.

Exercise 12.6. Write a simulation script which generates a random number
normally distributed with mean 1.0 and standard deviation 0.05. To verify
the script, plot the probability density function.

Exercise 12.7. Develop a new class for a discrete random variable whose
probability mass function is (0.1, 0.3, 0.3, 0.2, 0.1). Test the code by generating
random numbers and verify the probability mass function.

12.2.6 Guidelines for Random Number Generation in NS2

We conclude this section, by providing the following guidelines for implement-
ing randomness numbers in NS2:
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• Determine the type of simulation: deterministic setting, single-stream ran-
dom setting, or multi-stream random setting.

• Create RNG(s) according to the simulation type.
• If needed, create a random variable

– Define the inheritance structure: C++, OTcl, and mapping classes.
– Define function avg() which returns the average value of the distribu-

tion to the caller.
– Define function value() which returns a random number conforming

to the specified distribution.
• Specify an RNG for each random variable by using an OTcl command

use-rng of class RandomVariable.

12.3 Built-in Error Models

An error model is an NS2 module which imposes error on packet transmission.
Derived from class Connector, it can be inserted between two NsObjects. An
error model simulates packet error upon receiving a packet. If the packet is
simulated to be in error, the error model will either drop the packet or mark
the packet with an error flag. If the packet is simulated not to be in error,
on the other hand, the error model will forward the packet to its downstream
object. An error model can be used for both wired and wireless networks.
However, this section discusses the details of an error model through a wired
class SimpleLink only.

Program 12.14 Class ErrorModelClasswhich binds C++ and OTcl classes
ErrorModel.

//~/ns/queue/errmodel.cc

1 static class ErrorModelClass : public TclClass {

2 public:

3 ErrorModelClass() : TclClass("ErrorModel") {}

4 TclObject* create(int, const char*const*) {

5 return (new ErrorModel);

6 }

7 } class_errormodel;

NS2 implements error models using a C++ class ErrorModel which is
bound to an OTcl class with the same name (see Program 12.14). Class
ErrorModel simulates Bernoulli error, where transmission is simulated to be
either in error or not in error. NS2 also provides ErrorModel classes with more
functionalities such as two-state error model. Tables 12.3 and 12.4 show NS2
built-in error models whose implementation is in the C++ and OTcl domain,
respectively.
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Table 12.3. Built-in error models which contain C++ and OTcl implementation.

C++ class OTcl class Description

TwoStateErrorModel ErrorModel/TwoState Error-free and error-prone
states

ComplexTwoState ErrorModel/Complex Contain two objects of class
MarkovModel TwoStateMarkov TwoStateErrorModel

MultiStateErrorModel ErrorModel/MultiState Error model with more than
two states

TraceErrorModel ErrorModel/Trace Impose error based on a
trace file

PeriodicErrorModel ErrorModel/Periodic Drop packets once every n
packets

ListErrorModel ErrorModel/List Specify the a list of packets
to be dropped

SelectErrorModel SelectErrorModel Selective packet drop
SRMErrorModel SRMErrorModel Error model for SRM
MrouteErrorModel ErrorModel/Trace/Mroute Error model for multicast

routing
ErrorModule ErrorModule Send packets to

classifier rather than
target_

PGMErrorModel PGMErrorModel Error model for PGM
LMSErrorModel LMSErrorModel Error model for LMS

Table 12.4. Built-in OTcl error models defined in file ˜ns/tcl/lib/ns-errmodel.tcl.

OTcl class Base class Description

ErrorModel/Uniform ErrorModel Uniform error model

ErrorModel/Expo ErrorModel/TwoState Two state error model;
Each state is represented
by an exponential random
variable.

ErrorModel/Empirical ErrorModel/TwoState Two state error model;
Each state is represented
by an empirical random
variable.

ErrorModel/TwoStateMarkov ErrorModel/Expo ErrorModel/Expo model
where the state residence
time is exponential
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12.3.1 OTcl Implementation: Error Model Configuration

In common with those of most objects, configuration interfaces of an error
model are defined in the OTcl domain. Such a configuration includes param-
eter configuration and network configuration.

Parameter Configuration

There are two ways to configure an error model object: through bound vari-
ables, and through OTcl commands. Class ErrorModel binds the following
C++ variables to OTcl instvars with the same name:

enabled_ Set to 1 if this error model is active, and set to 0 otherwise.
rate_ Error probability

delay_pkt_ If set to true, the error model will delay (rather than drop) the
transmission of corrupted packets.

delay_ Delay time in case that delay_pkt_ is set to true.
bandwidth_ Used to compute packet transmission time
markecn_ If set to true, the error model will mark error flag (rather than

drop) in flag header of the corrupted packet.

The second configuration method is through the following OTcl commands
whose input arguments are stored in args:

unit{arg} Store arg in C++ variable unit_.
ranvar{arg} Store arg in C++ variable ranvar_.

FECstrength{arg} Store arg in C++ variable FECstrength_.
datapktsize{arg} Store arg in C++ variable datapktsize_.

cntrlpktsize{arg} Store arg in C++ variable cntrlpktsize_.
eventtrace{arg} Store arg in C++ variable et_.

Among the above OTcl commands, commands unit{}, ranvar{}, and
FECstrength{}, when taking no input argument, return values stored in
unit_, ranvar_, and FECstrength_, respectively.

Network Configuration

As a Connector object, an error model can be inserted into a network to
simulate packet errors. OTcl defines two pairs of instprocs to insert an error
model into a SimpleLink object (see Section 7.1). Each pair consists of one
instproc from class SimpleLink and one instproc from class Simulator as
shown below (see Fig. 12.7):

• SimpleLink::errormodule{em}: Inserts an error model “em” right after
instvar head_ of a SimpleLink object.
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Fig. 12.7. Instprocs errormodule and insert-linkloss of class SimpleLink.

• Simulator::lossmodel{lossobj from to}: Executes “errormodule”
from within the SimpleLink object which connects node “from” to node
“to”.

• SimpleLink::insert-linkloss{em}: Inserts an error model “em” right
after instvar queue_ (or instvar deqT_ if it exists) of the SimpleLink ob-
ject.

• Simulator::link-lossmodel{lossobj from to}: Executes the instproc
“insert-linkloss{...}” from within the SimpleLink object which con-
nects node “from” to node “to”.

Program 12.15 shows the details of instproc errormodule{em} of class
SimpleLink, which inserts the input error model (e.g., em) immediately after
the link’s head. Lines 6–7 store the input error model (i.e., em) in instvar

Program 12.15 Instproc errormodule of class SimpleLink, and instproc
add-to-head of class Link.

//~/ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc errormodule args {

2 $self instvar errmodule_ queue_ drophead_

3 if { $args == "" } {

4 return $errmodule_

5 }

6 set em [lindex $args 0]

7 set errmodule_ $em

8 $self add-to-head $em

9 $em drop-target $drophead_

10 }

11 Link instproc add-to-head { connector } {

12 $self instvar head_

13 $connector target [$head_ target]

14 $head_ target $connector

15 }
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errmodule_. Line 8 inserts the input error model next to the link’s head by
invoking instproc add-to-head{em}, and Line 9 sets the drop target of the
input error model em to drophead_.

In Lines 11–15 of Program 12.15, instproc add-to-head{connector} in-
serts the input argument connector between link’s head (i.e., the instvar
head_) and target of the link’s head (see Lines 13–14).

Program 12.16 shows the details of instproc insert-linkloss{em}, which
inserts the input error model after instvar queue_ or instvar deqT_. Line
6 stores the input error model in variable em. Lines 7–9 delete instvar
link_errmodule_ if it exists. Then Line 10 stores variable em in instvar
link_errmodule_. If instvar deqT_ exists (i.e., trace is enabled), Lines 12–13
insert the input variable em immediately after instvar deqT_. Otherwise, Lines
15-16 insert the input variable em immediately after instvar queue_. Finally,
Line 18 sets the drop target of the input variable em to instvar drophead_.

Program 12.16 An instproc insert-linkloss of class SimpleLink.

//~/ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc insert-linkloss args {

2 $self instvar link_errmodule_ queue_ drophead_ deqT_

3 if { $args == "" } {

4 return $link_errmodule_

5 }

6 set em [lindex $args 0]

7 if [info exists link_errmodule_] {

8 delete link_errmodule_

9 }

10 set link_errmodule_ $em

11 if [info exists deqT_] {

12 $em target [$deqT_ target]

13 $deqT_ target $em

14 } else {

15 $em target [$queue_ target]

16 $queue_ target $em

17 }

18 $em drop-target $drophead_

19 }

In most cases, a SimpleLink object is inaccessible from a Tcl simulation
script. Therefore, class Simulator provides interface instprocs lossmodel{...}
and link-lossmodel{...} to invoke instprocs errormodule{em} and insert-

linkloss{em}, respectively, of class SimpleLink.
The details of both the instproc lossmodel{lossobj from to} and the

instproc link-lossmodel{lossobj from to} of class Simulator are shown
in Program 12.17, where they insert an error model “lossobj” into the link
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Program 12.17 Instprocs lossmodel, link-lossmodel, and link of class
Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc lossmodel {lossobj from to} {

2 set link [$self link $from $to]

3 $link errormodule $lossobj

4 }

5 Simulator instproc link-lossmodel {lossobj from to} {

6 set link [$self link $from $to]

7 $link insert-linkloss $lossobj

8 }

9 Simulator instproc link { n1 n2 } {

10 $self instvar Node_ link_

11 if { ![catch "$n1 info class Node"] } {

12 set n1 [$n1 id]

13 }

14 if { ![catch "$n2 info class Node"] } {

15 set n2 [$n2 id]

16 }

17 if [info exists link_($n1:$n2)] {

18 return $link_($n1:$n2)

19 }

20 return ""

21 }

which connect a node “from” to a node “to”. Lines 2 and 6 invoke instproc
link{from to} of class Simulator. In Line 18, this instproc returns the Link
object which connects a node “from” to a node “to”. Lines 3 and 7 then insert
an error model into the returned Link object, by executing errormodule{em}
and insert-linkloss{em}, respectively.

12.3.2 C++ Implementation: Error Model Simulation

The internal mechanism of an error model is specified in the C++ do-
main. As shown in Program 12.18, C++ class ErrorModel derives from class
Connector. It employs packet forwarding/dropping capabilities (e.g., a vari-
able target_ and a function recv(p,h)) inherited from class Connector, and
define error simulation mechanism.

Variables

Key variables of class ErrorModel are given below:
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Program 12.18 Declaration of class ErrorModel.

//~/ns/queue/errmodel.h

1 enum ErrorUnit { EU_TIME=0, EU_BYTE, EU_PKT, EU_BIT };

2 class ErrorModel : public Connector {

3 public:

4 ErrorModel();

5 virtual void recv(Packet*, Handler*);

6 virtual void reset();

7 virtual int corrupt(Packet*);

8 inline double rate() { return rate_; }

9 inline ErrorUnit unit() { return unit_; }

10 protected:

11 int enable_;

12 ErrorUnit unit_;

13 double rate_;

14 double delay_;

15 double bandwidth_;

16 RandomVariable *ranvar_;

17 int FECstrength_;

18 int datapktsize_;

19 int cntrlpktsize_;

20 double *cntrlprb_;

21 double *dataprb_;

22 Event intr_;

23 virtual int command(int argc, const char*const* argv);

24 int CorruptPkt(Packet*);

25 int CorruptByte(Packet*);

26 int CorruptBit(Packet*);

27 double PktLength(Packet*);

28 double* ComputeBitErrProb(int);

29 };

//~/ns/queue/errmodel.cc

30 ErrorModel::ErrorModel() : firstTime_(1), unit_(EU_PKT),

ranvar_(0), FECstrength_(1)

31 {

32 bind("enable_", &enable_);

33 bind("rate_", &rate_);

34 bind("delay_", &delay_);

35 }

enable_ Set to 1 if this error model is active, and set to 0 otherwise.
rate_ Error probability
delay_ Time used to delay (rather than dropping) a corrupted packet

bandwidth_ Transmission bandwidth used to compute packet transmission
time
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unit_ Error unit (EU_TIME, EU_BYTE(default), EU_PKT, or
EU_BIT)

ranvar_ Random variable which simulates error
FECstrength_ Number of bits in a packet which can be corrected
datapktsize_ Number of bytes in data payload

cntrlpktsize_ Number of bytes in packet header
dataprb_ An array whose ith entry is the probability of having at

most i corrupted data bits
cntrlprb_ An array whose ith entry is the probability of having at

most most i corrupted control bits
firstTime_ Indicate whether an error has occurred.

intr_ A queue callback object (see Section 7.3.3).

Variable rate_ specifies the error probability, while the variable unit_

indicates the unit of rate_. If unit_ is packets (i.e., EU_PKT), rate_ will
represent packet error probability. If unit_ is bytes (i.e., EU_BYTE) or bits (i.e.,
EU_BIT), rate_ will represent byte error probability or bit error probability,
respectively.

Functions

Key functions of class ErrorModel are given below:

rate() Return the error probability stored in variable
rate_.

unit() Return the error unit stored in variable unit_.
PktLength(p) Return the length (in error units) of the packet

p.
reset() Set the variable firstTime_ to 1.

recv(p,h) Receive a packet p and a handler h.
corrupt(p) Return 1/0 if the transmission is in error/not in

error.
CorruptPkt(p) Return 1/0 if the transmission is in error/not in

error.
CorruptByte(p) Return 1/0 if the transmission is in error/not in

error.
CorruptBit(p) Return the number of corrupted bits in error.

ComputeBitErrProb(size) Computes the cumulative distribution of having
i= {0, · · · , FECstrength_} error bits.

Main Mechanism

The main mechanism of an ErrorModel object lies within the packet recep-
tion function recv(p,h) shown in Program 12.19. When receiving a packet, an
ErrorModel object simulates packet error (by invoking function corrupt(p)
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Program 12.19 Function recv of class ErrorModel.

//~/ns/queue/errmodel.cc

1 void ErrorModel::recv(Packet* p, Handler* h)

2 {

3 hdr_cmn* ch = hdr_cmn::access(p);

4 int error = corrupt(p);

5 if (h && ((error && drop_) || !target_)) {

6 double delay = Random::uniform(8.0*ch->size()/bandwidth_);

7 if (intr_.uid_ < 0)

8 Scheduler::instance().schedule(h, &intr_, delay);

9 }

10 if (error) {

11 ch->error() |= error;

12 if (drop_) {

13 drop_->recv(p);

14 return;

15 }

16 }

17 if (target_) {

18 target_->recv(p, h);

19 }

20 }

in Line 4 of Program 12.19), and reacts to the error based on the underly-
ing configuration. If an error occurs, Line 11 will mark an error flag in the
common packet header. Then if drop_ exists, Lines 13 and 14 will drop the
packet and terminate the function. If the packet is not in error, on the other
hand, function recv(p,h) will skip Lines 11–15, and will forward the packet
to target_ if it exists. A cautionary note: since a corrupted packet will also
be forwarded to target_ if drop_ does not exist. NS2 will not show any error
but the simulation results might not be correct!

Lines 6–8 in Program 12.19 are related to NS2 callback mechanism dis-
cussed in Section 7.3.3. Callback mechanism is an NS2 technique to have a
downstream object invoke an upstream object along a downstream path. For
example, after transmitting a packet, a queue needs to wait until the packet
leaves the queue (i.e., wait for a callback signal to release the queue for the
blocked state), before commencing another packet transmission. From Sec-
tion 7.2, a LinkDelay object employs the Scheduler to inform the queue of
packet departure (i.e., send a release signal) at the packet departure time.

A callback process is implemented by passing the handler (h) of an up-
stream object (e.g., the queue) along with packet (p) to a downstream object
through function recv(p,h). Upon receiving the handler, an NsObject reacts
by either (1) passing the handler to its downstream object and hoping that
the handler will be dealt with somewhere along the downstream path, or (2)
immediately scheduling a callback event at a certain time.
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According to Line 5 in Program 12.19, the ErrorModel object chooses to
call back when both of the following conditions are satisfied:

(i) Handler “h” exists (i.e., non-zero), and
(ii) Either

(a) Packet is in error and variable drop_ exists, and/or
(b) Variable target_ does not exist.

Condition (i) occurs when an upstream object passes down the handler
“h”, and is waiting for a callback signal. Condition (ii) indicates the case
where the ErrorModel object is responsible for sending a callback signal.3

Condition (ii) consists of two following subconditions. One is the case where
the packet will be dropped. Another is when target_ does not exist. In these
cases, the ErrorModel will be the last object in a downstream path which can
deal with the packet, and is therefore, responsible for the callback mechanism.

When choosing to callback, Line 8 schedules a callback event after a delay
time of “delay” seconds. NS2 assumes that an error can occur in any place in
a packet with equal probability. Correspondingly, the time at which an error
is materialized is uniformly distributed in [0, txt], where txt is the packet
transmission time (Line 6).

Simulating Transmission Errors

In the previous section, we have discussed how class ErrorModel forwards or
drops (or marks with an error flag) packets based on the simulated error. In
this section, we will discuss the details of function corrupt(p)which simulates
transmission error. Taking a packet pointer p as an input argument, function
corrupt(p) returns zero and one if the transmission is simulated not to be
and to be in error, respectively.

Program 12.20 shows the details of function corrupt(p). The func-
tion corrupt(p) always returns zero if the ErrorModel object is disabled
(i.e., enable_=0; see Lines 4–5). Given that the ErrorModel object is en-
abled, function corrupt(p) will return a logic value (i.e., true or false) de-
pending on whether the value returned from functions CorruptPkt(p) in
Line 16, CorruptByte(p) in Line 10, CorruptBit(p) in Lines 13-14, and
CorruptTime(p) in Line 8 is zero, when unit_ is equal to EU_PKT, EU_BYTE,
EU_BIT, and EU_TIME, respectively. Similar to function corrupt(p), these
functions return a zero and a non-zero value if the packet is not in error and
is in error, respectively.

In some cases, the packet error process in a communication link can be
modeled as having Bernoulli distribution. Suppose that ranvar_ (Line 16 in
Program 12.18) is a random variable which generates uniformly distributed

3 If not, the ErrorModel object will assign the responsibility to its downstream
object. In this case, handler “h” should be passed to the downstream object, by
invoking target ->recv(p,h).
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Program 12.20 Functions corrupt CorruptPkt, CorruptByte, and
PktLength of class ErrorModel.

//~/ns/queue/errmodel.cc

1 int ErrorModel::corrupt(Packet* p)

2 {

3 hdr_cmn* ch = HDR_CMN(p);

4 if (enable_ == 0)

5 return 0;

6 switch (unit_) {

7 case EU_TIME:

8 return (CorruptTime(p) != 0);

9 case EU_BYTE:

10 return (CorruptByte(p) != 0);

11 case EU_BIT:

12 ch = hdr_cmn::access(p);

13 ch->errbitcnt() = CorruptBit(p);

14 return (ch->errbitcnt() != 0);

15 default:

16 return (CorruptPkt(p) != 0);

17 }

18 return 0;

19 }

20 int ErrorModel::CorruptPkt(Packet*)

21 {

22 double u = ranvar_ ? ranvar_->value() : Random::uniform();

23 return (u < rate_);

24 }

25 int ErrorModel::CorruptByte(Packet* p)

26 {

27 double per = 1 - pow(1.0 - rate_, PktLength(p));

28 double u = ranvar_ ? ranvar_->value() : Random::uniform();

29 return (u < per);

30 }

31 double ErrorModel::PktLength(Packet* p)

32 {

33 if (unit_ == EU_PKT)

34 return 1;

35 int byte = hdr_cmn::access(p)->size();

36 if (unit_ == EU_BYTE)

37 return byte;

38 if (unit_ == EU_BIT)

39 return 8.0 * byte;

40 return 8.0 * byte / bandwidth_;

41 }
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Fig. 12.8. Transforming uniform distribution to Bernoulli distribution.

random numbers “u” in the range [0,1]. From Fig. 12.8, “u” could be any
point “×” in [0,1] with equal probability. Given a threshold rate_, “u” will
be in [0,rate_) with probability rate_. In other words, to have probability
of rate_ for an event (e.g., packet error), we need to generate a uniformly
distributed random number “u”, and assume the occurrence of the event if
and only if u < rate_.

Lines 20–41 of Program 12.20 show the details of functions CorruptPkt(p),
CorruptByte(p), and pktLength(p). Function CorruptPkt(p) in Lines
20-24 employs the above method (see Fig. 12.8) to simulate packet error.
In other words, it generates uniformly distributed random numbers “u” and
assumes that a packet is in error if and only if u < rate_.

For function CorruptByte(p), variable rate_ represents byte error prob-
ability. Line 27 translates byte error probability to packet error probability
(per)4 and simulates packet error in the same way as function CorruptPkt(p)

does.
Function PktLength(p) in Lines 31–40 of Program 12.20 computes the

length of a packet in the corresponding unit_. In particular, if unit_ is

• EU_PKT, function PktLength(p) will return 1 (see Line 34).
• EU_BYTE, function PktLength(p) will return the number of bytes in the

packet stored in field size_ of common header (see Lines 35-37).
• EU_BITS, function PktLength(p) will return the number of bits in the

packet (see Line 39).
• EU_TIME (if none of the above matches), function PktLength(p)will return

the transmission time of the packet (see Line 40).

Program 12.21 shows the details of function CorruptBit(p) of class
ErrorModel. When this function is called for the first time (i.e., firstTime_
is 1), Lines 5 and 6 precompute error probabilities for control header and
data payload and store the probabilities in cntrlprb_ and dataprb_, respec-
tively. The computation is achieved via function ComputeBitErrProb(size)

which takes the size of control header (i.e., size=cntrlpktsize_) or data
payload (i.e., size=datapktsize_) as its input argument. The values stored

4 Packet error probability is 1 − (1−rate )n, where rate is byte error probability
and n = PktLength(p) is number of bytes in a packet.
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in cntrlprb_[i] and dataprb_[i] denote the probability that at most i bits
are in error. Line 7 then sets firstTime_ to zero so that function CorruptBit

will skip Lines 5–7 when it is invoked again.
Function CorruptBit(p) computes packet error probability based on ei-

ther dataprb_ or cntrlprb_, not on the packet size specified in common
header. In Line 10, its uses cntrlprb_ and dataprb_ as packet error proba-
bility, if the packet size specified in common header is not less than and less
than datapktsize_, respectively. Since the value stored in dptr[i] is the
probability that at most i bits are in error, Lines 11–12 increment i until the
probability exceeds u and returns i to the caller. In this case, variable i is the
number of corrupted bits.

The details of function ComputeBitErrProb(size) are shown in
Program 12.21. This function takes the packet size as an input argument
and returns an array dptr of double whose ith entry contains the probability

Program 12.21 Functions CorruptBit and ComputeBitErrProb of class
ErrorModel.

//~/ns/queue/errmodel.cc

1 int ErrorModel::CorruptBit(Packet* p)

2 {

3 double u, *dptr; int i;

4 if (firstTime_ && FECstrength_) {

5 cntrlprb_ = ComputeBitErrProb(cntrlpktsize_);

6 dataprb_ = ComputeBitErrProb(datapktsize_);

7 firstTime_ = 0;

8 }

9 u = ranvar_ ? ranvar_->value() : Random::uniform();

10 dptr = (hdr_cmn::access(p)->size() >= datapktsize_)

? dataprb_ : cntrlprb_;

11 for (i = 0; i < (FECstrength_ + 2); i++)

12 if (dptr[i] > u) break;

13 return(i);

14 }

15 double* ErrorModel::ComputeBitErrProb(int size)

16 {

17 double *dptr; int i;

18 dptr = (double *)calloc((FECstrength_ + 2), sizeof(double));

19 for (i = 0; i < (FECstrength_ + 1) ; i++)

dptr[i] = comb(size, i) * pow(rate_,

20 (double)i) * pow(1.0 - rate_, (double)(size - i));

21 for (i = 0; i < FECstrength_ ; i++)

22 dptr[i + 1] += dptr[i];

23 dptr[FECstrength_ + 1] = 1.0;

24 return dptr;

25 }
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of having at most i corrupted bits. Given packet size size, the probabil-

ity of having exactly i corrupted bits is
(
size
i

)

(rate )i(1 − rate )size-i,

as shown in Line 20, where rate_ is the bit error probability. Lines 21–
23 compute the cumulative summation of dprt. Note that Line 23 sets
dptr[FECstrength_ + 1] to 1.0 since a packet is considered to be in error if
the number of corrupted bits is greater than FECstrength_.

12.3.3 Guidelines for Implementing a New Error Model in NS2

In order to implement a new error model in NS2, we need to follow the three
steps below:

(i) Design and create an error model class in OTcl, C++, or both domains.
(ii) Configure the parameters of the error model object such as error proba-

bility (rate_), error unit (unit_), random variable (ranvar_).
(iii) Insert an error model into the network (e.g., by using instproc lossmod-

el{lossobj from to} or instproc link-lossmodel{lossobj from to}
of class Simulator).

Example 12.8. Consider the simulation script in Program 9.1, which creates
a network as shown Fig. 9.3. Include an error model with packet error prob-
ability 0.1 for the link connecting nodes n1 and n3.

Tcl Simulation Script:

1 set ns [new Simulator]

2 set n1 [$ns node]

3 set n2 [$ns node]

4 set n3 [$ns node]

5 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

6 $ns duplex-link $n2 $n3 5Mb 2ms DropTail

7 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

8 set em [new ErrorModel]

9 $em set rate_ 0.1

10 $em unit pkt

11 $em ranvar [new RandomVariable/Uniform]

12 $em drop-target [new Agent/Null]

13 $ns link-lossmodel $em $n1 $n3

14 set udp [new Agent/UDP]

15 set null [new Agent/Null]

16 set cbr [new Application/Traffic/CBR]

17 $ns attach-agent $n1 $udp

18 $ns attach-agent $n3 $null
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19 $cbr attach-agent $udp

20 $ns connect $udp $null

21 $ns at 1.0 "$cbr start"

22 $ns at 100.0 "$cbr stop"

23 $ns run

where Lines 8–13 are included (into the simulation script in Program 9.1) in
order to impose error on packet transmission. Note that the OTcl command
unit{u} sets variable unit_ to the value corresponding to the input argument
u. The possible values of u include “time”, “byte”, “pkt”, and “bit”.

Exercise 12.9. From Example 12.8, collect statistics for packets which are in
error and not in error. Verify that the packet error probability is 0.1. Adjust
simulation time if necessary. How long must your simulation be to ensure the
convergence of 0.1 error probability ?

• Initially set link bandwidth to be 5 Mbps.
• Change the bandwidth to be 500 Kbps. What happen to the measured

convergence time ? Explain why.

Exercise 12.10. Consider a two state error model, which consists of good
and bad states. Packet transmission in a good state is always error free, while
packet transmitted in a bad state is always corrupted. The time that an error
model stays in good and bad states is exponentially distributed with means
tgood and tbad, respectively. Write a simulation script for the above two state
error model with tgood = 10 sand tbad = 1 s. Verify the results and show the
convergence time.

12.4 Bit Operations in NS2

12.4.1 Bit Masking

Bit masking is a bit transformation technique, which can be used for various
purposes. Given a mask, a bit masking process transforms an original value to
a masked value (see Fig. 12.9). In this section, we will show two examples of
bit masking: subnet masking and modulo masking.

Fig. 12.9. Bit masking.
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Subnet Masking

A 4-byte IP address can be divided into host address and network address.
While a host address identifies a host (e.g., a computer), a network address
characterizes a group of hosts. A host is given a host IP address as its iden-
tification and a 4-byte subnet mask which identifies its network. A subnet
mask consists of all-one upper bits and all-zero lower bits (i.e., of format
“1 · · ·10 · · · 0”). For a given host IP address and a subnet mask, the network
IP address can be determined as follows:

Network IP Address = Host IP Address & Subnet Mask (12.1)

where & is a bitwise “AND” operator.

Example 12.11. A class-C (i.e., subnet mask = 255.255.255.0) host IP address
10.1.2.3 has the network IP address of

(10.1.2.3)&(255.255.255.0) = (10&255).(1&255).(2&255).(3&0) = 10.1.2.0
(12.2)

In fact, all class-C IP addresses whose first three bytes are 10.1.2 have the same
network address. Correspondingly, a class-C network address corresponds to
256 IP addresses.

From the above example, the original value (i.e., host IP address) 10.1.2.3
is masked (by using bitwise “and”) with a mask 255.255.255.0 (i.e., class C
subnet mask) such that the masked value (i.e., network IP address) is 10.1.2.0.

Modulo Masking

Modulo is a remainder computation process. Suppose a = b × c + d. Then
a%c = d, where % is a modulo operator. Bit masking can also be used as a
modulo operator with c = 2n where n is a positive integer.

To implement a modulo masking, the upper and lower bits of a modulo
mask are set to contiguous zeros and contiguous ones, respectively (i.e., of
format “0 · · ·01 · · · 1”), and the masking operation is a bitwise “AND” oper-
ation. Suppose, an original value is of format xx..xx, where x can be zero or
one. The modulo masking applies bitwise “AND” to an original value and the
modulo mask, and obtains the masked value as follows:

original value = x · · ·xx · · · x
upper-bound mask = 0 · · · 01 · · · 1
masked value = 0 · · · 0x · · ·x.

Suppose the number of one-bits of a modulo mask is n. The bits whose
positions are greater than n are removed during a masking process, and the
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masked value is bounded by 2n−1. On the other hand, the bits whose positions
are not greater than n are kept unchanged. These lower order bits in fact
represent the remainder when the original value is divided by 2n. Modulo
masking is therefore equivalent to a modulo operation.

Exercise 12.12. Let a modulo mask be 64. Show that the modulo masking
and modulo operation are equivalent for the following original values: 63, 64,
65, 127, 128, and 129.

Exercise 12.13. Consider a ball color-number matching experiment, where
balls are fed one-by-one to an observer. Each ball is masked with a color and
a number. The color can be either black or white, while the unique number is
increased one-by-one as the balls are fed to the observer. From time to time,
the observer is given a number and is asked to identify the color of one of the
64 most recently observed balls. Design a memory-friendly approach for the
observation.

We summarize the masking components of subnet masking and modulo
masking in Table 12.5. Note that, both subnet masking and modulo masking
use a bitwise “AND” as their mask operation. Since their masks are different,
the implications for their masked value are different.

12.4.2 Bit Shifting and Decimal Multiplication

Another important bit operation is bit shifting which is equivalent to decimal
multiplication. If a binary value is shifted to the left by n bits, the correspond-
ing decimal value will increase by 2n times. Similarly, a binary number right
shifted by n bits returns the quotient of the decimal value divided by 2n.

To prove the above statement, consider an arbitrary value y =
∑M

m=0 xm2m,
where xm ∈ {0, 1}, m = {0, · · · , M}. Let y << n denote the value of y after
being shifted to the left by n bits. Then

y << n =
(
∑M

m=0 xm2m
)

<< n = (xx · · ·x
︸ ︷︷ ︸

M bits

) << n

=
(
∑M

m=0 xm2m+n
)

= (xx · · ·x
︸ ︷︷ ︸

M bits

00 · · ·0
︸ ︷︷ ︸

n bits

).
(12.3)

Table 12.5. Components of subnet masking and modulo masking.

Masking components Subnet masking Modulo masking

The mask 1 · · · 10 · · · 0 0 · · · 01 · · · 1
The mask operation Bitwise “AND” Bitwise “AND”
Masked value Network IP address Remainder
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Suppose y =
∑M

m=0 xm2m. We have

y × 2n =

(
M∑

m=0

xm2m

)

× 2n =

(
M∑

m=0

xm2m+n

)

(12.4)

which is the same as Eq. (12.3). This proves the first part (i.e., left-shifting)
of the above statement. The second part of (i.e., right-shifting) the statement
can be proven similarly and is omitted for brevity.

The relationship between bit shifting and decimal multiplication can be
summarized as follows:

• An n-bit left shift results in multiplication of the decimal value by 2n.
• An n-bit right shift returns the quotient when the decimal value is divided

by 2n.

Exercise 12.14. What are the values of 2, 3, 31, 45, and 56, when shifted to
the left and right by 1, 2, and 3 bits ?

12.5 Chapter Summary

This chapter presents three major helper classes: timers, random number gen-
erators, and error models. The first helper class is Timer. Unless restarted or
cancelled, class Timer waits for a certain time and takes expiration actions.
Class Timer provides three main interface functions to start, restart, and can-
cel the waiting process. Class Timer is usually cross-referenced to another
object, which contains an instruction on how to perform expiration actions.
At the expiration (i.e., when expire(e) is invoked), the timer informs the
object to execute the expiration actions. The object, on the other hand, may
start, restart, or cancel the timer through its reference to the timer.

The second part of this chapter demonstrates how NS2 implements Ran-
dom Number Generator (RNG) to generate random variables. By default,
NS2 always seeds the simulation with 1–meaning NS2 is deterministic by de-
fault. To introduce randomness into simulation, we need to seed defaultRNG

differently.
The last helper class is class ErrorModelwhich is a packet error simulation

class. Derived from class Connector, it can be inserted into a network by using
OTcl instprocs (e.g., lossmodel{...} and insert-lossmodel{...}). Class
ErrorModel simulates packet error upon a packet reception. If the packet is
simulated to be in error, it will either drop or mark the corrupted packet with
an error flag. Otherwise, it will forward the packet to its downstream object.

This chapter also presents two main bit operations: bit masking and bit
shifting. Bit masking is a bit transformation process which can be used for
various purposes. This chapter gives two examples of bit basking. One is
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subnet masking, which is a process to determine a network for an IP address.
Another is a modulo masking which can be used as a modulo operation. As
another bit operation, bit shifting can be used for decimal multiplication or
division. Shifting an original value to the left and right by n bits is equivalent
to multiplying and dividing the original value by 2n, respectively.



13

Processing an NS2 Simulation: Debugging,

Tracing, and Result Compilation

Having discussed the main NS2 components as well as the methodology to con-
figure a network, we now present the final three parts in network simulation.
These three supplementary steps in network simulation are: debugging, trac-
ing, and compilation of simulation results. Debugging is a process of removing
programming errors. Variable tracing tracks changes in variables under consid-
eration. Packet tracing records the details of packets passing through network
checkpoints. Simulation result compilation collects information and computes
relevant performance measures from the simulation. This chapter discusses
the details of debugging, variable tracing, packet tracing, and result compi-
lation in Sections 13.1, 13.2, 13.3, and 13.4, respectively. Finally, the chapter
summary is given in Section 13.5.

13.1 Debugging: A Process to Remove Programming
Errors

A programming error is usually referred to as a bug. The process of locating
and fixing the error is usually called debugging. This section discusses two
types of programming errors (i.e., bugs) and provide guidelines for debugging
in NS2.

13.1.1 Types of Programming Errors

Based on the NS2 architecture, programming errors can be classified into
compilation errors and runtime errors.

Compilation Errors (C++ Only)

This type of errors occurs during a compilation process, which consists of two
phases. The first phase converts C++ files (with extension “.cc,h”) into ob-
ject files (with extension “.o”). In this phase, errors may occur if the compiler

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 13, c© Springer Science+Business Media, LLC 2009
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is unable to understand the C++ codes. In this case, the compiler will show
error messages on the screen, indicating where and why the errors occurred.
Examples of C++ compilation errors include:

• Incorrect C++ syntax
• A use of undefined variables and/or functions

In the second phase, the compiler links the created object files and creates
an executable ns file. An error in this phase is caused by improper linkage
of C++ files. Again, the compiler will show error messages on the screen,
indicating where and why the errors occur. Examples of C++ linking errors
include:

• Instantiate an object from an abstract class: During a linking process, an
error will occur if an object is instantiated from an abstract class, which
leaves at least one pure virtual function unimplemented.
A proper solution to this error is to provide implementation for the pure
virtual function. However, for simplicity (but not for appropriateness), a
user may provide empty implementation for the pure virtual function to
remove the error.

• Modifying a base class without creating the object files of the child classes:
This error usually occurs when the dependency in the Makefile is not
properly defined. When a certain class is modified, the compiler does not
recreate object files of the child classes. The solution is to define the de-
pendency in the Makefile properly, or to remove all related object files
before compiling the codes.

Note that OTcl is a scripting language. There is no need to compile OTcl
code prior to the execution. Therefore, compilation errors do not occur in the
OTcl domain.

Runtime Errors

This type of errors occurs during NS2 simulation. It is caused by improper
OTcl and/or C++ programming. Since the OTcl domain implements error
message trapping mechanism, an OTcl error message contains detailed and
useful information. Each error message indicates where and why the error
occurred. The C++ domain, on the other hand, does not implement error
trapping. Generally the error messages in this case (e.g., segmentation fault)
are fairly short and do not contain much information. Examples of OTcl run-
time errors include

• Incorrect OTcl syntax
• Referring to instvars, instprocs, or commands which do not exist.

Examples of C++ runtime errors include
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• Segmentation fault: This is usually caused due to invalid access to a mem-
ory content. For example, trying to access “a[6]” would cause a segmen-
tation fault if “a” was declared as “int a[3];”.

• Not implementing a mandatory (non-pure virtual) function: Apart from
using a pure virtual function, NS2 provides another way to force a child
class to implement a mandatory function. Here, NS2 may implement error-
like actions (e.g., print out an error message) in the base class. If a child
class does not implement this mandatory function, the function of the base
class will be invoked and the error-like actions will be taken. Examples of
this type of errors are the implementation of functions sendmsg(...) and
sendto(...) of class Agent in file ˜ns/common/agent.cc.

13.1.2 Debugging Guidelines

After identifying the type of programming errors (i.e., bugs), the next step is
to locate the programming codes which cause the errors and to fix the errors.
This section provides guidelines which facilitate the debugging process.

In general, two useful debugging tools are breakpoints and variable view-
ers. A breakpoint is the place where a program is intentionally stopped during
an execution. By strategically placing breakpoints in the program, a program-
mer can easily find out the statement(s) responsible for an error. A variable
viewer, on the other hand, allows the programmers to determine the values of
variables, and analyze the cause of an error.

There are two debugging methods in NS2. The first method is to use
debugging tools. For Tcl, NS2 supports Don Libs’ debugger [23], while the
standard GNU debugger [24] can be used to debug the C++ codes. The
second method is to manually debug the program. Table 13.1 shows a list of
OTcl and C++ commands which can be used for manual debugging.

Table 13.1. Debugging command in the OTcl C++ domains.

Tools OTcl C++

Breakpoints “gets stdin” “getchar”,“cin”

Variable viewer “puts” “printf”,“cout”

Simulation time “Simulator::now” “Scheduler::clock”

Cross-domain function invocation Commands “Tcl::evalf”

Cross-domain variable retrieval Bound variables Bound variables

Simulator object retrieval N/A “Simulator::instance()”

Scheduler object retrieval N/A “Scheduler::instance()”

Passing an OTcl value to the C++
domain

N/A “TclObject::result”

OTcl to C++ variable conversion N/A “TclObject::name”

C++ to OTcl variable conversion N/A “TclObject::lookup”
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Program 13.1 OTcl commands show-target-class and
show-target-class of C++ class TcpAgent.

//~/ns/tcp/tcp.cc

1 int TcpAgent::command(int argc, const char*const* argv)

2 {

3 ...

4 Tcl& tcl = Tcl::instance();

5 if (strcmp(argv[1], "show-target-class") == 0) {

6 Simulator& sim = Simulator::instance();

7 tcl.evalf("puts [format \"%%1.1f OTcl class of

TcpAgent::target is [%s info class]\" [%s now] ]",

target_->name(),sim.name());

8 cout<<"Press RETURN to continue!!\n\n";

9 getchar();

10 return (TCL_OK);

11 }

12 if (strcmp(argv[1], "show-target-address") == 0) {

13 Scheduler& sch = Scheduler::instance();

14 tcl.evalf("%s target",this->name());

15 Connector *conn=(Connector*)TclObject::lookup(tcl.result());

16 cout<<sch.clock()<<" \[$tcp target\] returns OTcl reference

string "<<tcl.result()<<" and C++ address "<<conn<<"\n"

17 cout<<sch.clock()<<" Variable TcpAgent::target_

corresponds to OTcl reference string "<<target_->name()

<<" and C++ address "<<target_<<"\n";

18 cout<<"Press RETURN to continue!!\n\n";

19 getchar();

20 return (TCL_OK);

21 }

22 ...

23 }

To debug NS2 codes, it is usually useful to identify objects and/or the
types of objects. In this example, we develop 2 non-built-in OTcl commands–
namely show-target-class and show-target-addressbelow. Shown in Pro-
gram 13.1, these two OTcl commands show the class and address, respectively,
of the target of a TcpAgent object.

Example 13.1. Consider Example 10.1 which implements the network in
Fig. 9.3. Let us insert the following lines immediately before Line 15 in
Example 10.1:

1 puts "The reference string for \$tcp is $tcp"

2 puts "Press RETURN to start the simulation!!"

3 gets stdin

4 $ns at 3.1 "$tcp show-target-class"

5 $ns at 5.1 "$tcp show-target-address"
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6 $ns at 10.1 "$ns halt"

7 $ns run

>>ns tcp-dbg.tcl

The reference string for $tcp is _o55

Press RETURN to start the simulation!!

<RETURN>

3.1 OTcl class of TcpAgent::target is Classifier/Hash/Dest

Press RETURN to continue!!

<RETURN>

5.1 [$tcp target] returns OTcl reference string _o12 and C++

address 0xd655c0

5.1 Variable TcpAgent::target_ corresponds to OTcl reference

string _o12 and ++ address 0xd655c0

Press RETURN to continue!!

<RETURN>

Here, the lines with <RETURN> are actually blank lines, where the program is
paused and waits for a <RETURN> keystroke.

Lines 5–11 in Program 13.1 shows the details of OTcl commands
show-target-class{}. Line 6 retrieves the Simulator object and stores it
in variable sim. In Line 7, function evalf(...) of class Tcl evaluates the
Tcl statement in the same manner as printf(...) (see also Fig. 13.1). It
puts the values stored in target_->name() and sim->name() as the first
and second arguments, respectively, and passes the entire statement to the
Tcl interpreter. Here, function name() defined in class TclObject is used to
translate the C++ variables target_ and sim to OTcl reference strings.

Lines 12–21 in Program 3.1 shows the details of the OTcl command
show-target-address{}. Line 13 first retrieves the Scheduler object and
stores it in variable sch. Line 14 asks the Tcl to interpret “_o55 target”,
where _o55 is the OTcl reference string corresponding to the current TCP
object. Line 15 uses function result() to obtain OTcl reference string of the
target of the TcpAgent object. It obtains the C++ object corresponding to
the string using function lookup(...). The obtained C++ object is then cast
to a Connector pointer and stored in variable conn.

evalf(“puts [format \"%%1.1f OTcl class of TcpA gent::target is [%s info class]\" [%s now] ]”)

puts [ format “%1.1f OTcl class of TcpAgent::target is [ _o12 info class]" [ _o3 now]  ]

target_->name()
sim.name()

C++

OTcl

Fig. 13.1. Details of Line 7 in Program 13.1.
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13.2 Variable Tracing

Variable tracing is responsible for recording changes in variables of a TclObject
under consideration. Variable tracing consists of 6 main components: a TclOb-
ject, an InstVar object, a TracedVar object, a tracer, a Tcl channel, and a
trace file. The relationship among the above six components for variable trac-
ing are shown in Fig. 13.2. Here, the solid lines represent the configuration
after NS2 initialization, while the dotted lines are the relationship which are
created later by NS2 users. The details of the relationship are as follows:

• Class TclObject declares a pointer instvar_ to an InstVar object (Line
6 in Program 13.2). This object is the head of the link list which contains
all bound OTcl instvars of the TclObject.

• Class Instvar holds information (e.g., the name of the bound OTcl vari-
able) about a bound instvar. It also contain a pointer traced_var to a
TracedVar object.

• A TracedVar object is responsible for keeping track of the change in its
value and reporting the change to a tracer.

• Receiving a report from a TracedVar object, a tracer records the changes
in variable. In most cases, the record is written to a Tcl channel which is
attached to a traced file. Unless a traced is explicitly given, NS2 uses the
TclObject as a tracer for its TracedVar object.

TclObject

0

name_

InstVar

tracedvar_

next_

name_

InstVar

0

tracedvar_

next_...

(and Tracer)

tracer_val_
TracedVar

...
tracer_val_

TracedVar

name_

InstVar

tracedvar_

next_

Trace File

channel_

recarTrecarT

channel_

Fig. 13.2. An architecture of variable tracing.

13.2.1 Activation Process for Variable Tracing

Variable tracing can be activated in the OTcl domain using the following three
steps:
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Program 13.2 Declaration of classes TclObject and Instvar

//~/tclcl/tclcl.h

1 class TclObject {

2 public:

3 ....

4 virtual void trace (TracedVar*);

5 protected:

6 int traceVar(const char* varName, TclObject* tracer);

7 InstVar* instvar_;

8 ....

9 }

//~/tclcl/Tcl.cc

10 class InstVar {

11 protected:

12 InstVar(const char* name);

13 const char* name_;

14 TracedVar* tracedvar_;

15 public:

16 virtual ~InstVar();

17 InstVar* next_;

18 inline const char* name() { return name_; }

19 inline TracedVar* tracedvar() { return tracedvar_; }

20 inline void tracedvar(TracedVar* v) { tracedvar_ = v; }

21 };

(i) Specify a TracedVar object.
(ii) Create a trace file.
(iii) Attach the created trace file to a tracer.

Let obj, traced_var, and tracer be a TclObject, a TracedVar object,
and a tracer, respectively. Then, the above three steps are carried out by the
following three OTcl statements (respectively):

obj trace $traced_var $tracer

set fh [open "filename" w]

$tracer attach $fh

Optionally, we can use the TclObject obj as a tracer, by replacing the first
and last statements above with the following statements (respectively):

obj trace $traced_var

obj attach $fh

Note that variable tracing can be applied only to a traceable TracedVar

object, which complies with the following two criteria:

• The instvar $traced_var must be bound to the C++ domain.
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• The C++ class of the bounded variable must derive from class TracedVar.
• The bound C++ variable must be a member of the class of the TclObject

obj.

Example 13.2. Suppose we would like to trace variable t_seqno_ of a TcpAgent
object $tcp in Example 10.1, and store the trace in file trace.txt. We may
include the following codes into the Tcl simulation script:

1 $tcp trace t_seqno_

2 set trace_ch [open "trace.txt" w]

3 $tcp attach $trace_ch

Here, Line 1 indicates the need to trace the TracedVar object t_seqno_ of
tcp using tcp as a tracer. Line 2 creates a trace file “trace.txt”, and Line 3
attaches the file to the tracer $tcp. These three lines inform NS2 to record all
the changes in variable t_seqno_ associated with $tcp in file “trace.txt”.
After simulation, the following trace file whose format complies with Fig. 13.3
is created:

...

4.06820 0 0 2 0 t_seqno_ 14

4.06986 0 0 2 0 t_seqno_ 15

4.07153 0 0 2 0 t_seqno_ 9

4.07153 0 0 2 0 t_seqno_ 10

4.08468 0 0 2 0 t_seqno_ 14

...

Fig. 13.3. Trace format defined in class TcpAgent.

13.2.2 Instvar Objects

Again, an InstVar object acts as a reference to an instvar in the OTcl domain.
Since a TclObject can have several bound instvars, a TclObject resorts to a
link-list structure of InstVar objects (see Figure 13.2). Here, a TclObject only
needs to maintain a pointer to the head of the link-list.

The details of class InstVar are shown in Lines 10–21 of Program 13.2.
Class InstVar has 3 main variables: next_, name_, and tracedvar_. The
pointer next_ provides a support to create a link list. The variable name_ con-
tains the OTcl instvar name. The pointer tracedvar_ points to a TracedVar

object. We note here that not all OTcl instvars need to be traceable. As a
result, not all InstVar object in the link list has it pointer tracedvar_ con-
figured. From Fig. 13.2, the second InstVar object in the link list does not
have it pointer point a TracedVar object.
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Class InstVar has three main functions: name(), tracedvar(), and
tracedvar(v). These functions are used to configures internal variables of
class InstVar.

13.2.3 TracedVar Objects

A TracedVar object is a member variable of a TclObject, which is equipped
with tracing capability. Overloading the basic operators (e.g., “+”, “-”, “*”,
“/”), TracedVar objects are used in place of ordinary C++ variables. Each
overloaded operator executes the basic operation and reports the change in
value to a tracer.

NS2 implements TracedVar objects through an abstract class TracedVar.
From Program 13.3, class TracedVar has four main variables:

name_ The name of this TracedVar object in the OTcl domain
owner_ A pointer to the TclObject which declares this TracedVar object

as its variable
tracer_ A pointer to the TclObject responsible for keeping track of this

TracedVar object
next_ A pointer to the next TracedVar object

Class TracedVar has one pure virtual function and six regular functions.
The pure virtual function value(...) returns the value of the TracedVar ob-
ject1 (e.g., see the implementation of function value(...) of class TracedInt
below). The other six functions act as interface functions to set and retrieve
variables of class TracedVar.

NS2 has two built-in classes derived from class TracedVar: TracedInt
and TracedDouble.2 These two classes comply with the following mechanism.
From Program 13.3, class TracedInt declares an int variable val_ (Line
28) to store its current value. It informs a tracer of changes in its value by
feeding itself as an input argument of function trace(...) of the tracer.
It also uses a single point of value assignment–function assign(newval) in
Lines 24–25. When an overloaded operator is invoked, the basic operation
is executed and the execution result is stored in variable val_ using func-
tion assign(newval). The statement tracer_->trace(this) invoked from
within function assign(newval) ensures that all the changes in val_ are
recorded by the tracer.

13.2.4 Tracers

A tracer is an object of class TclObject which is responsible for record-
ing changes in the value of a TracedVar object. Class TclObject defines a

1 Since the base class TracedVar does not define a variable to store the value, the
function value(...) must be declared as pure virtual.

2 For brevity, the following discussion is based on class TracedInt only.



336 13 Processing an NS2 Simulation

Program 13.3 Declaration of classes TracedVar and TracedInt, and func-
tion assign of class TracedInt.

//~/tclcl/tracedvar.h

1 class TracedVar {

2 public:

3 TracedVar();

4 virtual ~TracedVar() {}

5 virtual char* value(char* buf, int buflen) = 0;

6 inline const char* name() { return (name_); }

7 inline void name(const char* name) { name_ = name; }

8 inline TclObject* owner() { return owner_; }

9 inline void owner(TclObject* o) { owner_ = o; }

10 inline TclObject* tracer() { return tracer_; }

11 inline void tracer(TclObject* o) { tracer_ = o; }

12 TracedVar* next_;

13 protected:

14 TracedVar(const char* name);

15 const char* name_;

16 TclObject* owner_;

17 TclObject* tracer_;

18 };

19 class TracedInt : public TracedVar {

20 public:

21 TracedInt() : TracedVar() {}

22 TracedInt(int v) : TracedVar(), val_(v) {}

23 virtual ~TracedInt() {}

24 inline int operator++() { assign(val_ + 1); return val_; }

25 inline int operator=(int v) { assign(v); return val_; }

26 protected:

27 virtual void assign(const int newval);

28 int val_;

29 };

//~/tclcl/tracedvar.cc

30 void TracedInt::assign(int newval)

31 {

32 if (val_ == newval)

33 return;

34 val_ = newval;

35 if (tracer_)

36 tracer_->trace(this);

37 }
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function trace(v) to record the value of a TracedVar object *v. The function
trace(v) is invoked from within every overloading operator of TracedVar ob-
jects to reports changes in a variable *v. Since function trace(v) is defined
in class TclObject, every TclObject can be used as a tracer.

As shown in Lines 1–4 of Program 13.4, function trace(v) of class
TclObject simply prints an error message on the screen (Line 3). This imple-
mentation (weakly) forces the derived classes of class TclObject to implement
function trace(v) without declaring the function as pure virtual. If a derived
class does not implement function trace(v), it can still instantiate an object
and operate normally. However, an error message (Line 3) will be shown on
the screen, if function trace(v) is invoked.

As an example, consider class TcpAgent in Program 13.4. Here, function
trace(v) of class TcpAgent in Lines 5–8 of Program 13.4 simply invokes

Program 13.4 Function trace of classes TclObject and TcpAgent, and func-
tion traceVar of class TcpAgent.

//~/tclcl/Tcl.cc

1 void TclObject::trace(TracedVar*)

2 {

3 fprintf(stderr, "SplitObject::trace called in

the base class of %s\n",name_);

4 }

//~/ns/tcp/tcp.cc

5 void TcpAgent::trace(TracedVar* v)

6 {

7 traceVar(v);

8 }

9 void TcpAgent::traceVar(TracedVar* v)

10 {

11 Scheduler& s = Scheduler::instance();

12 char wrk[TCP_WRK_SIZE];

13 double curtime = &s ? s.clock() : 0;

14 if (v == &cwnd_)

15 ...

16 else if (v == &t_rtt_)

17 ...

18 else

19 snprintf(wrk, TCP_WRK_SIZE,

20 "%-8.5f %-2d %-2d %-2d %-2d %s %d\n",

21 curtime, addr(), port(), daddr(), dport(),

22 v->name(), int(*((TracedInt*) v)));

23 (void)Tcl_Write(channel_, wrk, -1);

24 }
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function traceVar(v). Based on the input TracedVar pointer v, function
tracedVar(v) of class TcpAgent stores a string in a local variable wrk, and
invokes function Tcl_Write(...) to write the string wrk to a Tcl_Channel

object channel_ (see Line 23). In most cases, channel_ (defined in class
Agent; see Line 4) is attached to a trace file, and Tcl_Write(...) simply
prints the string to the attached trace file.

13.2.5 Connections Among a TclObject, a TracedVar Object, a
Tracer, and a Trace File

A Connection from a TracedVar Object to Tracer

A connection from a TracedVar object to a tracer can be created using the
OTcl command trace{...} (see Section 13.2.1) whose syntax is shown below

$obj trace $traced_var[$tracer]

Again, if the optional argument $tracer$ is not present, the TclObject
$obj will be used as a tracer.

The OTcl command informs the TclObject (i.e., $obj) to trace its variable
whose OTcl bound instvar name is $traced_var trace{...} The details of
the OTcl command trace{...} is shown in Lines 1–12 of Program 13.5. Lines
5 and 7 sets a variable tracer to be this and the second input argument of the
OTcl command (i.e., argv[3]), if it exists, respectively. Then Line 8 invokes
function traceVar(argv[2],tracer) to create a connection from a TraceVar

object to a tracer input TracedVar object.
Function traceVar(varName,tracer)3 is shown in Lines 13–24 of Pro-

gram 3.5. This function creates a connection from a TracedVar object whose
OTcl instvar name is varName to a tracer object tracer. Lines 15-16 locates an
entry of the InstVar linked list whose name_ matches with the string varName.
When the component is found, Line 17 ensures that the matching instvar con-
tains a reference to a TracedVar object (see Line 8 in Program 13.2). Then,
Line 18 sets the variable tracer_ of the matched TracedVar object to the
value as specified in the input argument tracer (see the detail of function
tracer({...}) of class TracedVar in Line 11 in Program 13.3). Line 18 tells
the member pointer tracer_ of the located InstVar *p to point to the same
as the input argument tracer. Line 19 informs the tracer (i.e., the input
argument) to trace the TracedVar object associated with the InstVar object
*p (see function trace(v) of class TcpAgent in Program 13.4). Note that,
prior to the Lines 13–24 in Program 13.5, the TracedVar object must be cre-
ated, and the address of the created TracedVar object must be assigned to
variable tracedvar_ (declared in Line 12 in Program 13.2) of all the linked
list components.

3 This function is different from that in Program 13.4, since the input arguments
are different.
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Program 13.5 Command trace and function TraceVar of class TclObject.

//~/tclcl/Tcl.cc

1 int TclObject::command(int argc, const char*const* argv)

2 {

3 if (argc > 2) {

4 if (strcmp(argv[1], "trace") == 0) {

5 TclObject* tracer = this;

6 if (argc > 3)

7 tracer = TclObject::lookup(argv[3]);

8 return traceVar(argv[2], tracer);

9 }

10 }

11 return (TCL_ERROR);

12 }

13 int TclObject::traceVar(const char* varName, TclObject* tracer)

14 {

15 for (InstVar* p = instvar_; p != 0; p = p->next_) {

16 if (strcmp(p->name(), varName) == 0) {

17 if (p->tracedvar()) {

18 p->tracedvar()->tracer(tracer);

19 tracer->trace(p->tracedvar());

20 return TCL_OK;

21 }

22 }

23 }

24 }

Connection Between a Tracer and a Trace File

A tracer usually employs a Tcl channel to record changes in a TracedVar

object in a trace file. For example, TcpAgent defines a Tcl channel channel_
in its base class Agent (See Line 4 in Program 13.6). This Tcl channel is
usually attached to a trace file “file” via an OTcl command attach{file}
of class TcpAgent.

The details of the OTcl command attach{file} are shown in Lines 7–21
in Program 13.6. Here, Line 12 converts the input file name to a string id.
Line 13 retrieves an OTcl file reference corresponding to id, and stores it in
variable channel_. After this point, a connection to a trace file is created
within a tracer, and the tracer is able to pass variable changing messages to
the attached trace file.

13.2.6 Trace File Format

The trace file format defines how the variable details are recorded in a trace
file. The format is defined in function trace(v) of class TclObject (i.e., a
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Program 13.6 Declaration and OTcl command attach of class Agent.

//~/ns/common/agent.h

1 class Agent : public Connector {

2 ...

3 protected:

4 Tcl_Channel channel_;

5 ...

6 }

//~/ns/tcp/tcp.cc

7 int TcpAgent::command(int argc, const char*const* argv)

8 {

9 ...

10 if (strcmp(argv[1], "attach") == 0) {

11 int mode;

12 const char* id = argv[2];

13 channel_ = Tcl_GetChannel(tcl.interp(), (char*)id, &mode);

14 if (channel_ == 0) {

15 tcl.resultf("trace: can’t attach %s for writing", id);

16 return (TCL_ERROR);

17 }

18 return (TCL_OK);

19 }

20 ...

21 }

tracer) under a printf-like environment. For example, the default trace for-
mat of a TcpAgent object is defined in its function trace(v) in (Fig. 13.3).
Defined in Lines 19-22 of Program 13.4, the trace file format for class TcpAgent
is shown in Fig. 13.3, where each field of the trace format is separated by a
space.

Example 13.3. Consider Example 13.2. An operator “++” of a TracedVar ob-
ject is overloaded by a function operator++() defined in Line 24 of Pro-
gram 13.3 (see also Fig. 13.4). Function operator++() invokes function
assign(val_+1) to increment the value stored in its variable val_ by 1,
store the incremented value in variable val_, and the change in the vari-
able val_. From within the function assign(newval), a TracedVar object
(e.g., t_seqno_) executes “tracer_->trace(this)” where tracer_ and this

are the associated tracer and the address of the TracedVar object, respec-
tively. Since, in this case, the variable tracer is a TcpAgent object, func-
tion trace(v) in Line 5–8 of Program 13.4 is invoked, and a trace string is
printed to the trace file according to the format specified in Lines 19–22 of
Program 13.4.
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Invoke “t_seqno_++”

tracer_

val_

TracedVar TclObject

trace(TracedVar*) {
    show error
}

operator++() {
    assign(val_+1);
    return val_;
}

assign(newval) {
    val_=newval;
    tracer->trace(this);
}

t_seqno_

D
e
ri

ve

TcpAgent

trace(TracedVar*       ) {
    record the change in 
    the TracedVar
}

Fig. 13.4. The mechanism of function operator++() of class TcpAgent.

13.3 Packet Tracing

Packet tracing records packet details when they pass through network check-
points, where a Trace object is install. This section discuss packet tracing
mechanism through Example 13.4 below:

Example 13.4. Consider Example 9.1. A typical way to activate packet trac-
ing which records changes in a file “out.tr” is to insert the following OTcl
statements after Line 4 in Example 9.1.

set f [open out.tr w]

$ns trace-all $f

where the upper line creates a variable “f” which is a reference to file
“out.tr”. The lower line informs NS2 to activate the packet tracing mecha-
nism and to record the details of packets flowing through the packet tracing
objects in file “out.tr”.

After adding the following statements at the end of the Tcl scripting file,

$ns at 0.0 "$cbr start"

$ns at 10.0 "$ns halt"

$ns run

we run the Tcl simulation script, and the trace result will be stored in file
“out.tr”. The followings are a part of the file “out.tr”.
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//out.tr

+ 0 0 2 cbr 210 ------- 0 0.0 2.0 0 0

- 0 0 2 cbr 210 ------- 0 0.0 2.0 0 0

r 0.002336 0 2 cbr 210 ------- 0 0.0 2.0 0 0

+ 0.00375 0 2 cbr 210 ------- 0 0.0 2.0 1 1

- 0.00375 0 2 cbr 210 ------- 0 0.0 2.0 1 1

...

We shall discuss the packet tracing OTcl configuration method and C++
internal mechanism implementation in Sections 13.3.1 and 13.3.2. Sections
13.3.3 discusses the details of the packet tracing helper class Base

Trace. Various types of packet tracing objects are presented in Section 13.3.4.
Finally, the packet trace format is shown in Section 13.3.5.

13.3.1 OTcl Configuration Interfaces

This section demonstrates how a packet tracing object is inserted into a net-
work. We show packet trace configuration through a simplex-link with a drop-
tail queue only. The readers are encouraged to look through the NS2 codes
and find out more about packet tracing.

The key packet tracing configuration OTcl instprocs are given below:

• Simulator::trace-all{file}: Store the file handle file in instvar
traceAllFile_ of the Simulator (see Program 13.7).

• Simulator::simplex-link{n1 n2 bw delay qtype}: Creates a Simple

Link object from node n1 to node n2 (see Section 7.1). If the instvar
traceAllFile_ of the Simulator exists, the instproc trace-queue{n1 n2

file} is invoked to configure the link as shown in Fig. 7.1.
• Simulator::trace-queue{n1 n2 file}: Creates and configures packet

tracing objects in the link which connects Node n1 to Node n2 as shown
in Fig. 7.1. Associates the tracing object to the file handle “file”.

• Simulator::create-trace{type file src dst}: Creates a tracing ob-
ject of type “type”, attaches the file handle “file” to the created packet
tracing object, and return the created tracing object to the caller.

• Simulator::flush-trace{}: Flushes the buffer of all packet tracing ob-
jects in the simulation.

Program 13.7 Instproc trace-all of class Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc trace-all file {

2 $self instvar traceAllFile_

3 set traceAllFile_ $file

4 }
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• SimpleLink::trace{ns file}”: Create packet tracing objects enqT_,
deqT_, drpT_, and rcvT_, and configure them as shown in Fig. 7.1.

Fig. 13.5. The packet tracing configuration process of a SimpleLink object.

As an example, consider a packet tracing configuration for a SimpleLink

object as shown in Fig. 13.5. The process starts with an activation of packet
tracing through a statement $ns trace-all $file. This statement stores
the input file handle file in a flag instvar traceAllFile_, which indicates
whether the packet tracing is enabled. When other objects are created, packet
tracing objects are inserted if instvar traceAllFile_ is not Null.

The next step is to create a SimpleLink object through an instproc
“simplex-link{...}” of class Simulator. If instvar traceAllfile_ is not
Null, instproc trace-queue{...} of class Simulator will be invoked. Inst-
proc trace-queue{...} executes the statement “trace{ns file}” of the
SimpleLink object, where ns and file are the Simulator and a trace file
handle, respectively. From within the instproc trace{ns file}, packet trac-
ing objects (e.g., enqT_), which are responsible for recording packet details,
are created and configured.

$ns trace-all $file

where $ns and $file are the Simulator and a file handle, respectively (see
Example 13.4).
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Program 13.7 shows the details of instproc “trace-all{file}” of class
Simulator. This instproc stores the input file handle file in a flag inst-
var traceAllFile_, which indicates whether the packet tracing is enabled.
When other objects are created, packet tracing objects are inserted if instvar
traceAllFile_ is not Null.

Similar to that of Queue and QueueHandler objects, a connection of ARQTx
and ARQHandler is created by the constructor of the ARQTx object. From Line
27 in Program 14.2, the ARQTx constructor instantiates an ARQHandler object,
arqh_, feeding itself as an input argument. The constructor of can ARQHandler

object (Line 5 in Program 14.1) stores the input argument in its variable
arq_tx_, crating a two-way connection between ARQTx and ARQHandler ob-
jects.

Instproc trace-all{file} of Class Simulator

Defined in Program 13.7, instproc trace-all{file} of class Simulator takes
a file handle file as an input argument (Line 1), and stores file in instvar
traceAllFile_ (Line 3). The syntax of the instproc trace-all{...} is as
follows:

Instproc simplex-link{...} of Class Simulator

Instproc simplex-link{...} of class Simulator is used to create a link be-
tween two nodes (e.g., n1 and n2; see Section 7.1 for the details of class
SimpleLink). Program 13.8 shows the part of instproc simplex-link{...}
which is related to packet tracing. Lines 6–7 create a SimpleLink object con-
necting node n1 to node n2. The bandwidth and delay of the connecting
link are “bw” bps and “delay” seconds, respectively. The queue associated
with the link is of type “qtype”. Line 9 stores instproc traceAllFile_ in
a local variable trace, and Lines 10-12 execute “$self trace-queue{n1 n2

trace}” associated with the Simulator, if instvar traceAllFile_ is not Null.

Instproc trace-queue{n1 n2 file} of Class Simulator

Lines 14–17 in Program 13.8 show the details of function trace-queue{n1
n2 file}. Again, class Simulator has an instance associative array link_.
The index of link_ is of format “sid:did”, where sid and did are node
IDs attaching to its beginning point and its ending point, respectively. The
instproc trace-queue{n1 n2 file} invokes instproc trace{ns file} associ-
ated with the SimpleLink object link_([$n1 id]:[$n2 id]) (see Line 16),
to create and configure packet tracing components of the SimpleLink object.

Note that the input argument $file is a file handle. When $ns trace-all

$file is invoke the handle $file is stored in the instvar traceAllFile_ of
the Simulator (see Program 13.7). Instproc simplex-link{...} (Line 9) re-
trieves the instvar traceAllFile_, and stores it in a local variable trace.
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Program 13.8 Instprocs simplex-link and trace-queue of class
Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc simplex-link { n1 n2 bw delay qtype args } {

2 $self instvar link_

3 set sid [$n1 id]

4 set did [$n2 id]

5 ...

6 set q [new Queue/$qtype]

7 set link_($sid:$did) [new SimpleLink $n1 $n2 $bw $delay $q]

8 ...

9 set trace [$self get-ns-traceall]

10 if {$trace != ""} {

11 $self trace-queue $n1 $n2 $trace

12 }

13 }

14 Simulator instproc trace-queue { n1 n2 {file ""} } {

15 $self instvar link_ traceAllFile_

16 $link_([$n1 id]:[$n2 id]) trace $self $file

17 }

Essentially, this variable trace contains the file handle $file. This local vari-
able (or equivalently the file handle) is then fed as the third input argument of
instproc trace-queue{...} and as the second input argument of the instproc
trace{...}, respectively.

Instproc trace{ns f} of Class SimpleLink

As shown in Program 13.9, instproc trace{ns f} of class SimpleLink

takes two input arguments: the Simulator “ns” and a file handle “f”. Line 5
stores the input file handle “f” in instvar trace_. Lines 6–9 create packet
tracing objects enqT_, deqT_, drpT_, and rcvT_, by using the instproc
create-trace{...} associated with the input Simulator ns. Lines 11–19 con-
figure the created packet tracing objects as indicated in Fig. 7.1.

Instproc create-trace{type file src dst} of Class Simulator

In Program 13.10, instproc create-trace{type file src dst} creates and
configures a packet tracing object whose type is “type”. Line 3 first creates
a packet tracing object with type specified in “type”. Lines 4 and 5 con-
figure member variables src_ and dst_, respectively, of the created packet
tracing object “p”. Line 6 stores the created packet tracing object in instvar
“alltrace_” of the Simulator. Lines 7–9 attach “file” to the created packet
tracing object. Finally, Line 10 returns the created packet tracing object to
the caller.
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Program 13.9 Instproc trace of class SimpleLink.

//~/ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc trace { ns f {op ""} } {

2 $self instvar enqT_ deqT_ drpT_ queue_ link_ fromNode_ toNode_

3 $self instvar rcvT_ ttl_ trace_

4 $self instvar drophead_ ;# idea stolen from CBQ and Kevin

5 set trace_ $f

6 set enqT_ [$ns create-trace Enque $f $fromNode_ $toNode_ $op]

7 set deqT_ [$ns create-trace Deque $f $fromNode_ $toNode_ $op]

8 set drpT_ [$ns create-trace Drop $f $fromNode_ $toNode_ $op]

9 set rcvT_ [$ns create-trace Recv $f $fromNode_ $toNode_ $op]

10 $self instvar drpT_ drophead_

11 set nxt [$drophead_ target]

12 $drophead_ target $drpT_

13 $drpT_ target $nxt

14 $queue_ drop-target $drophead_

15 $deqT_ target [$queue_ target]

16 $queue_ target $deqT_

17 $self add-to-head $enqT_

18 $rcvT_ target [$ttl_ target]

19 $ttl_ target $rcvT_

20 }

Program 13.10 Instproc create-trace of class Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc create-trace { type file src dst {op ""} } {

2 $self instvar alltrace_

3 set p [new Trace/$type]

4 $p set src_ [$src id]

5 $p set dst_ [$dst id]

6 lappend alltrace_ $p

7 if {$file != ""} {

8 $p attach $file

9 }

10 return $p

11 }

Instproc flush-trace{} of Class Simulator

Program 13.11 shows the details of instproc flush-trace{} of class Simulator.
The Simulator stores all packet tracing objects in instvar alltrace_. There-
fore, Lines 3–7 invoke the OTcl command flush{} of all the packet tracing
objects stored in instvar alltrace_.
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Program 13.11 Instproc flush-trace of class Simulator.

//~/ns/tcl/lib/ns-lib.tcl

1 Simulator instproc flush-trace {} {

2 $self instvar alltrace_

3 if [info exists alltrace_] {

4 foreach trace $alltrace_ {

5 $trace flush

6 }

7 }

8 }

13.3.2 C++ Main Packet Tracing Class Trace

In NS2, packet tracing objects are implemented using class Trace declared
in Program 13.12, which is bound to an OTcl class with the same name (see
Line 15–23). From Line 1, class Trace derives from class Connector, and can
be inserted between two NsObjects to record the details of a packet passing
through it. As a connector, a packet tracing object receives a packet *p by
having its upstream object invoke its function recv(p,h). Upon receiving a
packet, it records the details of the packet in a trace file, and forwards the
packet to its downstream object.

Main C++ Variable of Class Trace

Class Trace consists of four main variables: src_, dst_, type_, and pt_.
Variables src_ (Line 3) and dst_ (Line 4) specify the beginning and the ending
addresses of a Trace object. Variable type_ in Line 10 indicates the type of
the tracing object. Despite its int type, the true meaning of this variable
is the char equivalent. For example, the types of objects which trace packet
enquing and dequing are “+” and “-”, which correspond to decimal values
of 43 and 45, respectively. Finally, pointer pt_ in Line 9 is a reference to a
BaseTrace object, which provides the basic functionalities for packet tracing.
We shall discuss the details of class BaseTrace later in Section 13.3.5.

Main C++ Functions of Class Trace

Class Trace has three following main functions: the constructor, function
recv(p,h), and function format(tt,s,d,p).

The Constructors

Lines 24–29 and 30–34 show the constructors of C++ class Trace and OTcl
class Trace, respectively. The OTcl constructor simply stores the input ar-
gument in its instvar type_ (Line 33). Similarly, the C++ constructor stores
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Program 13.12 Declaration of class Trace which is bound to the OTcl class
with the same name, and their constructors.

//~/ns/trace/trace.h

1 class Trace : public Connector {

2 protected:

3 nsaddr_t src_;

4 nsaddr_t dst_;

5 virtual void format(int tt, int s, int d, Packet* p);

6 public:

7 Trace(int type);

8 ~Trace();

9 BaseTrace *pt_;

10 int type_;

11 int command(int argc, const char*const* argv);

12 static int get_seqno(Packet* p);

13 void recv(Packet* p, Handler*);

14 };

//~/ns/trace/trace.cc

15 class TraceClass : public TclClass {

16 public:

17 TraceClass() : TclClass("Trace") { }

18 TclObject* create(int argc, const char*const* argv) {

19 if (argc >= 5)

20 return (new Trace(*argv[4]));

21 return 0;

22 }

23 } trace_class;

24 Trace::Trace(int type) : Connector(), pt_(0), type_(type)

25 {

26 bind("src_", (int*)&src_);

27 bind("dst_", (int*)&dst_);

28 pt_ = new BaseTrace;

29 }

//~/ns/tcl/lib/ns-trace.tcl

30 Trace instproc init type {

31 $self next $type

32 $self instvar type_

33 set type_ $type

34 }
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the input argument in variable type_ (Line 24). It also binds variables src_
and dst_ to instvars with the same name (Lines 26–27), and creates a new
BaseTrace object *pt_ (Line 28).

Function recv(p,h)

Function recv(p,h) is the main packet reception function. The details of
function recv(p,h) is shown in Program 13.13. Line 3 invokes function
format(type_,src_,dst_,p) to store the details of packet *p in the in-
ternal variable wrk_ of the associated BaseTrace object *pt_. Line 4 exe-
cutes “pt_->dump()” to print the packet details to an attached trace file.
If the Trace object contains a non-Null downstream object, Line 8 will for-
ward packet p to the downstream object. Otherwise, Line 6 will deallocate
packet p.

Function Format(tt,s,d,p)

Shown in Programs 13.14–13.15, function format(tt,s,d,p) stores the packet
details in the internal variable wrk_ of the associated BaseTrace object *pt_.
Taking the packet tracing type “tt”, a source node ID “s”, a destination
node ID “d”, and a pointer to an incoming packet “*p” as input arguments,
this function proceeds as follows. Line 7 stores the packet type in a local
variable name. Lines 9–21 create a flag string and store it in a local variable
flag. Address and port of source node and destination node are retrieved in
Lines 22–25. Finally, Lines 26–45 print out a packet tracing string to variable
pt_->wrk_.4 The packet trace format will be discussed in greater detail in
Section 13.3.5.

Main OTcl Commands of a Packet Tracing Object

There are three OTcl main commands associated with class Trace: flush{},
detach{}, and attach{file}. In Program 13.16, command flush{} (Lines

Program 13.13 Function recv of class Trace.

//~/ns/trace/trace.cc

1 void Trace::recv(Packet* p, Handler* h)

2 {

3 format(type_, src_, dst_, p);

4 pt_->dump();

5 if (target_ == 0)

6 Packet::free(p);

7 else

8 send(p, h);

9 }

4 As we shall see in Section 13.3.3, function buffer() of class BaseTrace simply
returns variable wrk .
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Program 13.14 Function format of class Trace.

//~/ns/trace/trace.cc

1 void Trace::format(int tt, int s, int d, Packet* p)

2 {

3 hdr_cmn *th = hdr_cmn::access(p);

4 hdr_ip *iph = hdr_ip::access(p);

5 hdr_tcp *tcph = hdr_tcp::access(p);

6 packet_t t = th->ptype();

7 const * name = packet_info.name(t);

8 int seqno = get_seqno(p);

9 char flags[NUMFLAGS+1];

10 for (int i = 0; i < NUMFLAGS; i++)

11 flags[i] = ’-’;

12 flags[NUMFLAGS] = 0;

13 hdr_flags* hf = hdr_flags::access(p);

14 flags[0] = hf->ecn_ ? ’C’ : ’-’;

15 flags[1] = hf->pri_ ? ’P’ : ’-’;

16 flags[2] = ’-’;

17 flags[3] = hf->cong_action_ ? ’A’ : ’-’;

18 flags[4] = hf->ecn_to_echo_ ? ’E’ : ’-’;

19 flags[5] = hf->fs_ ? ’F’ : ’-’;

20 flags[6] = hf->ecn_capable_ ? ’N’ : ’-’;

21 flags[7] = 0;

22 char *src_nodeaddr = Address::instance().

print_nodeaddr(iph->saddr());

23 char *src_portaddr = Address::instance().

print_portaddr(iph->sport());

24 char *dst_nodeaddr = Address::instance().

print_nodeaddr(iph->daddr());

25 char *dst_portaddr = Address::instance().

print_portaddr(iph->dport());

...

5–10) clears the buffer of the attached Tcl channel by invoking pt_->flush(ch),
where ch is the attached Tcl channel. The OTcl command detach{} does
not clear the channel buffer, but simply sets the pointer to the attached Tcl
channel to Null (see Line 12). Finally, the OTcl command attach{file} sets
the input file handle file as a trace file (Lines 19–20).

13.3.3 C++ Helper Class BaseTrace

One of the main variables of class Trace, pt_, is a pointer to an object
of class BaseTrace, a packet tracing helper class. Class BaseTrace acts as
an interface from a packet tracing object to a Tcl channel. Shown in Pro-
gram 13.17, class BaseTrace is bound to an OTcl class with the same name.
Class BaseTrace has two main variables: channel_ (Line 14) and wrk_ (Line
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Program 13.15 Function format of class Trace (Cont.).

//~/ns/trace/trace.cc

...

26 sprintf(pt_->buffer(),

27 "%c "TIME_FORMAT" %d %d %s %d %s %d %s.%s %s.%s

28 tt,

29 pt_->round(Scheduler::instance().clock()),

30 s,

31 d,

32 name,

33 th->size(),

34 flags,

35 iph->flowid(),

36 src_nodeaddr,

37 src_portaddr,

38 dst_nodeaddr,

39 dst_portaddr,

40 seqno,

41 th->uid(),

42 tcph->ackno(),

43 tcph->flags(),

44 tcph->hlen(),

45 tcph->sa_length() );

46 delete [] src_nodeaddr;

47 delete [] src_portaddr;

48 delete [] dst_nodeaddr;

49 delete [] dst_portaddr;

50 }

15). While channel_ is an interface to a Tcl channel, wrk_ is a buffer which
stores a trace string to be written to the Tcl channel. At the construction,
the Tcl channel channel_ is set to Null, and the trace string wrk_ is allocated
with memory space which can hold upto 1026 characters.

Key functions of class BaseTrace include channel(...), buffer(), flush
(channel), and dump(). The operations of the first three functions are fairly
straightforward, and are omitted for brevity. Function dump() shown in Lines
28–37 of Program 13.17 is responsible for dumping a trace string stored in
wrk_ to the Tcl channel. Here, Line 30 retrieves the length of the string wrk

and stores the length in a local variable “n”. Line 32 attaches an end-of-
line character to wrk_. Line 33 attaches zero to wrk_ indicating the end of
the string. Line 34 writes wrk_ to the Tcl channel channel_ using function
Tcl_Write(...). Finally, Line 35 clears the value stored in wrk_.

In common with class Trace, class BaseTrace has three main OTcl com-
mands: flush{}, detach{}, and attach{file}. These three commands per-
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Program 13.16 Function command of class Trace.

//~/ns/trace/trace.cc

1 int Trace::command(int argc, const char*const* argv)

2 {

3 Tcl& tcl = Tcl::instance();

4 if (argc == 2) {

5 if (strcmp(argv[1], "flush") == 0) {

6 Tcl_Channel ch = pt_->channel();

7 if (ch != 0)

8 pt_->flush(ch);

9 return (TCL_OK);

10 }

11 if (strcmp(argv[1], "detach") == 0) {

12 pt_->channel(0) ;

13 return (TCL_OK);

14 }

15 } else if (argc == 3) {

16 if (strcmp(argv[1], "attach") == 0) {

17 int mode;

18 const char* id = argv[2];

19 Tcl_Channel ch = Tcl_GetChannel(tcl.interp(),

(char*)id,&mode);

20 pt_->channel(ch);

21 if (pt_->channel() == 0) {

22 tcl.resultf("trace: can’t attach %s

for writing", id);

23 return (TCL_ERROR);

24 }

25 return (TCL_OK);

26 }

27 }

28 return (Connector::command(argc, argv));

29 }

form the same action as those in class Trace. We will omit the details of these
three OTcl commands for brevity.

13.3.4 Various Types of Packet Tracing Objects

NS2 employs different types of packet tracing objects to trace packets at
different places. For example, a Trace/Enque object is placed immediately
before a queue to trace packets which enter the queue. The type (i.e., variable
type_) of a Trace/Enque object is “+”, which is equivalent to 43 in decimal.
When a packet passes through a Trace/Enque object, a line beginning with
“+” is appended to the Tcl Channel.
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Program 13.17 Declaration, an OTcl binding class, the constructor of class
BaseTrace, and function dump of class BaseTrace.

//~/ns/trace/basetrace.h

1 class BaseTrace : public TclObject {

2 public:

3 BaseTrace();

4 ~BaseTrace();

5 virtual int command(int argc, const char*const* argv);

6 virtual void dump();

7 inline Tcl_Channel channel() { return channel_; }

8 inline void channel(Tcl_Channel ch) {channel_ = ch; }

9 inline char* buffer() { return wrk_ ; }

10 void flush(Tcl_Channel channel) { Tcl_Flush(channel); }

11 #define PRECISION 1.0E+6

12 #define TIME_FORMAT "%.15g"

13 protected:

14 Tcl_Channel channel_;

15 char *wrk_;

16 };

//~/ns/trace/basetrace.cc

17 class BaseTraceClass : public TclClass {

18 public:

19 BaseTraceClass() : TclClass("BaseTrace") { }

20 TclObject* create(int argc, const char*const* argv) {

21 return (new BaseTrace());

22 }

23 } basetrace_class;

24 BaseTrace::BaseTrace() : channel_(0),

25 {

26 wrk_ = new char[1026];

27 }

28 void BaseTrace::dump()

29 {

30 int n = strlen(wrk_);

31 if ((n > 0) && (channel_ != 0)) {

32 wrk_[n] = ’\n’;

33 wrk_[n + 1] = 0;

34 (void)Tcl_Write(channel_, wrk_, n + 1);

35 wrk_[n] = 0;

36 }

37 }
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Among all built-in OTcl packet tracing classes, the most common ones
include

• Trace/Enque (“+”): Trace packet arrival (usually at a queue)
• Trace/Deque (“-”): Trace packet departure (usually at a queue)
• Trace/Drop (“d”): Trace packet drop (delivered to a drop-target)
• Trace/Recv (“r”): Trace packet reception at a certain node

where the characters in the parentheses are attributed to each packet tracing
object class.

Program 13.18 Constructors of classes Trace, Trace/Enque, and
Trace/Deque.

//~/ns/tcl/lib/ns-trace.tcl

1 Class Trace/Enque -superclass Trace

2 Trace/Enque instproc init {} {

3 $self next "+"

4 }

5 Trace/Deque instproc init {} {

6 $self next "-"

7 }

//~/ns/trace/trace.h

8 static class DequeTraceClass : public TclClass {

9 public:

10 DequeTraceClass() : TclClass("Trace/Deque") { }

11 TclObject* create(int args, const char*const* argv) {

12 if (args >= 5)

13 return (new DequeTrace(*argv[4]));

14 return NULL;

15 }

16 } dequetrace_class;

Among these four classes, only class Trace/Deque has an implementation
in the C++ domain. Other three classes are not bound to the OTcl domain.
The main difference among the above four packet tracing objects lie in their
constructors. As shown in Program 13.18, OTcl class Trace/Enque derives
from the OTcl class Trace (Line 1), while class OTcl Trace/Deque is mapped
to the C++ OTcl class DequeTrace (Lines 8–16). Lines 3 and 6 show that
classes Trace/Enque and Trace/Deque are constructed with characters “+”
and “-”, respectively. In Line 24 of Program 13.12, this character is stored in
the variable type_ of the packet tracing object.

As an example, consider the process of creating a Trace/Enque object in
Fig. 13.6. The process starts when a statement “new Trace/Enque” is exe-
cuted. From within an OTcl constructor, the type “+” is repeatedly fed to the
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Fig. 13.6. Construction of a Trace/Enque object.

constructor up the hierarchy by the statement “$self next "+"”. When class
SplitObject is reached, instproc create-shadow{...} is invoked with an in-
put argument “+”. Instproc create-shadow{...} invokes function create()

of class TraceClass in the C++ domain. From Line 24 in Program 13.12,
the constructor of class Trace is invoked, and type “+” is fed as an input
argument. Since the constructor takes an integer as an input argument, the
ascii code “+” is converted into a decimal value “43”. Finally, the constructor
stores the input argument (i.e., “43” in this case) in the variable type_.

13.3.5 Packet Trace Format

Packet trace format is defined in function format(...) (Programs 13.14-
13.15). In a normal case, each line of a trace file follows the format in Fig. 13.7.
There are 12 fields in each line of a trace file (i.e., a Tcl channel):

Fig. 13.7. Packet tracing file format

• Type Identifier: depends on the type (i.e., variable type_) of packet trac-
ing object which generates the string. Most widely used type identifiers
are shown below. The complete list of type identifiers is given in file
˜ns/tcl/lib/ns-trace.tcl.
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– “+” which represents a packet enque event,
– “-” which represents a packet deque event,
– “r” which represents a packet reception event,
– “d” which represents a packet drop (e.g., sent to dropHead_) event,

and
– “c” which represents a packet collision at the MAC level.

• Time: at which the packet tracing string is created.
• Source Node and Destination Node: denote the IDs of the source and the

destination nodes of the tracing object.
• Packet Name: Name of the packet type (as specified in Program 8.9).
• Packet Size: Size of the packet in bytes.
• Flags: A 7-digit flag string is defined in Lines 9–21 of Program 13.14. Each

flag digit is set to “-” if the corresponding flag is disabled. Otherwise, it
will be set as follows. The first is set to “E” if an ECN (Explicit Congestion
Notification) echo is enabled. The second is set to “P” if the priority in
the IP header is enabled. The fourth is set to “A” if the corresponding
TCP takes an action on a congestion (e.g., closes the congestion window).
The fifth is set to “E” if the congestion has occurred. The sixth is set
to “F” if the TCP fast start is used. Finally, the seventh is set to “N”,
when the transport layer protocol is capable of using Explicit Congestion
Notification (ECN).

• Flow ID: Flow ID specified in the field fid_ of an IP packet header.
• Source Address and Destination Address: The source and destination ad-

dresses of a packet specified in an IP packet header. For a flat addressing
scheme, the format of these two fields is “a.b”, where “a” is the address
and “b” is the port.

• Sequence Number: The sequence number specified in packet header.
Specified by a transport layes protocol.

• Packet Unique ID: A unique ID stored in a common packet header.

13.4 Compilation of Simulation Results

One of the main objectives of network simulation is to study network per-
formance. Compilation of simulation results refers to a process of collecting
information from simulation and compute performance measures under con-
sideration. There are three main approaches to collect simulation results in
NS2: through C++ codes, through Tcl codes, and through a trace file.

• Through C++ codes: This refers to an approach which inserts C++
codes into the original NS2 codes. As mentioned earlier in this book, the
modification of C++ code results in a quick simulation. However, pro-
grammers require a fair amount of knowledge in the C++ architecture to
collect results from the simulation.
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• Through Tcl codes: This method is perhaps the most convenient way
to collect the results. The programmers do not need to know the details
of the C++ architecture. They only need to know the variable binding
structure of classes under consideration.

• Through trace file: This method consists of two main steps. In the first
step, a trace file is created during simulation. The second step is to retrieve
the relevant information from the trace file. In most cases, a scripting lan-
guage (e.g., AWK) can be used to extract the necessary information from
a trace file (see Appendix A). Although this approach is widely demon-
strated in the NS2 tutorial in the internet, advanced users are not encour-
aged to use this approach due to the following reasons. First, the OTcl
command “trace-all” consumes a significant amount of resources (e.g.,
memory, simulation time), and dramatically slows down the simulation.
Secondly, a generated trace file usually contains too much information. In
most cases, an NS2 user need to learn another scripting language (e.g.,
AWK) to extract relevant information from a trace file. Finally, the trace
file may not contain the required information. For example, information
on instantaneous buffer occupancy is not available in a trace file.

Example 13.5. Consider Example 10.1 which creates the network in Fig. 9.3.
Insert an error model with error probability 0.05 into the link connecting Node
1 and Node 3. Suppose the maximum TCP transmission window size is set
to 20.

• Through C++ result codes: Find out the number of times TCP trans-
mission window is reduced.

• Through Tcl codes: Plot the dynamic variation of TCP transmission
window.

• Through trace file: Compute the average interval between two TCP
packets entering the link layer buffer.

Constructing a Network

An error model can be inserted into the network by inserting the following
OTcl codes immediately after Line 7 of Example 10.1:

set em [new ErrorModel]

$em set rate_ 0.005

$em unit pkt

$em ranvar [new RandomVariable/Uniform]

$em drop-target [new Agent/Null]

$ns lossmodel $em $n1 $n3

The maximum TCP transmission window is set to 20 by the following
statement after Line 10 in Example 10.1: “ $tcp set window_ 20”.
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Collection of Results Through C++ Codes

TCP shrinks its transmission window when function slowdown(how) of class
TcpAgent is invoked. Therefore, we may declare a variable num_slowdowns_

of class TcpAgent in file ˜ns/tcp/tcp.h, initialize it to zero in the constructor,
and add the two following lines in function slowdown(how):

num_slowdowns_++;

printf("Total number of TCP window reduction is %d \n", now,

num_slowdowns_);

After recompiling NS2, we run the script “tcp.tcl” and obtain the fol-
lowing results:

>> ns tcp.tcl

Total number of TCP window reduction is 1

Total number of TCP window reduction is 2

Total number of TCP window reduction is 3

...

Total number of TCP window reduction is 36

In this simulation, TCP shrinks its transmission window 36 times.

Collection of Results Through Tcl Codes

Transmission window size of a TCP connection is the minimum of instvars
cwnd_ and window_ of a Agent/TCP object. Since these two variables are
available in the OTcl domain, we may collect samples of TCP window size by
inserting the following Tcl script after Line 14 in Example 10.1.

1 set f_cwnd [open cwnd.tr w]

2 proc plot_tcp { } {

3 global f_cwnd tcp ns

4 if { [$tcp set cwnd_] < [$tcp set window_] } {

5 puts $f_cwnd "[$ns now] [$tcp set cwnd_]"

6 } else {

7 puts $f_cwnd "[$ns now] [$tcp set window_]"

8 }

9 $ns at [expr [$ns now] + 0.2] plot_tcp

10 }

11 $ns at 0.01 "plot_tcp"

The above statements put time and TCP transmission window size in
file “cwnd.tr” every 0.2 seconds. Line 1 above creates a Tcl channel f_cwnd
which is bound to the file cwnd.tr. Lines 2–10 define a procedure plot_tcp{}.
Lines 11 invokes procedure plot_tcp at 0.01 second. Within the procedure
plot_tcp{}, Lines 5 and 7 print instvars cwnd_ and window_, whichever is
less, on the Tcl channel f_cwnd. Line 9 schedules an invocation of procedure
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Fig. 13.8. Dynamics of TCP transmission window for Example 13.5.

plot_tcp at 0.2 seconds in future. This invocation continuously prints out
simulation time and TCP transmission window size to the Tcl channel until
the simulation terminates.

After running the above Tcl simulation script, the file cwnd.tr is created.
The first and the second columns of file cwnd.tr are the time and the cor-
responding TCP transmission window, respectively. We now plot Fig. 13.8,
using the first and second columns as X axis and Y axis, respectively. Since
we set instvar window_ to be 20, TCP transmission window can never exceed
20. We can also observe frequent decreases in TCP transmission window size
due to packet losses.

Collection of Results Through Trace File

The first step in this process is to enable tracing in the Tcl simulation script.
Again, this step can be carried out by inserting the following lines after Line
4 in Example 10.1.

set f_trace [open trace.tr w]

$ns trace-all $f_trace

The second step is to process the trace file. In this case, there is only one
TCP flow in the simulation and we can measure the interval between two TCP
packets entering a queue, which connect Node 1 (with ID 0) to Node 3 (with
ID 1), using the AWK script file avg.awk in Program 13.19. By executing the
AWK script, we will see the following result on the screen:

>> awk -f avg.awk trace.tr

Average TCP packet inter-arrival time is 0.001703
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Program 13.19 An AWK script which computes average interval between
two TCP packets entering a link layer buffer of Node 1.

//avg.awk

1 BEGIN{ started = 0 }

2 /^+/ { time = $2;

3 if (started == 1) {

4 if ($3==0 && $4==2 && $5 == "tcp") {

5 interval = time-old_time;

6 old_time = time;

7 cum_interval += interval;

8 total_samples ++;

9 }

10 } else {

11 started = 1; old_time = time;

12 }

13 }

14 END { avg_interval = cum_interval/total_samples;

15 printf("Average TCP packet inter-arrival time is %f\n",

avg_interval);

16 }

Line 1 in Program 13.19 initializes variable started to zero. Lines 2–13
collect samples of the inter-arrival time of TCP packets. Line 2 indicates the
actions to be executed for all the lines beginning with “+” in the subsequent
curly braces. From Line 4, the samples are collected only for the source node
0, the destination node 2, and protocol tcp. Finally, Lines 14–16 compute and
print the average TCP packet inter-arrival time on the screen.

13.5 Chapter Summary

Two of the most important aspects in a network simulation are debugging and
compilation of simulation results. Debugging refers to a procession of remov-
ing compilation and run-time errors in both C++ and OTcl domains. This
chapter provides guidelines and necessary commands for debugging. Although
originally designed to facilitate the understanding of network dynamics, NS2
tracing could also be useful in the debugging process. NS2 supports two types
of tracing. Variable tracing records the changes in value of a variable (in
most cases in a file), while packet tracing stores the details of packets passing
through network checkpoints (again in most cases in a file).

There are three major ways to collect simulation results. First, collecting
simulation results through C++ codes is a quick and easy way. However, the
users may require a fair amount of knowledge on the C++ architecture. Also,
since this method involves the modification of C++ code, it could mess up the
original NS2 source codes. The upside of this approach is that it gives users
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a access to most NS2 components. At runtime, the simulation proceeds very
fast since the modification is carried out using the C++ compiler. Secondly,
collecting simulation results through Tcl codes allows the programmer to col-
lect the results from the OTcl domain in a simple way. In this case, the users
do not need to understand the entire architecture of NS2, but they need to
know how the variables in C++ and OTcl domains are bound together. Since
NS2 is written mostly in C++, some variables are inaccessible from the OTcl
domain. This approach may not be able to collect all required performance
measures. Despite its necessity, this approach does not provide an access to
NS2 internal variables (which might be needed in some case). Proceeding by
the interpreter, this approach can take long runtime compared to the first
approach. Finally, collecting simulation results through a trace file consists of
two steps: 1) running simulation to create a trace file and 2) processing the
created trace file. Despite its prevalance in the on-line tutuorial, this method
is not recommended since it takes too much simulation resource and might
not give the users required information. In fact, the recommended method is
the first one (using C++).
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Developing New Modules for NS2

So far, we have explained the details of the basic components of NS2 includ-
ing their functionalities, internal mechanisms, and configuration methods. In
this final chapter, we demonstrate how new NS2 modules are created, config-
ured, and incorporated through two following examples. One is an Automatic
Repeat reQuest (ARQ) protocol, which is a mechanism to improve transmis-
sion reliability of a communication link by means of packet retransmission.
Another is a packet scheduler which arranges the transmission sequence of
packets from multiple incoming data flows.

14.1 Automatic Repeat reQuest (ARQ)

Automatic Repeat reQuest (ARQ) is a method of handling communication
errors by packet retransmission. An ARQ transmitter (i.e., a transmitting
node which implements an ARQ protocol) is responsible for transmitting data
packets and retransmitting the lost packets. An ARQ receiver (i.e., a receiving
node which implements an ARQ protocol), on the other hand, is responsible
for receiving packets and (implicitly or explicitly) informing the transmitter
of the transmission result. It returns an ACK (acknowledgement) message or
a NACK (negative acknowledgement) message to the transmitter if a packet
is successfully or unsuccessfully (respectively) received. Based on the received
ACK/NACK pattern, the ARQ transmitter decides whether to retransmit the
lost packet or to transmit a new packet.

This section focuses on a limited-persistence stop-and-wait ARQ proto-
col. This type of ARQ protocols is characterized by two following properties.
With limited-persistence, an ARQ transmitter gives up the retransmission if
the transmission fails consecutively for a certain number of times. Another
property is “stop-and-wait”. Here, an ARQ transmitter transmits a packets
and waits for an acknowledgement from the corresponding ARQ receiver be-
fore commencing another (lost or new) packet transmission.

T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2,

DOI: 10.1007/978-0-387-71760-9 14, c© Springer Science+Business Media, LLC 2009
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In the following, we first design NS2 modules for a limited-persistence
stop-and-wait ARQ protocol with an error-free and delay-free (i.e., immedi-
ate) feedback channel in Section 14.1.1. Sections 14.1.2 and 14.1.3 demon-
strate C++ and OTcl implementations, respectively. Finally, Section 14.1.4,
we extend the ARQ model for an error-free feedback channel with non-zero
processing and propagation delay. Implementation of an ARQ protocol with
an error prone feedback channel is left as an exercise for the readers.

14.1.1 The Design

Figure 14.1 shows an architecture of a link with an ARQ protocol. Here, the
feedback channel is assumed to be error-free and the feedbacks are assumed
to be immediate. The link is constructed by inserting an error module and
an ARQ module into a SimpleLink object. From Fig. 7.1, a SimpleLink ob-
ject consists of four main instvars: queue_ which models the packet buffering,
link_ which models the service time of the queue and the link propaga-
tion delay, ttl_ which models time-to-live of a packet, and drophead_ which
acts as a common dropping point for a SimpleLink object. An error model
link_errmodule_ is inserted into a SimpleLink object by an OTcl command
link-lossmodel{...} of class Simulator.

Based on this basic SimpleLink object with an error model, we incorporate
the three following ARQ components (i.e., instvars) to implement an ARQ
module. The first component is an ARQ transmitter (instvar tARQ_), which
transmits, retransmits, and drops the packet based on the underlying ARQ
protocol. The second and third components (instvars acker_ and nacker_)
are responsible for transmitting ACK and NACK messages, respectively, to
the ARQ transmitter tARQ_.

NS2 employs a queue blocking and callback mechanism to model packet
forwarding in a SimpleLink object. The process starts when a Queue object
queue_ receives and forwards a packet as well as its queue handler (whose
class is QueueHandler) to its downstream object, and blocks itself. Here, the
Queue object stops transmitting packets until the head-of-the-line packet is
completely transmitted (when it is unblocked by the downstream object).

Fig. 14.1. Architecture of a SimpleLink object with an ARQ module.
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In the absence of instvar link_errmodule_ and the ARQ-related instvars,
instvar link_ (of class LinkDelay) is responsible for unblocking the Queue

object. It does so by placing the input queue handler on the simulation time
line at the time where the packet is completely transmitted (i.e., has left the
Queue object). At the firing time, the queue handler is dispatched, and the
Queue object is unblocked. At this moment, the Queue object is allowed to
transmit another packet.

Instvar link_errmodule_ is of C++ class ErrorModel (see Section 12.3)
and is responsible for simulating packet errors. A packet will be forwarded to
the variables drop_ and target_, respectively, depending on whether it is in
error or not.

We now incorporate the instvars tARQ_, acker_, and nacker_ into the
packet forwarding mechanism as follows:

• ACK/NACK message passing: The key components of the ACK/NACK
message passing mechanism are instvars acker_ and nacker_, which are
responsible for creating and forwarding ACK and NACK messages (re-
spectively) to an ARQ transmitter. From Fig. 14.1, these two compo-
nents are attached to variables target_ and drop_, respectively, of inst-
var link_errmodule_. A packet will be forwarded to the instvars acker_
and nacker_, respectively, depending on whether the packet is in error
or not in error, respectively. Instvar acker_ informs the ARQ transmitter
of a transmission success, and forwards the received packet to the instvar
link_, while nacker_ drops the corrupted packet, and informs the ARQ
transmitter of transmission failure.

• A callback mechanism: In case of a SimpleLink object, instprocs link_

and link_errmodule_ are responsible for the callback mechanism. When
inserting ARQ components, the callback mechanism is modified as follows.
Instvars link_ and link_errmodule_ call back to an ARQ transmitter
(i.e., tARQ_) which in turns calls back to a Queue object (i.e., queue_).
Upon receiving a packet and a queue handler from the Queue object, the
ARQ transmitter stores the queue handler in its member variable, and
transmits the received packet as well as its handler to the downstream
object. Depending on whether the packet is in error or not in error, the
link_errmodule_ and link_ (respectively) will place a callback event on
the simulation timeline. At the same time, nacker_ and acker_will inform
the ARQ transmitter of the transmission result. At the firing time (when
the packet is completely transmitted), the ARQ transmitter determines
whether the packet was successfully transmitted or not. Then, it decides
whether to retransmit the lost packet or to fetch another packet from the
upstream Queue object based on the received ACK/NACK messages.

14.1.2 C++ Implementation

In Fig. 14.1, the ARQ-related instvars include an ARQ transmitter tARQ_,
an ACK message transmitter acker_, and a NACK message transmitter
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nacker_. These instvars are implemented in the C++ classes ARQTx, ARQAcker,
and ARQNacker, respectively, which are bound to OTcl classes with the
same name. Implementations of these three classes are shown in Programs
14.1–14.4.

Program 14.1 Declaration of classes ARQTx and ARQHandler

//arq.h

1 class ARQTx;

2 enum ARQStatus {IDLE,SENT,ACKED,RTX,DROPPED};

3 class ARQHandler : public Handler {

4 public:

5 ARQHandler(ARQTx& arq) : arq_tx_(arq) {};

6 void handle(Event*);

7 private:

8 ARQTx& arq_tx_;

9 };

10 class ARQTx : public Connector {

11 public:

12 ARQTx();

13 void recv(Packet*, Handler*);

14 void nack(Packet*);

15 void ack();

16 void resume();

17 protected:

18 ARQHandler arqh_;

19 Handler* qh_;

20 Packet* pkt_;

21 ARQStatus status_;

22 int blocked_;

23 int retry_limit_;

24 int num_rtxs_;

25 };

Class ARQTx

Class ARQTx derives from class Connector, and can be used to connect two
NsObjects.1 The main C++ variables of class ARQTx are shown below:

num_rtxs_ Current number of packet retransmission; It is increased
by one for every transmission failure, and is reset to zero
when a new packet arrives (e.g., due to a packet drop or a
transmission success).

1 In Fig. 14.1, we use an ARQTx object tARQ to connect a Queue object queue with
an ErrorModule object link errmodule .
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Program 14.2 Functions of classes ARQTx and ARQHandler

//arq.cc

26 void ARQHandler::handle(Event*){arq_tx_.resume();}

27 ARQTx::ARQTx() : arqh_(*this)

28 {

29 num_rtxs_ = 0; retry_limit_ = 0;

30 qh_ = 0;pkt_ = 0;

31 status_ = IDLE; blocked_ = 0;

32 bind("retry_limit_", &retry_limit_);

33 }

34 void ARQTx::recv(Packet* p, Handler* h)

35 {

36 qh_ = h; status_ = SENT;

37 blocked_ = 1;

38 send(p,&arqh_);

39 }

40 void ARQTx::ack()

41 {

42 num_rtxs_ = 0; status_ = ACKED;

43 }

44 void ARQTx::nack(Packet* p)

45 {

46 num_rtxs_++;

47 if( num_rtxs_ <= retry_limit_) {

48 pkt_ = p; status_ = RTX;

49 } else {

50 pkt_ = p; status_ = DROPPED;

51 }

52 }

53 void ARQTx::resume()

54 {

55 blocked_ = 0;

56 if ( status_ == ACKED ) {

57 status_ = IDLE; qh_->handle(0);

58 } else if ( status_ == RTX ) {

59 status_ = SENT; blocked_ = 1;

60 send(pkt_,&arqh_);

61 } else if ( status_ == DROPPED ) {

62 status_ = IDLE;

63 drop(pkt_); qh_->handle(0);

64 }

65 }
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retry_limit_ The retry limit; The ARQ protocol will retransmit the lost
packet as long as num_rtxs_<=retry_limit_.

blocked_ Indicates whether the ARQTx object is blocked (see the call-
back mechanism in Section 7.3.3).

arqh_ A handler which is passed to the downstream object
qh_ A handler of an upstream Queue object

status_ Current status of the ARQTx object defined in Line 2 of
Program 14.1

pkt_ A pointer to the packet which is being transmitted.
Class ARQTx defines four following functions: recv(p,h), ack(), nack(p),

and resume(). Function recv(p,h) is a main packet reception function. Since
the upstream object of an ARQTx object is of class Queue, the input handler
*h is of class QueueHandler. Function recv(p,h) stores the input handler in
its variable qh_, forwards the input packet as well as its handler arqh_ (of
class ARQHandler) to the downstream object, and sets the variable status to
SENT.

Functions ack() and nack(p) are ACK and NACK message reception
functions, respectively, whose flowcharts are shown in Fig. 14.2. Function
ack() resets num_rtxs_ to zero and sets status_ to ACKED. Function nack(p)

stores the input packet in variable pkt_, and increases the value of vari-
able num_rtxs_ by 1. If num_rtxs_ is greater than retry_limit_, it will
set status_ to DROPPED and reset num_rtxs_ to zero. Otherwise, it will set
status_ to RTX.

Function resume() is invoked when the ARQHandler object arqh_ is dis-
patched (see Line 26 in Program 14.2). It takes actions based on the value
stored in the variable status_ (see the flow chart in Fig. 14.3). In particular,

Fig. 14.2. Flowchart of functions (a) ack() and (b) nack(p) of class ARQTx.
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Fig. 14.3. Flowchart of function resume() of class ARQTx.

if status_ is ACKED, function resume() will set status_ to be IDLE and fetch
another packet from the upstream Queue object by invoking qh_->handle(0)

(Line 57 in Program 14.2). If status_ is DROPPED, it will drop the packet
stored in pkt_, set status_ to be IDLE and fetch another packet from the
upstream Queue object by invoking qh_->handle(0) (Lines 62–63 in Pro-
gram 14.2). Finally, if status_ is RTX, function resume() will block the ARQ
transmitter and forward packet *pkt_ as well as its handler *arqh_ to the
downstream object (Lines 59–60 in Program 14.2).

Classes ARQRx, ARQAcker, and ARQNacker

Another part of ARQ implementation is an ARQ receiver, which is responsi-
ble for reacting to packet transmission from the ARQ transmitter. Here, ARQ
receivers are represented by a C++ class ARQRx, which contains a pointer
arq_tx_ (see Line 72 in Fig. 14.3) to an ARQ transmitter (i.e., an ARQTx

object). This pointer is initialized to zero at the object construction, and is
associated with an ARQ transmitter by OTcl command attach-ARQTx (Lines
104–107 in Program 14.4). Class ARQRx declares function recv(p,h) as pure
virtual (see Line 70 in Program 14.3) to force its derived classes to implement
this function.

There are two classes derived from class ARQRx: classes ARQAcker and
ARQNacker. These two classes are responsible for sending ACK and NACK
messages, respectively, to the associated ARQ transmitter. Upon receiving a
packet, class ARQAcker (see Lines 110–114 in Program 14.4) informs the as-
sociated ARQ transmitter of successful packet delivery by invoking function
ack() associated with the pointer arq_tx_ (see the detail of function ack()
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Program 14.3 Declaration of classes ARQRx, ARQAcker, and ARQNacker, and
their OTcl classes

//arq.h

66 class ARQRx : public Connector {

67 public:

68 ARQRx();

69 int command(int argc, const char*const* argv);

70 virtual void recv(Packet*, Handler*)=0;

71 protected:

72 ARQTx* arq_tx_;

73 };

74 class ARQAcker : public ARQRx {

75 public:

76 ARQAcker() {};

77 virtual void recv(Packet*, Handler*);

78 };

79 class ARQNacker : public ARQRx {

80 public:

81 ARQNacker() {};

82 virtual void recv(Packet*, Handler*);

83 };

//arq.cc

84 static class ARQAckerClass: public TclClass {

85 public:

86 ARQAckerClass() : TclClass("ARQAcker") {}

87 TclObject* create(int, const char*const*) {

88 return (new ARQAcker);

89 }

90 } class_arq_acker;

91

92 static class ARQNackerClass: public TclClass {

93 public:

94 ARQNackerClass() : TclClass("ARQNacker") {}

95 TclObject* create(int, const char*const*) {

96 return (new ARQNacker);

97 }

98 } class_arq_nacker;
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Program 14.4 Functions of classes ARQRx, ARQAcker, and ARQNacker

//arq.cc

99 ARQRx::ARQRx() { arq_tx_ = 0; }

100 int ARQRx::command(int argc, const char*const* argv)

101 {

102 Tcl& tcl = Tcl::instance();

103 if (argc == 3) {

104 if (strcmp(argv[1], "attach-ARQTx") == 0) {

105 arq_tx_ = (ARQTx*)TclObject::lookup(argv[2]);

106 return(TCL_OK);

107 }

108 } return Connector::command(argc, argv);

109 }

110 void ARQAcker::recv(Packet* p, Handler* h)

111 {

112 arq_tx_->ack();

113 send(p,h);

114 }

115 void ARQNacker::recv(Packet* p, Handler* h)

116 {

117 arq_tx_->nack(p);

118 }

in Lines 40–43 of Program 14.2). Then, it sends out the received packet to its
downstream NsObject. Similarly, class ARQNacker (see Lines 115–118 in Pro-
gram 14.4) informs the associated ARQ transmitter of transmission failure by
invoking function nack(p) associated with the pointer arq_tx_ (see function
nack(p) in Lines 44–52 of Program 14.12).

14.1.3 OTcl Implementation

In the OTcl domain, we need to create ARQTx, ARQAcker, and ARQNack objects–
tARQ_, acker_, and nacker_, respectively, and insert them into a SimpleLink

object as shown in Fig. 14.1. Program 14.5 shows two OTcl instprocs devel-
oped for this purpose.

• SimpleLink::link-arq{limit}: This instproc creates the ARQ-related
instances and configures the SimpleLink object as shown in Fig. 14.1.
Lines 4–6 create instvars tARQ_, acker_, and nacker_. Line 7 stores the
input argument “limit” in variable retry_limit_ of tARQ_. Lines 8 and
9 associate acker_ and nacker_, respectively, with tARQ_. Finally, Lines
10–15 configure the rest of components as shown in Fig. 14.1.

• Simulator::link-arq{limit from to}: This instproc is an interface in-
stproc which creates and configures ARQ modules of the link connecting
Node “from” to Node “to”. The input argument limit here is used as the
retry limit of the ARQ module.
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Program 14.5 OTcl Instprocs for an ARQ Module

//~ns/tcl/lib/ns-link.tcl

1 SimpleLink instproc link-arq { limit } {

2 $self instvar link_ link_errmodule_ queue_ drophead_

3 $self instvar tARQ_ acker_ nacker_

4 set tARQ_ [new ARQTx]

5 set acker_ [new ARQAcker]

6 set nacker_ [new ARQNacker]

7 $tARQ_ set retry_limit_ $limit

8 $acker_ attach-ARQTx $tARQ_

9 $nacker_ attach-ARQTx $tARQ_

10 $queue_ target $tARQ_

11 $tARQ_ target $link_errmodule_

12 $link_errmodule_ target $acker_

13 $acker_ target $link_

14 $tARQ_ drop-target $drophead_

15 $link_errmodule_ drop-target $nacker_

16 }

//~ns/tcl/lib/ns-lib.tcl

17 Simulator instproc link-arq {limit from to} {

18 set link [$self link $from $to]

19 $link link-arq $limit

20 }

Example 14.1. We now setup an experiment to show the impact of retry limit
of a limited-persistence stop-and-wait ARQ protocol on TCP throughput. Our
experiment is based on Example 10.1. We insert an error module with 0.3
error probability in the link connecting Node n1 to Node n3, and implement a
limited-persistence ARQ over this lossy link, and plot TCP throughput versus
the retry limit.

Tcl Simulation Script

We insert the following codes in the Tcl simulation script file “tcp.tcl” in
Example 10.1:

//tcp.tcl

1 set em [new ErrorModel]

2 $em set rate_ 0.3

3 $em unit pkt

4 $em ranvar [new RandomVariable/Uniform]

5 $em drop-target [new Agent/Null]

6 $ns link-lossmodel $em $n1 $n3

7 $ns link-arq 3 $n1 $n3
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8 proc show_tcp_seqno {} {

9 global tcp

10 puts "The final tcp sequence number is

[$tcp set t_seqno_]"

11 }

12 $ns at 0.0 "$ftp start"

13 $ns at 100.0 "show_tcp_seqno"

14 $ns at 100.1 "$ns halt"

15 $ns run

Here, Lines 1–6 create an error module with packet error probability 0.3,
and insert the created error module immediately after instvar queue_ of the
link connecting Node n1 and Node n3. Line 7 creates and configures ARQ-
related components with retry limit of 3. We run the simulation for 50.1
seconds and collect the results when the simulation time is 50.0. After running
the script file “tcp.tcl” above, the following result appear on the screen:

>> ns tcp.tcl

>> The final tcp sequence number is 37587

TCP throughput in packets per second is computed as the final TCP
sequence number divided by the simulation time. We vary the retry limit (in
Line 7 above) to {0, 1, 2, 3}, and plot TCP throughput in Fig. 14.4. Clearly,
increasing retry limit increases link reliability, and therefore, increases TCP
throughput.
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Fig. 14.4. Impact of retry limit of a limited persistent ARQ protocol on TCP
throughput.
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14.1.4 ARQ Under a Delayed (Error-Free) Feedback Channel

We have developed an NS2 module for an ARQ protocol with an immedi-
ate and error-free feedback. In practice, a feedback channel would be non-
immediate and/or error prone. This section extends the modules developed
earlier for a non-immediate error-free feedback channel. The extension for a
non-immediate and error-prone feedback channel is left for the reader as an
exercise (Exercise 14.4).

Program 14.6 shows the details of class ARQRx modified to support a de-
layed feedback channel. The idea is to defer the generation of ACK/NACK
message for delay_ seconds, where the variable delay_ is bound to an inst-

Program 14.6 Modification of class ARQRx for a limited-persistence ARQ
protocol with a delayed feedback channel.

//arq.h

1 class ARQRx : public Connector {

2 public:

3 virtual void recv(Packet*, Handler*);

4 virtual void handle(Event*);

5 virtual void resume()=0;

6 protected:

7 ARQTx* arq_tx_;

8 Packet *pkt_;

9 Handler *handler_;

10 double delay_;

11 Event event_;

12 };

//arq.cc

13 ARQRx::ARQRx()

14 {

15 arq_tx_ = 0; pkt_ = 0; handler_ = 0;

16 bind("delay_", &delay_);

17 }

18 void ARQRx::handle(Event *e) {resume();}

19 void ARQRx::recv(Packet* p, Handler* h)

20 {

21 pkt_ = p; handler_ = h;

22 Scheduler::instance().schedule(this, &event_, delay_);

23 }

24 void ARQAcker::resume()

25 {

26 arq_tx_->ack();

27 send(pkt_,handler_);

28 }

29 void ARQNacker::resume() {arq_tx_->nack(pkt_);}
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var with the same name in the OTcl domain (see Line 16). Defined in Lines
19–23, function recv(p,h) invokes function schedule(this,&event_,delay_)

of class Scheduler to defer the generation of ACK/NACK message. At the
firing time, the Scheduler dispatches the scheduled event by invoking function
handle(e) of the ARQRx object. In Line 18, function handle(...) invokes
the pure virtual function resume() to resume the pending actions. Defined in
classes ARQAcker (Lines 24–28) and ARQNacker (Line 29), function resume()

simply sends either an ACK message or a NACK message, respectively, to the
attached ARQTx object. Note that class ARQRx also defines a variable event_

of class Event which is used as an ACK/NACK reception dummy event (see
also Section 4.3.6).

In the OTcl domain, we only need to include the two following lines into
instproc link-arq{limit} of class SimpleLink (e.g., after Line 6 in Program
14.5):

$acker_ set delay_ [$self delay]

$nacker_ set delay_ [$self delay]

Here, the link delay in the forward direction (returned from $self delay)
is used as the ARQ feedback delay for both ACK and NACK generators (i.e.,
acker_ and nacker_, respectively).

Example 14.2. Compare the TCP throughputs for the cases with an immedi-
ate feedback channel and a delayed feedback channel in the link layer ARQ
protocols. Here, we use the results in Example 14.1 as a benchmark. When
rerunning the Tcl simulation script in Example 14.1 under the ARQ protocol
with a delayed feedback channel, the following result should appear on the
screen:

>> ns tcp.tcl

>> The final tcp sequence number is 20596

which is less than 37587 in Example 14.1. The readers are encourage to ex-
periment with different input parameters (e.g., feedback delay or retry limit)
to gain more insights into the impact of link layer ARQ protocols on TCP
performance.

Exercise 14.3. Why class TimerHandler was not used to implement the de-
layed feedback channel?

Exercise 14.4. Based on Examples 14.1 and 14.2, modify the ARQ protocol
as follows.

(i) Remove the variable nacker_, and use a timer-based retransmission mech-
anism: A packet is assumed to be lost unless an ACK message is received
within a timeout period.

(ii) Develop the codes for an ARQ protocol with an error prone delayed feed-
back channel.
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14.2 Packet Scheduling for Multi-Flow Data
Transmission

Packet scheduling is a mechanism to arrange transmission sequence of in-
coming packets in a node. For example, a round-robin (RR) packet scheduler
transmits packets from different flows in sequence. This section shows the
implementation of a round-robin packet scheduler in NS2.

14.2.1 The Design

Figure 14.5 shows the architecture of a packet scheduler in NS2. Here, the
packet scheduler is implemented in an OTcl class LinkSch, which is modified
from class SimpleLink.

Fig. 14.5. Architecture of a LinkSch object.

Key Differences between Class LinkSch and Class SimpleLink

Class LinkSch defines two addition components–a flow classifier flow_clsfr_
and a packet scheduler sch_, and modifies one component of class SimpleLink–
it is instvar queue_.

• Flow classifier flow_clsfr_ examines packet header and forwards packets
with the same flow ID to the same forwarding NsObject.2

• Packet scheduler sch_ takes a packet from one of the attached upstream
data flows and forwards the packet to its downstream object. It complies
with an underlying packet scheduling protocol to take a packet from a
certain flow.

2 Flow classifiers are implemented in a C++ class FidHashClassifier. However, we
do not use the built-in C++ class, since we would like to show how to implement
a new C++ class.
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• Modified instvar queue_: Instvar queue_ is scalar in class SimpleLink.
However, it is used as an associative array in class LinkSch. Its index and
value are, respectively, the flow ID and the Queue object which stores pack-
ets of the corresponding flow ID. Since each element of queue_ contains
packets with the same flow ID, we use the terms “flow ID” and “queue
ID” interchangeably.

Packet Flow Mechanism

When a packet enters a LinkSch object, it is sorted by a flow classifier,
flow_clsfr_, which forwards packets from the same flow to the same queue.
In particular, the flow classifier forwards packets with flow ID “i” to instvar
“queue_[i]”, as shown in Fig. 14.5. Each element of queue_ forwards packets
to the packet scheduler sch_ according to the underlying mechanism defined
in the C++ domain (e.g., class Queue). Based on an underlying scheduling
mechanism, the packet scheduler sch_ takes a packet from one of these queues
and forwards it to a LinkDelay object, link_.

Callback Mechanism

The packet scheduler breaks a callback connection between a Queue object
queue_ and a LinkDelay object link_ into two connections. One is between
instvar queue_ and instvar sch_ and another is between instvar sch_ and
instvar link_. Instead of calling back to instvar queue_, instvar link_ reports
(i.e., calls back) to the packet scheduler sch_ to indicate that it is ready
to receive another packet. Upon receiving a call back message, the packet
scheduler selects the next transmission flow based on its underlying scheduling
discipline, and fetches another packet from the selected flow (i.e., an element
of queue_).

Every element of queue_ deactivates the queue blocking mechanism, since
they do not need to wait before sending a packet to a packet scheduler. Rather,
such a blocking (i.e., waiting) mechanism is implemented in the packet sched-
uler. Under this call back mechanism, instvar link_ calls back to the packet
scheduler (rather than a Queue object) to indicate the completion of packet
transmission.

14.2.2 C++ Implementation

In the C++ domain, we define two new NS2 components – flow classifiers
and packet schedulers in C++ classes FlowClassifier and PktScheduler, re-
spectively. Class FlowClassifier defines how a flow classifier forwards pack-
ets with the same flow ID to the same NsObject. Class PktScheduler is a
base class from which more specific packet scheduler classes derive. As an ex-
ample, we develop a C++ class RRScheduler which is a derived class of class
PktScheduler to represent round-robin packet schedulers.
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Program 14.7 C++ Implementation of class FlowClassifier

//classifier-flow.h

1 class FlowClassifier : public Classifier {

2 protected:

3 int classify(Packet *p);

4 };

//classifier-flow.cc

5 static class FlowClassifierClass : public TclClass {

6 public:

7 FlowClassifierClass() : TclClass("Classifier/Flow") {}

8 TclObject* create(int, const char*const*) {

9 return (new FlowClassifier());

10 }

11 } class_flow_classifier;

12 int FlowClassifier::classify(Packet *p)

13 {

14 return hdr_ip::access(p)->flowid();

15 }

Here, we bind the C++ class FlowClassifier to an OTcl class
Classifier/Flow, but do not bind the C++ class PktScheduler. However,
we bind a C++ class RRScheduler, a child class of class PktScheduler, to
an OTcl class PktScheduler/RR.

Flow Classifiers

A flow classifier is represented by a C++ class FlowClassifier implementa-
tion of which is shown in Program 14.7. Class FlowClassifier is bound
to an OTcl class Classifier/Flow (see Lines 5–10). Derived from class
Classifier, class FlowClassifier overrides function classify(p) by re-
turning the flow ID specified in the header of packet p* (Line 14).

Packet Schedulers

The main responsibility of a packet scheduler is to determine transmission
sequence of the attached upstream Queue objects. In this section, we assume
that each Queue object holds packets of the same flow ID and the packet
scheduler determines the transmission sequence based on the flow ID only.

Packet schedulers are implemented using a C++ class PktScheduler, dec-
laration and implementation of which are shown in Programs 14.8 and 14.9,
respectively. From Program 14.8, class PktScheduler has one constant and
four key variables:
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Program 14.8 Declaration of a C++ class PktScheduler

//pkt-sched.h

16 #define MAX_FLOWS 10

17 class PktScheduler : public Connector {

18 public:

19 PktScheduler();

20 virtual void handle(Event*);

21 virtual void recv(Packet*, Handler*);

22 protected:

23 void send(int fid, Handler* h);

24 virtual void resume();

25 int getFlowID(Packet* p) {return hdr_ip::access(p)->flowid();};

26 virtual int nextID() = 0;

27 Handler* qh_[MAX_FLOWS];

28 Packet* pkt_[MAX_FLOWS];

29 int blocked_;

30 int active_flow_id_;

31 };

MAX_FLOW The maximum number of queues which can be attached
to the packet scheduler.

blocked_ Set to “1” if the packet scheduler is in the “blocked”
state, and set to “0” otherwise.

active_flow_id_ The flow ID of the packet being transmitted
pkt_[i] The HOL packet of the queue corresponding to flow “i”
qh_[i] The QueueHandler object of the queue corresponding

to flow “i”

Class PktScheduler has two main tasks. One is to determine the trans-
mission sequence for all attached data flow. Another is to insert itself in the
middle of a callback connection between a Queue object and a LinkDelay ob-
ject. While the first task is implemented in function nextID(), the second task
is attributed to functions recv(p,h) and resume(). Taking no input argu-
ment, function nextID() returns the next transmitting flow ID based on the
underlying scheduling discipline. Class PktScheduler declares this function
as pure virtual, and leaves the detailed implementation to its derived classes
(Line 26 in Program 14.8). As an example, we will show how a round-robin
packet scheduler implements this function later in this section.

The details of functions recv(p,h) and resume() are shown in Lines 41–50
and 57–67 of Program 14.9. Function recv(p,h) is the main packet reception
function. Function recv(p,h) first determines the flow ID of packet *p by
invoking function getFlow(p) in Line 43. Line 44 stores the input packet *p
and the input handler *h in variable pkt_[fid] and qh_[fid], respectively,
where fid is the ID of the packet *p. If the PktScheduler object is not
blocked, Line 46 will send the head of the line packet stored in pkt_[fid] to
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Program 14.9 Functions of a C++ class PktScheduler

//pkt-sched.cc

32 PktScheduler::PktScheduler()

33 {

34 int i;

35 for (i=0;ihandle(0);

32 PktScheduler::PktScheduler()

33 {

34 int i;

35 for (i=0;i<MAX_FLOWS;i++){

36 pkt_[i] = 0;

37 qh_[i]=0;

38 }

39 blocked_ = 0;active_flow_id_ = -1;

40 }

41 void PktScheduler::recv(Packet* p, Handler* h)

42 {

43 int fid = getFlowID(p);

44 pkt_[fid] = p;qh_[fid] = h;

45 if (!blocked_) {

46 send(fid,this);

47 blocked_ = 1;

48 active_flow_id_ = fid;

49 }

50 }

51 void PktScheduler::send(int fid_idx, Handler* h)

52 {

53 Connector::send(pkt_[fid_idx],h);

54 pkt_[fid_idx] = 0;

55 }

56 void PktScheduler::handle(Event*) { resume();}

57 void PktScheduler::resume()

58 {

59 qh_[active_flow_id_]->handle(0);

60 int index = nextID();

61 blocked_ = 0;

62 if (index >= 0) {

63 send(index,this);

64 blocked_ = 1;

65 active_flow_id_ = index;

66 }

67 }
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the downstream object, and reset pkt_[fid] to zero (see Lines 51–55). Note
that the PktScheduler object passes its address (i.e., this) rather than the
input handler to the downstream object. Line 47 blocks the PktScheduler

object and Line 48 stores the flow ID of the packet under transmission in
variable active_flow_id_.

Upon receiving a packet *p and a handler *h, a LinkDelay object sched-
ules a packet departure event. Since the received handler belongs to the
above PktScheduler object, at the firing time, function handle(e) of the
PktScheduler object is invoked. In Line 56, function handle(e) simply in-
vokes function resume(), the details of which are shown in Lines 57–67. Line
59 first fetches a packet (for which transmission has just been finished) from
the flow by invoking function handle(e) of queue_[active_flow_id_]. Line
60 determines the next transmitting flow based on the underlying scheduling
discipline. Finally, Lines 61–66 forward the selected packet to the downstream
object (similar to Lines 45–49).

As an example, consider an implementation of round-robin schedulers,
which transmit packets from each flow sequentially. We implement this type
of schedulers using a C++ class RRScheduler which is bound to an OTcl
class Scheduler/RR. The declaration and implementation of the C++ class
RRScheduler are shown in Program 14.10. Class RRScheduler has one vari-
able current_id_ and one function NextID(). The variable current_id_

records the most recently selected flow ID. Based on the round-robin schedul-
ing principle, class RRScheduler overrides function nextID() by returning
the next ID, whose corresponding Queue object contains at least one packet.
If the Queue objects do not contain any packet, this function will return −1
(see Lines 95–108).

14.2.3 OTcl Implementation

In the OTcl domain, we put together the components of a link with a sched-
uler, as shown in Fig. 14.5. Again, the major differences of class LinkSch

and class SimpleLink lie in the instvars flow_clsfr_, queue_, and sch_ of
class LinkSch. Instvar flow_clsfr_ is a flow classifier (whose OTcl class is
Classifier/Flow). It forwards incoming packets with flow ID “i” to the
NsObject stored in the slot number “i”. Instvar queue_ is an array of Queue
objects. Here, queue_[fid] is installed in the slot corresponding to flow ID
“fid”. Finally, instvar sch_ is a round-robin packet scheduler instantiated
from an OTcl class PktScheduler/RR.

Programs 14.11–14.12 show the OTcl implementation of a link with
a scheduler. The implementation involves two OTcl classes: LinkSch and
Simulator. Similar to class SimpleLink, class LinkSch derives from class
Link. In addition to those defined in class SimpleLink, the following instvars
are defined in class LinkSch:
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Program 14.10 C++ implementation of c Class RRScheduler

//pkt-sched.h

68 class RRScheduler : public PktScheduler {

69 public:

70 RRScheduler() ;

71 private:

72 virtual int nextID();

73 int current_id_;

74 };

//pkt-sched.cc

75 RRScheduler::RRScheduler()

76 {

77 current_id_ = -1;

78 }

79 static class RRSchedulerClass: public TclClass {

80 public:

90 RRSchedulerClass() : TclClass("PktScheduler/RR") {}

91 TclObject* create(int, const char*const*) {

92 return (new RRScheduler());

93 }

94 } class_rr_scheduler;

95 int RRScheduler::nextID()

96 {

97 int count = 0;

98 current_id_++;current_id_ %= MAX_FLOWS;

99 while((pkt_[current_id_] == 0)&&(count<MAX_FLOWS)){

100 current_id_++;current_id_ %= MAX_FLOWS;

101 count++;

102 }

103 if (count == MAX_FLOWS)

104 return -1;

105 else{

106 return current_id_;

107 }

108 }

sch_ A round-robin scheduler whose class is Classifier/Flow
flow_clsfr_ A flow classifier
num_queues_ The number of queues which are attached to the packet

scheduler sch_

Class LinkSch also has two main instprocs init{...} (i.e., the construc-
tor) and add-flow{...}. As shown in Lines 1–30 of Program 14.11, instproc,
init{src dst bw delay num_queues} creates a LinkSch object connecting
a Node src and a Node dst. The bandwidth and delay of the LinkSch object
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Program 14.11 OTcl implementation of a link with a round-robin schedul-
ing.

//~ns/tcl/lib/ns-link.tcl

1 Class LinkSch -superclass Link

2 LinkSch instproc init {src dst bw delay num_queues} {

3 $self next $src $dst

4 $self instvar link_ queue_ head_ toNode_ ttl_

5 $self instvar drophead_

6 $self instvar num_queues_ sch_ flow_clsfr_

7 set ns [Simulator instance]

8 set head_ [new Connector]

9 set drophead_ [new Connector]

10 set link_ [new DelayLink]

11 set ttl_ [new TTLChecker]

12 set flow_clsfr_ [new Classifier/Flow]

13 set sch_ [new PktScheduler/RR]

14 set num_queues_ $num_queues

15 $head_ set link_ $self

16 $drophead_ target [$ns set nullAgent_]

17 $head_ target $flow_clsfr_

18 for {set i 0} {$i < $num_queues_} {incr i} {

19 set queue_($i) [new Queue/DropTail]

20 $queue_($i) target $sch_

21 $queue_($i) drop-target $drophead_

22 }

23 $sch_ target $link_

24 $link_ target $ttl_

25 $link_ drop-target $drophead_

26 $link_ set bandwidth_ $bw

27 $link_ set delay_ $delay

28 $ttl_ target [$dst entry]

29 $ttl_ drop-target $drophead_

30 }

are bw bps and delay seconds, respectively. In regards to packet scheduling,
Lines 12 and 13 create a flow classifier and a round-robin packet scheduler,
respectively. Lines 18–22 create “num_queues” Queue objects, and configure
each of the created Queue objects to point to the packet scheduler sch_ and
the common dropping point drophead_. The connection from a flow classifier
flow_clsfr_ to the created Queue object is not created here. Rather, it is
created by using instproc add-flow{fid}, which simply installs queue_[fid]
in the slot number fid of the flow classifier flow_clsfr_ (see Lines 43–48 in
Program 14.12).

To facilitate the construction and configuration of LinkSch objects, we
also develop two interface instprocs in class Simulator. The first instproc,
sch-link{...} is an interface to create a LinkSch object (see Lines 35–42 in
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Program 14.12 OTcl implementation of a link with a round-robin scheduling
(Cont.).

31 LinkSch instproc add-flow { fid } {

32 $self instvar queue_ flow_clsfr_

33 $flow_clsfr_ install $fid $queue_($fid)

34 }

35 Simulator instproc sch-link { n1 n2 bw delay num_queues} {

36 $self instvar link_ queueMap_ nullAgent_ useasim_

37 set sid [$n1 id]

38 set did [$n2 id]

39 set link_($sid:$did) [new LinkSch

$n1 $n2 $bw $delay $num_queues]

40 set pushback 0

41 $n1 add-neighbor $n2 $pushback

42 }

43 Simulator instproc add-flow { n1 n2 prio } {

44 $self instvar link_

45 set sid [$n1 id]

46 set did [$n2 id]

47 $link_($sid:$did) add-flow $fid

48 }

Program 14.12). The second instproc, add-flow{fid} is an interface to create
a connection from a flow classifier to the queues in the LinkSch object (see
Lines 43–48 in Program 14.12).

Example 14.5. Consider Example 10.1 and Fig. 9.3. Replace the TCP flow
with “num_queues” TCP flows whose flow ID are 0, 1, 2, and so on. Apply a
round robin packet scheduling discipline to the link connecting the Node n1

and the Node n3.

Tcl Simulation Script

//rr.tcl

1 set num_queues [lindex $argv 0]

2 set ns [new Simulator]

3 set n1 [$ns node]

4 set n2 [$ns node]

5 set n3 [$ns node]

6 $ns duplex-link $n1 $n2 5Mb 2ms DropTail

7 $ns duplex-link $n2 $n3 5Mb 2ms DropTail

8 $ns sch-link $n1 $n3 5Mb 2ms 10

9 $ns simplex-link $n3 $n1 5Mb 2ms DropTail

10 for {set i 0} {$i < $num_queues} {incr i} {

11 $ns add-flow $n1 $n3 $i

12 set tcp($i) [new Agent/TCP]
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13 set sink($i) [new Agent/TCPSink]

14 set ftp($i) [new Application/FTP]

15 $tcp($i) set fid_ $i

16 $ns attach-agent $n1 $tcp($i)

17 $ns attach-agent $n3 $sink($i)

18 $ftp($i) attach-agent $tcp($i)

19 $ns connect $tcp($i) $sink($i)

20 $ns at 0.0 "$ftp($i) start"

21 }

22 proc show_tcp_seqno {} {

23 global tcp num_queues

24 for {set i 0} {$i < $num_queues} {incr i} {

25 puts "The final tcp($i) sequence number is

26 [$tcp($i) set t_seqno_]"

27 }

28 }

29 $ns at 100.0 "show_tcp_seqno"

30 $ns at 100.1 "$ns halt"

31 $ns run

The above Tcl simulation script “rr.tcl” for this example takes the num-
ber of TCP flows as an input argument, and simulates the transmission of
these TCP flows under a round-robin packet scheduler, and shows the final
sequence number of every TCP flow.

Line 1 takes an input argument from the shell and stores it in variable
num_queues. Lines 8–9 replace a bi-directional link between Node 1 and Node
3 with a uni-directional LinkSch object from Node 1 to Node 3 and a uni-
directional SimpleLink object from Node 3 to Node 1. The “for” loop in
Lines 10–21 creates and configures TCP flows. Each packet created by the
“ith” element of variable tcp is assigned with flow ID “i” (by Line 15). In
p Line 10, packets with flow ID “i” will be forwarded to queue_[i] of the
LinkSch object created in Line 8.

By running the simulation for 1 TCP flow and 3 TCP flows, the following
results are shown on the screen.

>> ns rr.tcl 1

The final tcp(0) sequence number is 60110

>> ns rr.tcl 3

The final tcp(0) sequence number is 20052

The final tcp(1) sequence number is 20051

The final tcp(2) sequence number is 20051

The TCP throughput is computed by the final sequence number divided
by the simulation time. Since the simulation time here is 100 seconds (see



386 14 Developing New Modules for NS2

Line 28), the throughput of TCP flow “0” is 610.1 packets/sec and 200.52
packets/sec when the number of TCP flows is 1 and 3, respectively.

With a round-robin scheduler, each element of the array queue_ has equal
chance to transmit packets. In principle, each TCP flow should have the same
throughput performance (as shown above). Also, the throughput in case of n
TCP flows should be approximately n times less than that in case of single
TCP flow. From the above result, the per-flow TCP throughput in case of
3 TCP flows is almost the same as each other, and is approximately one
third of TCP throughput in case of single TCP flow (i.e., (60110/100)/3 =
601.10/3 = 200.37).

Next, we run the above Tcl simulation script for 1 to 10 TCP flows. We
compare the average TCP throughput and the fair share TCP throughput in
Fig. 14.6. Here, we define the fair share TCP throughput for n TCP flows as
γ/n, where γ is the TCP throughput in case of single TCP flow. We observe
that both average and fair share throughput are almost inline with each other.
We also observe that TCP throughput for each flow is very similar to each
other. These two observations validate the round-robin operation, which treats
every TCP flow equally.

Exercise 14.6. A Weighted Fair Queue (WFQ) packet scheduler gives fair
access to every data flow. Under a WFQ packet scheduler, each data flow
gains channel access in proportion to its weight. The algorithm for WFQ-
based packet scheduling can be found in [25]. Develop a module for a WFQ
packet scheduler. Validate the module by plotting the results in a graph.
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Fig. 14.6. Impact of number of TCP flows on per-flow throughput under round-
robin packet scheduling.
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14.3 Chapter Summary

This final chapter has demonstrated how new modules are created, config-
ured, and incorporated into NS2. Two examples provided here include: an
Automatic Repeat reQuest (ARQ)-based error recovery module and a packet
scheduling module. In most of the cases, we need to develop NS2 codes in both
C++ and OTcl domains. In the C++ domain, the main task is to define the
internal mechanisms of the new NS2 components. The main task in the OTcl
domain, on the other hand, are to integrate the developed NS2 components
into the existing NS2 modules, and to instantiate and configure the newly
developed modules from a Tcl simulation script.
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Programming Essentials

This appendix covers the basic elements of the programming languages, which
are essential for developing NS2 simulation programs. These include Tcl/OTcl
which is the basic building block of NS2 and AWK which can be used for post
simulation analysis.

A.1 Tcl Programming

Tcl is a general purpose scripting language. While it can do anything other
languages could possibly do, its integration with other languages has proven
even more powerful. Tcl runs on most of the platforms such as Unix, Windows,
and Mac. The strength of Tcl is its simplicity. It is not necessary to declare a
data type for variable prior to the usage. At runtime, Tcl interprets the codes
line by line and converts the string into appropriate data type (e.g., integer)
on the fly.

A.1.1 Program Invocation

Tcl can be invoked from a shell command prompt with the following syntax:

tclsh [<filename> <arg0> <arg1> ...]

where tclsh is mandatory. Other input arguments are optional. When the
above command is invoked without input argument, the shell enters Tcl en-
vironment where it waits for the Tcl statements line by line. If <filename>
is specified, Tcl will interpret the text specified in the file whose name is
<filename> line by line. In addition, if <arg0> <arg1> ... are specified,
they will be placed in a list variable (see Section A.1.3) argv. In the main
program, <argi> can be retrieved by executing “lindex $argv $i”.
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A.1.2 A Simple Example

To get a feeling about the language, we look at Example A.1 below:

Example A.1. The following Tcl script, “convert.tcl”, converts tempera-
tures from Fahrenheit to Celsius. The conversion starts at 0 degree (Fahren-
heit), proceeds with a step of 25 degrees (Fahrenheit), and stops when the
temperature exceeds 140 degrees (Fahrenheit). The program prints out the
converted temperature in Celsius as long as the temperature in Fahrenheit
does not exceed 140 degrees.

# convert.tcl

# Fahrenheit to Celsius Conversion

1 proc tempconv {} {

2 set lower 0

3 set upper 140

4 set step 25

5 set fahr $lower

6 while {fahr < $upper} {

7 set celsius [expr 5*($fahr - 32)/9]

8 puts "Fahrenheit / Celsius : $fahr / $celsius"

9 set fahr [expr $fahr + $step]

10 }

11 }

The details of the above example are as follows. The symbol # here denotes
the beginning of a line comment. The reserved word proc in Line 1 declares
a procedure tempconv{} which takes no input argument. The procedure also
defines four local variables (i.e., lower, upper, step, and fahr) and assigns
values to them using the reserved word set followed by the name and its as-
signed value (Lines 2–5). Note here that, to refer to the value of a variable, the
reserved character $ is used in front of the variable (e.g., set fahr $lower).
The keyword expr in Line 9 informs the Tcl interpreter to interpret the fol-
lowing string as a mathematical expression. The while loop in Lines 6–10
controls the iteration of the procedure through the test expression enclosed in
a double quotation mark. The command puts in Line 8 prints out the string
contained within the quotation mark. If the name of the script is convert.tcl,
the script can be executed by typing the following on a shell prompt:

>>tclsh convert.tcl

Fahrenheit / Celsius : 0 / -17.778

Fahrenheit / Celsius : 25 / -3.889

Fahrenheit / Celsius : 50 / 10

Fahrenheit / Celsius : 75 / 23.889

Fahrenheit / Celsius : 100 / 37.778

Fahrenheit / Celsius : 125 / 51.667
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Alternatively, since NS2 is written in Tcl, the following invocation would
lead to the same result.

>>ns convert.tcl

A.1.3 Variables and Data Types

Data Types

As an interpreter, Tcl does not need to define data type of variables. Instead,
it stores everything in string and interprets them based on the context.

Example A.2. Consider the following Tcl codes:

# vars.tcl

1 set a "10+1"

2 set b "5"

3 set c $a$b

4 set d [expr $a$b]

5 puts $c

6 puts $d

7 unset c

8 puts $c

After executing the Tcl script “vars.tcl”, the following result should
appear on the screen:

>>tclsh vars.tcl

10+15

25

Here, variable c is simply a string “10+15”, whereas variable d is 25 ob-
tained by numerically evaluating the string “10+15” stored in variable c.
Therefore, we may conclude that everything is treated as a string unless spec-
ified otherwise [26].

Variable Assignment and Retrieval

Tcl stores a value in a variable using the reserved word “set”. The value
stored in a variable can be retrieved by placing a character “$” in front of a
variable name. In addition, a reserved word “unset” is used to clear the value
stored in a variable.

Example A.3. Insert the following two lines into the end of the codes in
Example A.2.

7 unset c

8 puts $c
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After executing the Tcl script “vars.tcl”, the following result should appear
on the screen:

>>tclsh vars.tcl

10+15

25

can’t read "c": no such variable

while executing

"puts c"

(file "var.tcl" line 8)

Clearly after being unset, variable c stores nothing. Printing the variable
would result in a runtime error.

Bracketing

There are four type of bracketing in Tcl. These are used to group a series
of strings. Tcl interprets strings inside different types of bracket differently.
Suppose a variable $var stores a value 10. Tcl interprets a statement “expr
$var + 1” with four different bracketing differently.

• Curly braces ({expr $var + 1}): Tcl interprets this statement as it is.
• Quotation marks ("expr $var + 1"): Tcl interpolates the variable var in

the string. This statement would be interpreted as “expr 10 + 1”.
• Square brackets ([expr $var + 1]): Tcl regards a square bracket in the

same way that C++ regards a parenthesis. It interprets the string in a
square bracket before interpreting the entire line. This statement would
be interpreted as “11”.

• Parentheses ((expr $var + 1)): Tcl uses a parentheses for indexing an
array and for invoking built-in mathematical function.

Example A.4. Insert the following two lines into the end of the codes in
Example A.2.

7 puts -nonewline {{}: }

8 puts {expr $c}

9 puts -nonewline {"": }

10 puts "expr $c"

11 puts -nonewline {[]: }

12 puts [expr $c]

After executing the Tcl script “vars.tcl”, the following result should appear
on the screen:

>>tclsh vars.tcl

10+15

25
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{}: expr $c

"": expr 10+15

[]: 25

When bracketing with “{}”, Tcl interprets the string as it is; The result in this
case is “expr $c”. The string $c is replaced with its value when bracketing
with “""”. The result in this case is “expr 10+15”. Finally, “[]” identifies
the sequence of execution. The string “expr $c” is executed first. The result
in this case is “25”.

Global Variables

In Example A.1, we briefly mentioned about local variables. But what was
missing there is the notion of global variables. Global variables are common
and used extensively throughout a program. These variables can be called
upon by any procedure in the program. Example A.5 shows an example use
of global variables.

Example A.5 (Global variables).

set PI 3.1415926536

proc perimeter {radius} {

global PI

expr 2*$PI*$radius

}

Since “PI” is defined outside of the procedure perimeter, the keyword
global is used here to make “PI” global and available within the procedure.
When called upon, this procedure simply calculates the perimeter of a circle
based on the supplied input radius. Finally, we note here that no default
values are automatically assigned to variables. Any attempt to call an unini-
tialized variable would lead to a runtime error.

Array

An array is a special variable which can be used to store a collection of items.
An array stores both the indexes and the values as strings. For example,
index “0” is not a number, but a numeric string. By default, an array in
Tcl is an associative array. Example A.6 below shows various ways of string
manipulation.

Example A.6 (Array assignment).

# Numeric indexing

set arr(0) 1

set arr(1) 3

set arr(1) 5
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# String indexing

set wlan(datarate) 54000000

set wlan(protocol) "tcp"

Lists

A list is an ordered collection of elements such as numbers, strings or even
lists themselves. The key list manipulations are shown below:

• List creation: A list can be created in various ways as shown in Exam-
ple A.7 below.

Example A.7. The following two statement are equivalent
(i) set mylist "1 2 3"

(ii) set mylist {1 2 3}

From the above, a list can be created in three ways. First, it can be created
by the reserved word list which takes list members as input arguments.
Alternatively, it can be created by embracing the members within a pair
of curly braces or a pair of quotation marks.

• Member retrieval: The following command returns the nth (= {0, 1, · · ·})
element in a list mylist:

lindex $mylist $n

• Member setting: The following command sets the value of the nth ele-
ment in a list mylist to be <value>:

lset $mylist $n $value

• Group retrieval: The following command returns a list whose members
are the nth member through the mth member of a list mylist:

lrange $mylist $n $m

• Appending the list: The following command attaches a list alist to
the end of a list mylist:

lappend $mylist $alist

A.1.4 Input/Output

Tcl employs a so-called Tcl channel to receive an input using a command gets

or to send an output using a command puts.
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Tcl Channels

A Tcl channel refers to an interface used to interact to the outside world.
Two main types of Tcl channels include standard reading/writing channels
and file channels. The former are classified into stdin for reading, stdout for
writing, and stderr for error reporting. The latter needs to be attached to a
file before it is usable. The syntax for attaching a file to a Tcl file channel is
shown below:

open <filename> [<access>]

This command returns a Tcl channel attached to a file with the name
<filename>. The optional input argument <access> could be “r” for reading,
“w” for writing to a new file, or “a” for appending an existing file.

When a Tcl channel is no longer in use, it can be closed by using the
command close whose syntax is as follows:

close <channel>

where <chanel> is the Tcl channel which need to be closed.

The Commands gets and puts

The command puts and gets reads and writes, respectively, a message to a
specified Tcl channel. In particular, the command “gets” reads a line from a
Tcl channel, and passes every character in the line except the end-of-line char-
acter to the Tcl running environment. The Tcl channel could be a standard
channel or a file channel. The syntax of the command gets is as follows:

gets <channel> <var>

Here, all the characters in the current line from the channel channel will be
stored in the variable <var>.

The command “puts” writes a string <string> followed by an end-of-
line character to a Tcl channel <channel>. If <channel> is not specified, the
stdout will be used as a default channel. The syntax of the command puts

is as follows:

puts [-nonewline] ]<channel>[ <string>

where the nonewline option above specifies not to write an end-of-line char-
acter to the end of the string.

Normally, the command puts does not output immediately onto a Tcl
channel. Instead, it puts the input argument (i.e., string) in its buffer, and
releases the stored string either when the buffer is full or when the channel is
closed. To force the immediate outputting, flush is used. Note that while a
standard channel is opened and closed on the fly (i.e., upon an invocation of
“puts), a file channel needs to be closed explicitly using the command close.
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Example A.8. Consider the following Tcl codes:

puts "Press any key to continue..."

gets stdin

set ch_in [open "input.txt" "r}]

set ch_out [open "output.txt" "a"]

set line_no 0

while {[gets $ch_in line] >= 0} {

puts $ch_out "[incr line_no] $line"

}

close $ch_in

close $ch_out

In this example, the content of file input.txt is copied to file output.txt
line by line. In addition, the line number is prefixed at the beginning of each
new line.

A.1.5 Mathematical Expressions

Tcl implements mathematical expressions through mathematical operators
and mathematical functions. A mathematical expression of either type must
be preceded by a reserved word “expr”. Otherwise, Tcl will recognize the
operator as a character (see Lines 1 and 4 in Example A.2). A mathematical
expression consists of an operator and operands. A list of most widely used
operators is given in Table A.1. An operand can be either floating-point, octal
or hexadecimal numbers. To be evaluated as octal and hexadecimal numbers,
the numbers must be preceded by 0 and 0x, respectively.

As another means to implement mathematical operations, mathematics
functions can be placed after the reserved word “expr”. The built-in mathe-
matical functions are shown below, where the input argument of a function is
enclosed by parentheses.

Table A.1. Tcl mathematical operators.

Operators Usage

−+ ∼! Unary minus, unary plus, bit-wise negation, logical negation
∗ / % Multiplication, division, remainder
+− Addition, subtraction
> Bit shift left, right
<>= Less than, greater than, less than or equal, greater than or equal
& Bit-wise AND
∧ Bit-wise exclusive OR
| Bit-wise OR
&& Logical AND
|| Logical exclusive OR
x?y : z If x is non-zero, then y. Otherwise, z.
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abs(x) cosh(x) log(x) sqrt(x)

acos(x) double(x) log10(x) srand(x)

asin(x) exp(x) pow(x,y) tan(x)

atan(x) floor(x) rand(x) tanh(x)

atan2(x) fmod(x) round(x) wide(x)

ceil(x) hypot(x,y) sin(x)

cos(x) int(x) sinh(x)

The detail of all the above functions is given in [27]

Example A.9. Examples of invocation of mathematical functions log10(x)

and abs(x) are shown below.

>>tclsh

>>expr log10(10)

1.0

>>expr abs(-10)

10

>>expr 1+2

3

A.1.6 Control Structure

Tcl control structure defines how the program proceeds. This is carried out
using the commands if/else/elseif, switch, for, while, foreach, and
break/continue

if/else/elseif

An if/else/elseif command provides a program with a selective choice. A gen-
eral form of this command is shown below:

if {<condition1>} {

<actions_1>

} elseif {<condition2>} {

<actions_2>

}

.

.

.

else {

<actions_n>

}

Here, the command first checks whether condition1 in the if statement
is true. If so, it will take actions_1. Otherwise, it will check whether
condition2 in the elseif statement is true. If so, it will take actions_2.
If not, the process continues for every elseif statement. If nothing matches,
actions_n defined under the else condition will be taken.
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switch

The switch command is a good substitute of a long series of a if/else/elseif
command. It checks the value of a variable against given patterns, and takes
actions associated with a matched pattern. The structure of a switch com-
mand is shown below:

switch <value> {

<pattern_1> {

<actions_1>

}

<pattern_2> {

<actions_2>

}

.

.

.

default {

<actions_n>

}

}

In this case action_i will be taken if <value> matches with <pattern_i>

where i= { 1,2,...,n-1}. If none of the predefined patterns matches with
the value, the default actions (i.e., actions_n) will be taken.

while/for/foreach

The commands while, for, and foreach are used when actions need to be
repeated for several times. The command while repeats actions until a pre-
defined condition is no longer true. The command for repeats the actions for
a given number of times. The command foreach repeats the actions for every
item in a given list. The syntax of these three commands are as follows:

while {<condition>} {

<actions>

}

for {<init>} {<condition>} {<mod>} {

<actions>

}

foreach {<var>} {<list>} {

<actions>

}
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The while command repeats the <actions> as long as the <condition> is
true. The for command begins with an initialization statement init. After
taking <actions>, it executes the Tcl statement <mod> and checks whether
the <condition> is true. If so, it will repeat the <actions>. Otherwise, the
command will terminate. The command foreach repeats <actions> for every
member in the <list>. In each repetition, the member is stored in variable
<var> and can be used for various purposes.

break/continue

Commands break and continue are used in looping structures while, for,
and foreach. They are used to prematurely stop the looping mechanism.
Their key difference is that while the command break immediately exits the
loop, the command continue simply restarts the loop.

Example A.10.

set var 0

while {$var < 100} {

puts $var

set var [expr $var+5]

if {$var == 20}

break

}

puts $var

In this example, the loop continues as long as $var < 100. However, the
command break terminates the looping mechanism if $var == 20. Therefore,
the above program will print out 20. If the reserved word break is replaced
with a reserved word continue, the loop will restart after being stopped. In
this case the program will print out 100.

A.1.7 Procedures

A procedure is usually used in place of a series of Tcl statements to tidy up
the program. The syntax of a procedure is shown below:

proc <name> {<arg_1> <arg_2> ... <arg_n>} {

<actions>

[return <returned_value>]

}

The definition of a procedures begins with a reserved word proc. The pro-
cedure name is placed after the word proc. The input arguments are placed
within a curly braces, located immediately after the procedure name. Embrac-
ing with a curly braces, the main body placed next to the input argument.
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Here, the actions for the procedures are defined. Optionally, the procedure
may return a <returned_value>, using a reserved word return.

After defining a procedure, one may invoke the procedure by executing
the following statement:

set var [<name> <value_1> <value_2> <value_n>]

where var is set to the value returned from the procedure <name>, and the
values <value_1> <value_2> <value_n> are fed as input arguments of the
procedure.

A.2 Objected Oriented Tcl (OTcl) Programming

OTcl is an object-oriented version of Tcl, just like C++ is an object-oriented
version of C [28]. The basic architecture and syntax in OTcl are much the same
as those in Tcl. The difference, however, is the philosophy behind each of them.
In OTcl, the concepts of classes and objects are of great importance. A class
is a representation of a group of objects which share the same behavior(s) or
trait(s). Such a behavior can be passed down to child classes. In this respect,
the donor and the receiver of the behaviors are called a superclass (or a parent
class) and a subclass (or a child class), respectively. Apart from inheriting
behaviors from a parent class, a class defines its own functionalities to make
itself more specific. This inheritance is the very main concept for any OOP
including OTcl.

A.2.1 Class and Inheritance

In OTcl, a class can be declared using the following syntax:

Class <classname> [-superclass <superclassname>]

If the optional argument in the square bracket is present, OTcl will recognize
class <classname> as a child class of class <superclassname>. Alternatively,
if the option is absent, class <classname> can be also declared as a child class
of class <superclassname> by executing

<classname> superclass <superclassname>

Note that, class <classname> inherits the functionalities (including proce-
dures and variables) of class <superclassname>. In OTcl, the top-level class
is class Object, which provides basic procedures and variables, from which
every user-defined class inherits.

Example A.11. Consider a general network node. When equipped with mo-
bility, this node becomes a mobile node. Declaration of a class Node and its
child class Mobile is shown below. This declaration allows class Mobile to
inherit capabilities of class Node (e.g., receiving packets) and to include more
capabilities (e.g., moving) to itself.
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1 Class Node

2 Class Mobile -superclass Node

A.2.2 Class Member Procedures and Variables

A class can be associated with procedures and variables. In OTcl, a procedure
and a variable associated with a class are referred to as instance procedure
(i.e., instproc) and an instance variable (i.e., instvar), respectively.

Instance Procedures

The syntax which declaver an instproc is shown below:

<classname> instproc <procname> [{args}] {

<body>

}

where instproc “instproc” is defined in the top-level class Object. Here, the
name of the instproc is <procname>. The detail (i.e., <body>) of the instproc is
embraced within curly braces. The input arguments of the instproc are given
in <args>. Each input argument is separated by a white space. OTcl supports
assignment of each input argument with a default value. That is, the input
argument will be assigned with the default value if the value is not given at
the invocation. Denote an input argument and its default value by <arg> and
<def>, respectively. The argument declaration is as follows:

{<arg> def}

For example, let an instproc has two input arguments: <arg1> and <arg2>.
The first input argument <arg1> is not given a default value. The default
value for the second input argument <arg2> is given by <def>. To declare
this instproc, we replace [args] above with “<arg1> {<arg2><def>}”.

Once declared, an instproc is usually invoke through an object (whose
class is <classname>) using the following syntax.

<object> <procname> [{args}]

Instance Variables

Unlike instprocs, instvars are not declared with the class name. Instead, they
can be declared anywhere in the file. The syntax for the declaration is as
follows:

$self instvar <varname1> [<varname2> ...]
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where instproc “instvar” and an instvar “self” (which represents the object
itself) are defined in the top-level class Object. More than one instvar can be
declared within an OTcl statement. Syntactically, we simply put the names
of all instvars (each seperated by a white space) after “$self instvar”.

After the declaration, an instvar can be manipulated by using a command
set with the following syntax

<object> set <varname> [<value>]

<classname> set <varname> [<value>]

When presented, the input argument <value> will be stored in the instvar
<varname> associated with the object <object> or the class <classname>.
In absence of the argument <value> the above statements return the value
stored in the associated instvar <varname>.

Example A.12. Based on Example A.11, the followings define a packet recep-
tion instproc for class Node and a moving instproc for class Mobile.

3 Node instproc recv {pkt} {

4 $self instvar state

5 set state 1

6 # $self process-pkt $pkt

7 }

8 Mobile instproc move {x y} {

9 $self instvar location

10 set location[0] $x

11 set location[1] $y

12 }

Upon receiving a packet pkt, a Node sets its state to be active (i.e., 1), and
invokes instproc process-pkt to process the packet pkt. As a derived class
of class Node, class Mobile inherits this instproc. It also defines an instproc
move to move to a new coordinate (x,y). This instproc simply sets the new
coordiate to be as specified in the input argument (Lines 10–11).

A.2.3 Object Construction and the Constructor

An object can be created (i.e., instantiated) from a declared class by using
the following syntax:

<classname> <objectname>

In the object construction process, instprocs alloc and init of class
Object is invoked to initialize the object. Instproc alloc allocates mem-
ory space to stored the initiated object. Usually, referred as a constructor,
instproc init defines necessary object initialization. This instproc is usually
overridden by the derived classes.
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Example A.13. The constructors of classes Node and Mobile in Example A.11
are defined below.

13 Node instproc init {} {

14 $self instvar state

15 set state 0

16 }

17 Mobile instproc init {} {

18 $self next

19 $self instvar location

20 set location[0] 0

21 set location[1] 0

22 }

At the constuction, class Node sets its variable state to 0 (i.e., inactive). Class
Mobile first invokes the constructor of class Node in Line 18 (see the details
of function next in Section A.2.4). Then, Lines 20–21 set the location of the
mobile node to be (0,0).

A.2.4 Related Instprocs

Class Object also defines the following instprocs.

Instproc next

Invoked from within an instproc, next searches up the hierarchy (in parent
classes) for an instproc with the same name, and invokes the instproc belong-
ing to the closest parent class.

Instproc info

This instproc returns related information based on the input argument. It can
be invoked using one of the two following ways:

<object> info <arg>

<classname> info <arg>

The upper and lower invocations return the information about the object and
the class, respectively. The choice of the input argument <arg> for these two
invocations are shown in Tables A.2 and A.3, respectively.

Example A.14. Include the following code to the above definition of classes
Node and Mobile, and save the code in a file “node.tcl”.
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Table A.2. Options of the info instproc for objects.

Options Functions

class Returns the class of the object.
procs Return the list of all local methods.
commands Return the list of both Tcl and C local methods defined on

the object.
vars Return the list of instance variables defined on the object.
args <proc> Return the list of arguments of the instproc <proc> defined

on the object.
body <proc> Returns the body of the instproc <proc> defined on the ob-

ject.
default <proc> ... Returns 1 if the default value of the argument <arg> of the

instproc <proc> is <var>, and returns 0 otherwise.<arg> <var>

Table A.3. Options of the info instproc for classes.

Options Functions

superclass Return the superclass of the current class.
subclass Return the list of all subclasses down the heirachy.
heritage Return the inheritance precedence list.
instances Return the list of instances of the class.
instprocs Return the list of instprocs defined on the class.
instcommands Return the list of instprocs and OTcl commands defined

on the class.
instargs <proc> Return the list of arguments of the instproc <proc> de-

fined on the class.
instbody <proc> Return the body of the instproc <proc> defined on the

class.
instdefault ... Return 1 if the default value of the argument <arg> of

the instproc <proc> is <var>, and return 0 otherwise.<proc> <arg> <var>

23 Node n

24 puts "The instance of class Node is [Node info instances]"

25 puts "The class of n is [n info class]"

By executing the file “node.tcl”, the following result should appear on
the screen.

>>ns node.tcl

n

The instance of class Node is n

The class of n is Node

Exercise A.15. Write OTcl codes which make use of the above options for
instproc info in Tables A.2–A.3.
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A.3 AWK Programming

AWK is a general-purpose programming language designed for processing of
text files [29]. AWK refers to each line in a file as a record. Each record consists
of fields, each of which is separated by one or more spaces or tabs. Generally,
AWK reads data from a file consisting of fields of records, processes those
fields with certain arithmetic or string operations, and outputs the results to
a file as a formatted report.

To process an input file, AWK follows an instruction specified in an AWK
script. An AWK script can be specified at the command prompt or in a file.
While the strength of the former is the simplicity (in invocation), that of
the latter is the functionality. In the latter, the programming functionalities
such as variables, loop, and conditions can be included into an AWK script
to perform desired actions. In what follows we give a brief introduction to the
AWK language. The details of AWK programming can be found in [30].

A.3.1 Program Invocation

AWK can be invoked from a command prompt in two ways based on the
following syntax:

>>awk [ -F<ch> ] {<pgm>} [ <vars> ] [ <data_file> ]

>>awk [ -F<ch> ] { -f <pgm_file> } [ <vars> ] [ <data_file> ]

where {} and [] contain mandatory and optional arguments, respectively. The
bracket <> contains a variable which should be replaced with actual values at
the invocation. These variables include

ch Field separator
pgm An AWK script

pgm_file A file containing an AWK script (i.e., an AWK file)
vars Variables used in an AWK file

data_file An input text file

By default, AWK separates records by using a white space (i.e., one or
more spaces or tabs). However, if the option “-F is present, AWK will use
<ch> as a field separator.1 The upper invocation takes an AWK script <pgm>
as an input argument, while the lower one takes an AWK file <pgm_file>

as an input argument. In both cases, variables <vars> and input text file
<data_file> can be optionally provided. If an input text file is not provided,
AWK will wait for input argument from the standard input (e.g., keyboard)
line by line.

Example A.16. Defines an input text file “infile.txt” in the following. We
shall use this input file for most of the examples in this section.

1 For example, awk -F: uses a colon “:” as a field separator.
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#infile.txt

Rcv 0.162 FromNode 2 ToNode 3 cbr PktSize= 500 UID= 3

EnQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8

DeQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8

Rcv 0.170 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 7

EnQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7

DeQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7

Rcv 0.171 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 4

EnQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9

DeQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9

Rcv 0.178 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8

EnQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8

DeQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8

Note that in AWK, “#” marks the beginning of a comment line.
At the command prompt, we may run an AWK script to show the lines

which contains “EnQ” as follows:

>>awk /EnQ/ infile.txt

EnQ 0.164 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 8

EnQ 0.170 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 7

EnQ 0.172 FromNode 1 ToNode 2 cbr PktSize= 1000 UID= 9

EnQ 0.178 FromNode 2 ToNode 3 cbr PktSize= 1000 UID= 8

Here, the <pgm> is specified as /EnQ/ and the <data_file> is specifies as
infile.txt. An AWK script /EnQ/ looks for a line which contains a text EnQ
and display the line on the screen.

A.3.2 An AWK Script

An AWK script contains an instruction for what AWK will perform. It asks
AWK to look for a pattern in a record, and performs actions on a matched
pattern. The syntax of an AWK script is as follows:

<pattern> {<actions>}

A <pattern> could be a logical expression or a regular expression.2 An
<actions> specifies actions for the matched pattern. Each actions in the curly
braces is separated by a semi-colon (“;”). As will be discussed later in this
section, AWK provides a wide variety of <actions>.

2 While a logical expression is usually implemented by an if statement, a regular
expression returns true when finding a matched pattern. The formal definition
of a regular expression can be found in [31].



A.3 AWK Programming 407

A.3.3 AWK Programming Structure

The general form of an AWK program is shown below:

BEGIN {<initialization>}

<pattern1> {<actions>}

<pattern2> {<actions>}

.

.

.

END {<final actions>}

Prior to procession an input text file, AWK performs <initialization>
specified in the curly braces located after the reserved word BEGIN. Then, for
each record, it performs actions if the records match with the correspond-
ing pattern. After processing the entire file, it performs <final actions>

specified in the curly braces located after the reserved word END.

A.3.4 Pattern Matching

The first part of an AWK script is a pattern as specified in <pattern>. The
pattern can be a logical or a regular expression. If this part evaluates to true,
the corresponding action will be taken.

Logical Expressions

For a logical expression, the following operators could be necessary:

< (less than) = (equal)

<= (less than or equal) != (Not Equal)

> (greater than) || (OR)

>= (greater than or equal) && (AND)

Regular Expressions

A regular expression provides a concise and flexible means to represent a text
of interest. It is used extensively in programming language such as AWK,
Tcl, Perl, etc. Syntactically, a regular expression is enclosed within a pair of
forward slashes (“/”, e.g., /EnQ/). It supports much more functionalities in
searching for a pattern as shown in Table A.4:

Exercise A.17. Write an input string which matches with each of the follow-
ing regular expressions. The input string should not match with other regular
expressions.
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Table A.4. Special characters used in regular expressions.

Character Description

// Contain a regular expression (e.g., /text/)
^ Match the beginning of a record only (e.g., /^text/)
$ Match the end of a record only (e.g., /text$/)
[] Match any character inside (e.g., [text])
[a-z] Match any lower-case alphabet
[A-Z] Match any upper-case alphabet
[0-9] Match any number
[a-zA-Z0-9] Match any alphabet or number
. Match any character (e.g., /tex./)
* Match zero or more character in front of it (e.g., /tex*/)
.* Match any string of characters
? Match zero or more regular expression in front of it (e.g., /[a-z]?/)
+ Match one or more regular expression in front of it (e.g., /[a-z]+/)

(i) /^Node/
(ii) /Node$/
(iii) /[Nn]ode/
(iv) /Node./
(v) /Node*/
(vi) /Nod[Ee]?/
(vii) /Nod[Ee]+/

By default, a regular expression is matched against the entire record (i.e.,
line). To match a certain regular expression againt a given variable var, we
use the following syntax:

$var ~ /<pattern>/

$var !~ /<pattern>/

While the upper command searches for a line which matches with <pattern>,
the lower command searches for a line which does not match with <pattern>.

A.3.5 Basic Actions: Operators and Output

The key operators in AWK are shown below.

+ (addition) ++ (increment)

- (subtraction) == (decrement)

* (multiplication) = (assignment)

/ (division) % (modulo)

Like in C++, a combination of arithmatic operators and an assignment oper-
ator is also possible. For example, “a += b” is equivalent to “a = a+b”. The
combined operator in AWK include “+=”, “-=”, “*=”, “/=”, and “%=”.

AWK outputs a variable or a string to a screen using either print or
printf, whose syntax are as follows:
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print <item1> <item2> ...

printf(<format>,<item1>,<item2>,...)

where <item1>, <item2>, and so on can be either variables or strings,
<format> is the format of the output. Using print, a string needs to be
enclosed within a quotation mark (""), while a variable could be indicated as
it is.

Example A.18. Define an AWK file “myscript.awk” as shown below.

# myscript.awk

BEGIN{}

/EnQ/ {var = 10; print "No Quotation: " var;}

/DeQ/ {var = 10; print "In Quotation: " "var";}

END{}

Run this script for the input text file infile.txt defined in Example A.16.
The following result should appear on the screen.

>>awk -f myscript.awk infile.txt

No Quotation: 10

In Quotation: var

No Quotation: 10

In Quotation: var

No Quotation: 10

In Quotation: var

No Quotation: 10

In Quotation: var

The above AWK script prints out two versions of variable var. The upper
line prints out the value (i.e., 10) stored in variable var. In the lower line,
variable var is enclosed within a quotation mark. Therefore, string var will
be printed instead.

The command printf provides more printing functionality. It is very sim-
ilar to function printf in C++. In particular, it specifies the printing format
as the first input argument. The subsequent arguments simply provide the
value for the place-holders in the first input argument. The readers are en-
couraged to find the detail of the printing format in any C++ book (e.g., [14])
or in [30].

AWK does not have a direct command for file printing. Rather, output
redirection can be used in conjunction with print and printf. In a Unix-
like system (e.g., Linux or Cygwin) a character “>” and “>>” can be used to
redirect the output to a file. The syntax of the output redirection is shown
below.

print <input_argument> > <filename>

print <input_argument> >> <filename>
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Note that the command print can be replaced with the command printf.
The difference between the above two lines is that while “>” redirects the out-
put to a new file, “>>” appends the output to an existing file. If <filename> ex-
ists, the upper line will delete and recreate the file whose name is <filename>,
while the lower line will append the output to the file <filename> without
destroying the existing file.

Exercise A.19. Repeat Example A.18, but print the result in a file “outfile
.txt”. Show the difference when using “>” and “>>”.

A.3.6 Variables

As an interpreter, AWK does not need to declare data type for variables. It
can simply assign a value to a variable using an assignment operator (“=”).
To avoid ambiguity, AWK differentiates a variable from a string by quotation
marks (“""”). For example, var is a variable while "var" is a string (see
Example A.18).3

AWK also support arrays. Arrays in AWK can have only one dimension.
Identified by a square bracket ([]), indexes of an array can be both numeric
(i.e., a regular array) or string (i.e., an associative array). Example of arrays
are node[1], node[2], link["1:2"], etc.

Apart from the above user-defined variables, AWK also provides several
useful built-in variables as shown in Table A.5.

Table A.5. Built-in variables.

Variables Descriptions

$0 The current record
$1,$2,... The 1st, 2nd,... field of the record
FILENAME Name of the input text file
FS (Input) Field separator (a white space by default)
RS (Input) Record separator (a newline by default)
NF Number of fields in a current record
NR Total number of records
OFMT Format for numeric output (%6g be default)
OFS Output field separator (a space by default)
ORS Output record separator (a newline by default)

Exercise A.20. Based on the input file in Example A.16, develop an AWK
script to show

3 Unlike Tcl, AWK retrieves the value of a variable without a prefix (not like “$”
in Tcl).
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(i) Total number of “EnQ” events,
(ii) The number of packets that Node 3 receives, and
(iii) Total number of bytes that Node 3 receives.

A.3.7 Control Structure

In common with Tcl, AWK support three major types of control structures:
if/else, while, and for (see Section A.1.6). The syntaxes of these control
structures are as follows:

if(<condition>) <action 1> [else <action 2>]

while(<condition>) <action>

for(<initialization>;<condition>;<end-of-loop-action>)

<action>

Again, when the actions contain more than one statement, these statements
must be embraced by a curly braces.

AWK also contains four unconditional control commands:

break Exit the loop
contine Restart the loop

next Process the next record
exit Exit the program by executing the END operation



B

A Review of the Polymorphism Concept

in OOP

B.1 Fundamentals of Polymorphism

As one of the main OOP concepts, polymorphism refers to the ability to invoke
the same function with different implementation under different context. This
concept should be simple to understand, since it occurs in our daily life.

Receptionist

FriendlyReceptionist MoodyReceptionist

RudeReceptionist

Fig. B.1. A polymorphism example: Receptionist class hierarchy.

Example B.1. Consider receptionists and how they greet customers. Friendly,
moody, and rude receptionists greet customers by saying “Good morning.
How can I help you today?”, “What do you want?”, and “What do you want?
I’m busy. Come back later!!”, respectively. We design a class hierarchy for
receptionists as shown in Fig. B.1. The base class of the hierarchy is class
Receptionist. Based on the personality, we derive classes Friendly

Receptionist and MoodyReceptionist directly from class Receptionist.
Also, we derive another class RudeReceptionist from class Moody

Receptionist. The C++ code which represents these four classes is given
below:

//receptionist.cc

1 #include "iostream.h"
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2 class Receptionist {

3 public:

4 void greet() {cout<<"Say:\n";};

5 };

6 class FriendlyReceptionist : public Receptionist {

7 public:

8 void greet(){

9 cout<<"Say: Good morning. How can I help you today?\n"

10 }

11 };

12 class MoodyReceptionist : public Receptionist {

13 public:

14 void greet() { cout<<"Say: What do you want?\n"; };

15 };

16 class RudeReceptionist : public MoodyReceptionist {

17 public:

18 void greet(){

19 MoodyReceptionist::greet();

20 cout<<"Say: I’m busy. Come back later.\n";

21 };

22 };

23 main() {

24 FriendlyReceptionist f_obj;

25 MoodyReceptionist m_obj;

26 RudeReceptionist r_obj;

27 cout<<"\n------------ Friendly Receptionist ---\n";

28 f_obj.greet();

29 cout<<"\n------------ Moody Receptionist -------\n";

30 m_obj.greet();

31 cout<<"\n------------ Rude Receptionist -------\n";

32 r_obj.greet();

33 cout<<"----------------------------------------\n";

34 }

Function main() instantiates three receptionist objects. Objects f_obj,
m_obj, and r_obj are of classes FriendlyReceptionist,MoodyReceptionist,
and RudeReceptionist, respectively (Lines 24–26). They greet a customer in
Lines 28, 30, and 32 by invoking function greet() in Lines 8–10, 14, and
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18–21, respectively.1 By running receptionist, the following results should
appear on the screen.

>>./receptionist

------------ Friendly Receptionist ---------

Say: Good morning. How can I help you today?

------------ Moody Receptionist ---------

Say: What do you want?

------------ Rude Receptionist ---------

Say: What do you want?

Say: I’m busy. Come back later!!

--------------------------------------------

Example B.2. Remove Line 14 in Example B.1 and run “./receptionist”
again. The following result should appear on the screen:

>>./receptionist

------------ Friendly Receptionist ---------

Say: Good morning. How can I help you today?

------------ Moody Receptionist ---------

Say:

------------ Rude Receptionist ---------

Say:

Say: I’m busy. Come back later!!

--------------------------------------------

Since class MoodyReceptionist does not define function greet (Line 14
is removed), it uses the function greet() inherited from class Receptionist
(i.e., printing “Say:” on the screen).

Examples B.1 and B.2 demonstrate the concepts of polymorphism through
receptionists and how they greet customers. When invoking the same function
(e.g., greet()), three objects of different classes act differently (e.g., by saying
differently). Example B.1 shows a basic polymorphism mechanism, where each
class has its own implementation. Examples B.2 shows that it is also possible
not to override function greet().2

1 Note that in Line 19 function greet() of class MoodyReceptionist is invoked in
the scope of class RudeReceptionist by using “::”.

2 For example, class MoodyReceptionist inherits function greet() from class
Receptionist.
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B.2 Type Casting and Function Ambiguity

In most cases, polymorphism is fairly straightforward. A derived class may
inherit or override functions from the base class. When polymorphism involves
type casting, the mechanism in Examples B.1 and B.2 may lead to different
result. To see how, consider the following examples.

Example B.3. Replace function “main” in Example B.1 with the following:

1 main() {

2 FriendlyReceptionist *f_pt;

3 MoodyReceptionist *m_pt;

4 RudeReceptionist *r_pt;

5 f_pt = new FriendlyReceptionist();

6 m_pt = new MoodyReceptionist();

7 r_pt = new RudeReceptionist();

8 cout<<"\n------------ Friendly Receptionist ----\n";

9 f_pt->greet();

10 cout<<"\n------------ Moody Receptionist ----\n";

11 m_pt->greet();

12 cout<<"\n------------ Rude Receptionist ----\n";

13 r_pt->greet();

14 cout<<"-----------------------------------------\n";

15 }

With the above code, the result for running ./receptionist would be
the same as that in Example B.1. The major difference in the above main()

function is the use of pointers (Lines 2–4), instead of regular objects (in
Example B.1).

Example B.4. In Example B.3, replace Lines 3–4 with the following:

MoodyReceptionist *m_pt,*r_pt;

This is an example of ambiguity caused by type casting. The pointer r_pt is
declared as a pointer to a MoodyReceptionist object; however, the statement
“new RudeReceptionist()”’ creates an object of type RudeReceptionist.
When invoking a function (e.g., greet()), the key question is which class
should function greet() be associated with: MoodyReceptionist (i.e., the
declaration class) or RudeReceptionist (i.e., the construction class)? To an-
swer this question, we can simply run “./receptionist”, and obtain the
following results:

>>./receptionist

------------ Friendly Receptionist ---------

Say: Good morning. How can I help you today?
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------------ Moody Receptionist ---------

Say: What do you want?

------------ Rude Receptionist -------------

Say: What do you want?

--------------------------------------------

From the above result, the answer is the former one: MoodyReceptionist.

Consider the statement “r_pt = new RudeReceptionist”. The latter
part, “new RudeReceptionist”, allocates memory space to an object of class
RudeReceptionist, and returns a pointer to the created object. The former
part “r_pt = ” assigns the returned pointer to r_pt. Since r_pt is a pointer
to a MoodyReceptionist object, this statement implicitly casts the created
RudeReceptionist object to a MoodyReceptionist, before the pointer as-
signment process. It is now clear that the type of r_pt before and after the
casting is MoodyReceptionist*. Therefore, function r_pt->greet() is asso-
ciated with class MoodyReceptionist.

Unlike a regular object, a pointer needs two memory spaces: one for itself
and another for the object that it points to. The former space is created
at the pointer declaration, while the latter is created using “new”. Function
ambiguity occurs when the pointer is declared to point to an object of one
type, but the pointed object is created to store an object of another type.
By default, the pointer and the object will be associated with the declaration
type, not the construction type.

B.3 Virtual Functions

The result in Example B.3 is different from that in Example B.1. When cre-
ating a pointer by executing “new RudeReceptionist”, we expect the rude
receptionist to say “What do you want? I’m busy. Come back later!!”, not
just ‘What do you want?” as in Example B.4. To do so, a RudeReceptionist

object needs to be associated with the construction type not the declaration
type. In C++, such the association is carried out through virtual functions.

Unlike regular functions, virtual functions always belong to the construc-
tion type, regardless of type casting. C++ declares a virtual function by
putting a keyword “virtual” in front of the function declaration. Note that,
the virtuality property is inheritable. We only need to declare the virtual
function once in the base class. The same function in the derived class auto-
matically inherits the virtuality property.

Example B.5. In Example B.4, replace Line 4 in Example B.1 with the follow-
ing line:

virtual void greet() {cout<<"Say:\n";};
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which declares the function greet() of class Receptionist as virtual.
Since r_pt is created using “new RudeReceptionist”, virtual function

r_pt->greet() belongs to class RudeReceptionist. At the declaration
“Moo-dyReceptionist *r_pt”, the pointer r_pt is created by its default con-
structor. However, the space where r_pt points to (i.e., *r_pt) is created by
the statement “new RudeReceptionist”. Since a virtual function sticks to
the construction type, the statement r_pt->greet() invokes function greet

() of class RudeReceptionist. After running ./receptionist, we will obtain
the same result as that in Examples B.1 and B.3.

B.4 Abstract Classes and Pure Virtual Functions

An abstract class provides a general concept from which more specific classes
derive. Conforming to the polymorphism concept, it specifies “what to do” in
special functions called pure virtual functions, and forces its derived classes
to define their own “how to do” by overriding the pure virtual functions.
Containing at least one pure virtual function, an abstract class is said to
be incomplete since it does not have a “how to do” part. Consequently, no
object can be initiated from an abstract class. By not implementing all virtual
functions, the derived class would still be an abstract class (i.e., incomplete),
and cannot initiate any object.

C++ declares a pure virtual function by putting “virtual” and “=0” at
the beginning and the end of function declaration, respectively.

Example B.6. Consider again an example on receptionists and how they greet
customers. We keep the class hierarchy in Fig. B.1 unchanged. To make class
Receptionist an abstract class, we modify Example B.5 by removing Lines 4
in Example B.1 replacing the declaration of class Receptionist in Example
B.1 with the following codes:

1 class Receptionist {

2 public:

3 virtual void greet()=0;

4 };

After running “./receptionist”, we should obtain the same results as in
Example B.1. In this example, three main components are related to the use
of an abstract class.

• A pure virtual function: Function greet() is declared in class Recepti

onist as a pure virtual function (Line 3 in Example B.6).
• An abstract class: Containing a pure virtual function greet(), class

Receptionist is an abstract class. No object can be instantiated from
class Receptionist. Class Receptionist therefore acts as a template
class for classes FriendlyReceptionist, MoodyReceptionist, and Rude

Receptionist.
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Table B.1. Declaration with no implementation, declaration with no action, and
invalid declaration.

Declaration Example

Pure virtual declaration virtual void greet()=0;

Declaration with no action virtual void greet() {};
Invalid declaration virtual void greet();

• Implementation of pure virtual function: Classes FriendlyReceptionist,
MoodyReceptionist, and RudeReceptionist must provide implementa-
tion for function greet() (see Example B.1). Unlike Example B.2, remov-
ing the implementation (e.g., Line 16 in Example B.1) leaves the derived
classes (e.g., MoodyReceptionist) an abstract class, and the instantiation
(e.g., m_pt = new MoodyReceptionist) would cause a compilation error.

There are three similar declarations for a virtual function (see Table B.1).
First, a pure virtual function is declared as explained above (e.g., virtual
void greet() = 0;). Secondly, a (non-pure) virtual function of a derived
instantiable class must contain implementation but may have no action. For
example, “virtual void greet() {};” contains no action inside its curly
braces. This function overrides the pure virtual function of its parent class,
making the class non-abstract and instantiable. Finally, consider a class whose
parent class is an abstract class. By opting out “{}” (i.e, “virtual void

greet();”), the pure virtual function is left unimplemented and the class
would still be an abstract class. Again, any object instantiation would lead to
a compilation error.3 An important note for NS2 users: You cannot opt out
both “=0” and “{}”. If you do not want provide an implementation, leave the
curly braces with no action after the declaration. Otherwise, NS2 will show an
error at the compilation.

B.5 Class Composition: An Application of Type Casting
Polymorphism

Upto this point, the readers may raise few questions. That is, why do we need
to cast an object to different type and use the keyword virtual? Wouldn’t
it be easier to declare and construct an object with same type? For exam-
ple, can we not use Example B.3 instead of Example B.4? Doesn’t it remove
function ambiguity? The answer is “yes”; nevertheless, type casting makes
the programming more scalable, elegant and interesting. For this reason, the
programming with type casting is a common practice in NS2.

3 Here, we assume that declaration and implementation are in one file. When dec-
laration and implementation are separated in two files, you can opt out “{}” in
a “.h” file and provide the implementation in another “.cc” file.
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B.6 Programming Polymorphism with No Type Casting:
An Example

Example B.7 below shows a scenario, which needs no virtual function. How-
ever, we will see later that Example B.7 leads to programming inconvenience
as the program becomes larger.

Example B.7. Consider a company and how it serves a customer. The main
functionality of the company is to serve customers. As a courtesy, the com-
pany greets every customer before serving. Assume that the company has one
receptionist to greet the customer. The receptionist can be friendly, moody,
or rude as specified in Example B.1. The following C++ code represents the
company with the above description:

//company.cc

1 class Company {

2 public:

3 void serve() {

4 greet();

5 cout<<"\nServing the customer ... \n";

6 };

7 void greet () {};

8 };

9 class MoodyCompany : public Company {

10 public:

11 MoodyCompany(){employee_ = new MoodyReceptionist;};

12 void greet(){employee_->greet();};

13 private:

14 MoodyReceptionist* employee_;

15 };

16 int main() {

17 MoodyCompany my_company;

18 my_company.serve();

19 return 0;

20 }

where class MoodyReceptionist is defined in Example B.1.
Class Company (Lines 1-8) has two functions. Function serve() in Lines

3–6 greets the customers by invoking function greet(). Then, it serves
the customer by showing the message “Serving the customer ...” on the
screen. The function greet() in Line 7 has no action in class Company, and
is implemented by child classes of class Company.

Class MoodyCompany (Lines 9–15) derives from class Company. It has
one moody receptionist stored in the variable employee_ (Line 14). Class
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MoodyCompany implements function greet() by having employee_->greet()

in Line 12.
In the function main(), an object my_company of class MoodyCompany is

instantiated in Line 17. Line 18 invokes function serve() associated with
the object my_company. By running the executable file company, the following
result will appear on the screen:

>>./company

Say: What do you want?

Serving the customer ...

which is quite expected from the code. Clearly, we do not need virtual func-
tions in this example.

B.7 A Scalability Problem Caused by Non Type Casting
Polymorphism

The main problem of polymorphism with non type casting is the scalability.
As the inheritance tree becomes more complicated, we may need to develop
a large number of classes. For example, suppose we would like to change the
reception in the company to be a friendly receptionist. We will have to define
another class as follows:

class FriendlyCompany : public Company {

public:

FriendlyCompany() { employee_ =

new FriendlyReceptionist}

void greet() {employee_->greet();};

private:

FriendlyReceptionist* employee_;

};

Also, replace Line 17 in Example B.7 with

FriendlyCompany my_company;

By running “./company”, the following result should appear on the screen:

>>./company

Say: Good morning. How can I help you today?

Serving the customer ...

The problem is that a new Company class (e.g., FriendlyCompany) is re-
quired for every new Receptionist class (e.g., FriendlyReceptionist). Fur-
thermore, the company may have other types of employee such as technicians,
managers, etc. If there are 10 classes for receptionists and 10 classes for tech-
nicians, we need to defines 100 classes for to cover all combination of employee
types. In the next section, we will show how this scalability problem can be
avoided by using class composition.
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B.8 The Class Composition Programming Concept

Type casting acts as a tool which helps avoid the scalability problem. Instead
of deriving all class combination (e.g., 100 classes of combinations of 10 re-
ceptionists and 10 technicians), we may declare an abstract user class object
(e.g., Receptionist), and cast the abstract user class object to a more specific
object (e.g., FriendlyReceptionist).

Example B.8. Consider a company and how it serves a customer in Example
B.7. By allowing type casting, the code representing the company is given
below:

//company.cc

1 class Company {

2 public:

3 void hire(Receptionist* r) {

4 employee_ = (Receptionist*)r;

5 };

6 void serve() {

7 employee_->greet();

8 cout<<"\nServing the customer ... \n";

9 };

10 private:

11 Receptionist* employee_;

12 };

13 int main() {

14 MoodyReceptionist *m_pt= new MoodyReceptionist();

15 Company my_company;

16 my_company.hire(m_pt);

17 my_company.greet();

18 return 0;

19 }

Also to bind function greet() to the construction type, we need to declare
function greet of class Receptionist as virtual. Here, we replace Line 4 in
Example B.1 with “virtual void greet();” or “virtual void greet() =

0;”.
Class Company declares a variable employee_ as a Receptionist pointer

in Line 11. The company hires an employee by invoking function hire(r) in
Lines 3–5. Taking a Receptionist* object, r, as an input argument, func-
tion hire(r) assigns an input Recectionist pointer to its private variable
employee_. In Lines 6–9, the company serves the customers as it does in
Example B.7.

In function “main()”, an object of class Company, my_company, is created
in Line 15. In Line 16, my_company hires an employee m_pt which is a pointer
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to a MoodyReceptionist object. From Lines 3–5, function hire(m_pt) casts
the pointer m_pt to a Receptionist pointer. Since the function greet() of
class MoodyReceptionist is virtual, employee_->greet() is associated with
the construction type in Line 14 (i.e., class MoodyReceptionist). By running
“./company”, we will obtain the following result:

>>./company

Say: What do you want?

Serving the customer ...

which is the same as that in Example B.7.

As shown in Fig. B.2, the class composition programming concept with
type-casting polymorphism consists of four main class types.

• An abstract class (e.g., Receptionist) is a template class.
• A derived class (e.g., classes MoodyReceptionist) derives from the above

abstract class.
• An abstract user class (e.g., class Company) declares objects of the abstract

class (e.g., Receptionist). It employs the functions of the abstract class
without the need to know the detailed implementation of the abstract
class. In Example B.8, class Company does not need to know what type
of Receptionist the employee_ is, nor how the employee_ greets the
customers.

• A user class (e.g., main) declares objects of the derived class (e.g.,
MoodyReceptionist). It makes the abstract class more specific by bind-
ing (e.g., using function hire(r)) the abstract variable (e.g., *employee_)
belonging to the abstract user object (e.g., my_company) to the derived ob-
ject (e.g., m_pt).

Abstract Class

(Receptionist)

Abstract User Class

(Company)

declare

use

instantiate
inherit

Derived Class

(MoodyReceptionist)

User Class 

(main)

p
o
lym

o
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h
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employee_

employee_->greet()

my_company

m_pt

Bind 
(my_company->hire(m_pt)

type 
casting

instantiate

instantiate

Fig. B.2. A diagram of the class composition concept with type casting polymor-
phism.
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The concept of class composition is to have an abstract user class (e.g.,
Company) declare its variable from an abstract class (e.g., Receptionist) and
later cast the declared object (e.g., employee_) to a more specific type (e.g.,
MoodyReceptionist). In particular, the mechanism consists of four following
steps

(i) Declare an abstract class (e.g., Receptionist).
(ii) From within an abstract user class (e.g., Company), declare (e.g., Recep-

tionist* employee_) and use (e.g., employee_->greet()) objects of the
above abstract class.4

(iii) In a user class (e.g., main()),

(a) Instantiate an object (e.g., my_company) of the abstract user class
(e.g., Company).

(b) Instantiate an object (e.g., *m_pt) of the derived class (e.g., Moody
Receptionist).

(iv) Bind (e.g., using hire(r)) the abstract class object (e.g., *employee_) in
the abstract user class (e.g., Company) to the object initiated from within
the user class (e.g., *m_pt). Since the latter object class derives from the
former one, the type casting is fairly straightforward.

To change the company’s receptionist to be a friendly receptionist, we only
need to change function main as follows, without having to modify other parts
of the codes

int main() {

FriendlyReceptionist *f_pt;

f_pt = new FriendlyReceptionist();

Company my_company();

my_company.hire (f_pt);

my_company.greet();

return 0;

}

To see how type casting helps avoid scalability, consider the above exam-
ple where a company may have one of 10 possible receptionist classes and
one of 10 possible technician classes. Without type casting, we need to define
100 classes to cover all the combination of receptionists and technicians in
addition to one based class Company. By allowing type casting, we can declare

4 Again, declaration of a too specific (e.g. MoodyReceptionist as opposed to
Receptionist) class in non-type-casting polymorphism leads to the scalability
problem. As the entire program becomes larger, we need to redefine classes for
every new class, hence substantially growing the total number of classes. To avoid
the scalability problem, we need to declare classes to be as general as possible.
This general class can later be cast as a more specific class.
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two variables (of abstract classes Receptionist and Technician) in a com-
pany. In the main program, we can instantiate a receptionist and a technician
from any of these Receptionist and Technician classes. After instantiat-
ing receptionist and technician objects from the derived class, we can cast the
instantiated objects back to classes Receptionist and Technician and assign
them to the company. Under the same scenario, the class composition con-
cept requires only 20 classes for receptionists and technicians, and therefore,
greatly alleviates the scalability problem.
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