
C Preprocessor Directives
The # include… or #define … etc of a C program are called preprocessor

directives and are preprocessed by the preprocessor before actual compilation

begins. The end of these lines is identified by the newline character ‘\n’, no

semicolon ‘;’ is needed to terminate these lines.

Preprocessor directives are mostly used in defining macros, evaluating conditional

statements, source file inclusion, pragma directives, line control, error detection,

etc.

List of Preprocessor Directives in C
The following table lists all the preprocessor directives available in the C

programming language:

Preprocessor

Directives
Description

#define Used to define a macro.

#undef Used to undefine a macro.

#include Used to include a file in the source code program.

#ifdef
Used to include a section of code if a certain macro is defined

by #define.

#ifndef
Used to include a section of code if a certain macro is not

defined by #define.

#if Check for the specified condition.

#else Alternate code that executes when #if fails.

#endif Used to mark the end of #if, #ifdef, and #ifndef.

#error Used to generate a compilation error message.

#line Used to modify line number and filename information.

#pragma once To make sure the header is included only once.

Preprocessor

Directives
Description

#pragma message Used for displaying a message during compilation.

Types of Preprocessor Directives in C
In C, preprocessor directives are categorized based on their functionalities

following are the types of preprocessor directives:

1. Macro Definition

2. File Inclusion directive

3. Conditional Compilation

4. Line control

5. Error directive

6. Pragma directive

1. #define – Macro Directive
In C, macro definition directives uses the #define preprocessor directive to define

the macros and symbolic constants. We use #define directive to define macro.

Macro are basically the symbolic names that represents lines of code or some

values. This directive is used to create constants or to define short, reusable codes.

Syntax
#define token value

Example

// C program to illustrate the use of #define directive

#include <stdio.h>

// Defining a macro for PI

#define PI 3.14159

int main()

{

 double radius = 8.0;

 double area = PI * radius * radius; // Using the PI macro to calculate

 printf("Area of the circle is: %f\n", area);

 return 0;

}

Output
Area of the circle is: 201.061760

2. #include – File Inclusion Directive
#include is one of the file inclusion directive in C. #include preprocessor directive is

used to include the content of one file to another file i.e. source code during the

preprocessing stage. This is done to easily organize the code and increase the

reusability of code.

Syntax
#include <file_name>
or
#include "filename"

Here, file inclusion with double quotes (” ”) tells the compiler to search for the

header file in the directory of source file.

Example
The below example demonstrates the use of file inclusion directive #include.

1

// C program to demonstrate the use of file inclusion

Output

3. #if, #ifdef, #else, #elif, #endif – Conditional Compilation
Conditional Compilation directives help to compile a specific portion of the

program or let us skip compilation of some specific part of the program based on

some conditions.

#ifdef: This directive is the simplest conditional directive. This block is called a

conditional group. The controlled text will get included in the preprocessor output

if the macroname is defined. The controlled text inside a conditional will embrace

preprocessing directives. They are executed only if the conditional succeeds. You

can nest these in multiple layers, but they must be completely nested. In other

words, ‘#endif’ always matches the nearest ‘#ifdef’ (or ‘#ifndef’, or ‘#if’). Also,

you can’t begin a conditional group in one file and finish it in another.

Syntax
#ifdef MACRO
 controlled text
#endif

#ifndef: In #ifdef directive if the macroname is defined, then the block of

statements after the #ifdef directive will be executed normally but in case it is not

defined, the compiler will simply skip this block of statements. The #ifndef

directive is simply the opposite of #ifdef directive. In case of #ifndef , the block of

statements between #ifndef and #endif will get executed only if the macro or the

identifier with #ifndef is not defined.

Syntax
ifndef macro_name
 statement1;

 statement2;
 statement3;
 .
 .
 .
 statementN;
endif

Note: If the macro with name as ‘macroname‘ is not defined using the #define

directive then only the block of statements will execute.

#if, #else and #elif: All these directives works together and control compilation of

portions of the program using some conditions. If the condition with the #if

directive results in a non zero value, then the group of line immediately after the

#if directive will be executed otherwise if the condition with the #elif directive

evaluates to a non zero value, then the group of line immediately after the #elif

directive will be executed else the lines after #else directive will be executed.

Syntax
#if macro_condition
 statements
#elif macro_condition
 statements
#else
 statements
#endif

Example
The below example demonstrates the use of conditional directives.

1

// C program to demonstrate the use of conditional
2

// directives.
3

#include <stdio.h>

#define gfg 7

#if gfg > 200

#undef gfg

#define gfg 200

#elif gfg < 50

#undef gfg

#define gfg 50

#else

#undef gfg

#define gfg 100

#endif

18

void printValue(int value) { printf("%d", value); }
20

21

int main()
22

{
23

 printValue(gfg); // gfg = 50
24

 return 0;
25

}

Output
50

Note: the entire structure of #if, #elif and #else chained directives ends with

#endif.

4. #line – Line Control
Whenever we compile a program, there are chances of occurrence of some error in

the program. Whenever compiler identifies error in the program it provides us with

the filename in which error is found along with the list of lines and with the exact

line numbers where the error is. This makes easy for us to find and rectify error.

However we can control what information should the compiler provide during

errors in compilation using the #line directive.

Syntax
#line number "filename"

number – line number that will be assigned to the next code line. The line

numbers of successive lines will be increased one by one from this point

on. “filename” – optional parameter that allows to redefine the file name that will

be shown.
1

Example :

// C program to demonstrate the use of #line

#include <stdio.h>

// Macro to print the current line number
6

#define PrintLineNum \
7

 printf("Line number is %d in file named %s\n", \
8

 __LINE__, __FILE__)

int main()
11

{
12

 // Print the original line number
13

 PrintLineNum;
14

15

// Using #line to change line number and file name
16

// temporarily
17

#line 20 "main.c"
18

 PrintLineNum;
19

20

// revert to the original line number and file name
21

#line 30 "index.c"
22

 PrintLineNum;
23

24

 return 0;
25

}

Output
Line number is 13 in file named ./Solution.c

Line number is 20 in file named main.c

Line number is 30 in file named index.c

5. #error – Error Directive
The #error directive aborts the compilation process when it is found in the program

during compilation and produces an error which is optional and can be specified as

a parameter.

Syntax
#error optional_error

Here, optional_error is any error specified by the user which will be shown when

this directive is found in the program.

Example
The below example demonstrate the use of error directive to display custom error

message.
1

// C program to demonstrate the use of error directive to

2

// display custom error message.
3

4

#include <stdio.h>
5

#ifndef GeeksforGeeks
10

#error GeeksforGeeks not found!
11

#endif
12

13

int main()
14

{
15

 printf("Hello, GeeksforGeeks!\n");
16

 return 0;
17

}

Output
error: #error GeeksforGeeks not found !

// Courtesy: https://www.geeksforgeeks.org/cpp-preprocessor-directives-set-2/?ref=lbp

