
File Handling in C

What is a File?

• A named collection of data, typically stored in a secondary

storage (e.g., hard disk).

Examples

• Records of all employees in an organization

• Document files created using Microsoft Word

• Video of a movie

• Audio of a music

• Non-volatile data storage

• Can be used when power to computer is off

How a File is Stored?

• Stored as sequence of bytes, logically contiguous (may not be

physically contiguous on disk).

• Discrete storage unit for data in the form of a stream of bytes.

• Every file is characterized with a starting of file (or beginning of file

-BOF), sequence of bytes (actual data), and end of stream (or end of

file-EOF).

• Allows only sequential access of data by a pointer performing.

How a File is Stored?

40 65 87 90 24 67 89 90 60 0

Start EOF

File pointer

Meta Data

• Meta-data (information about the file) before the stream of

actual data can be maintained to have a knowledge about the

data stored in it.

• The last byte of a file contains the end end-of-file character

(EOF, with ASCII code 1A (Hex).

• While reading a file, the EOF character can be checked to

know the end.

Note:

Type of Files

• Text files
– Contain ASCII code only

• C-programs

• Binary files
– Contain non-ASCII characters

• Image, audio, video, executable, etc.

What type of file a .docx file produced by MS-Word?

Operations on Files

• Typical operations on a file are

• Open : To open a file to store/retrieve data in it

• Read : The file is used as an input

• Write : The file is used as output

• Close : Preserve the file for a later use

• Access: Random accessing data in a file

Opening and Closing a File

File Handling Commands

• Include header file <stdio.h> to access all file handling

utilities.

• A data type namely FILE is there to create a pointer to a file.

Syntax

FILE * fptr; // fptr is a pointer to file

• To open a file, use fopen() function

Syntax

FILE * fopen(char *filename, char *mode)

• To close a file, use fclose() function

Syntax

int fclose(FILE *fptr);

fopen() function

• FILE * fopen(char *filename, char *mode)

• The first argument is a string of characters indicating the name of the file to be

opened.

Examples: xyz12.c; student.data

• The second argument is to specify the mode of file opening. There are five file

opening modes in C

• "r" : Opens a file for reading

• "w" : Creates a file for writing (overwrite, if it contains data)

• "a" : Opens a file for appending - writing on the end of the file

• “rb” : Read a binary file (read as bytes)

• “wb” : Write into a binary file (overwrite, if it contains data)

• It returns the special value NULL to indicate that it couldn't open the file.

fopen() function

• If a file that does not exist is opened for writing or appending, it is

created as a new.

• Opening an existing file for writing causes the old contents to be

discarded.

• Opening an existing file for appending preserves the old contents,

and new contents will be added at the end.

• File opening error

• Trying to read a file that does not exist.

• Trying to read a file that doesn’t have permission.

• If there is an error, fopen() returns NULL.

Example: fopen()
#include <stdio.h>

void main()

{

FILE *fptr; // Declare a pointer to a file

char filename[]= "file2.dat";

fptr = fopen(filename,"w");

// fptr = fopen (“file2.dat”,"w"); // alternatively

if (fptr == NULL) {

printf (“Error in creating file”);

exit(-1); // Quit the function

}

else /* code for doing something */

fclose(fptr);//

}

Reading from a File

Reading from a File

• Following functions in C (defined in stdio.h) are usually used

for reading simple data from a file

• fgetc(…)

• fscanf(…)

• fgets(…)

• getc(…)

• ungetc(…)

Reading from a File: fgetc()
Syntax for fgetc(…)

int fgetc(FILE *fptr)

• The fgetc() function returns the next character in the stream fptr as an

unsigned char (converted to int).

• It returns EOF if end of file or error occurs.

FILE *fptr;

int c;

/* Open file and check it is open */

while ((c = fgetc(fptr)) != NULL)

{

printf ("%c",c);

}

Reading from a File: fscanf()

Syntax for fscanf(…)

int fscanf(FILE *fptr, char *format, ...);

• fscanf reads from the stream fptr under control of format and assigns

converted values through subsequent assignments, each of which must be a

pointer.

• It returns when format is exhausted.

• fscanf returns EOF if end of file or an error occurs before any conversion.

• it returns the number of input items converted and assigned.

Example: Using fscanf(…)

FILE *fptr;

fptr= fopen (“input.dat”,“r”);

int n;

/* Check it's open */

if (fptr == NULL)

{

printf(“Error in opening file \n”);

}

n = fscanf(fptr,“%d %d”,&x,&y);

...

20 30 40 50

input.dat

x = 20

y = 30

Reading from a File: fgets(…)
Syntax for fgets(…)

char *fgets(char *s, int n, FILE *fptr)

s The array where the characters that are read will be stored.

n The size of s.

fptr The stream to read.

• fgets() reads at most n-1 characters into the array s, stopping if a

newline is encountered.
• The newline is included in the array, which is terminated by ‘\0’.

• The fgets() function returns s or NULL if EOF or error occurs.

Example: Using fgets(…)

FILE *fptr;

char line [1000];

/* Open file and check it is open */

while (fgets(line,1000,fptr) != NULL)

{

printf ("Read line %s\n",line);

}

Reading a File: getc(…)
Syntax for getc(…)

int getc(FILE *fptr)

• getc(…) is equivalent to fgetc(…) except that it is a macro.

Example: Using getc(…)
C program to read a text file and then print the content on the screen.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int ch, fileName[25];

FILE *fp;

printf("Enter the name of file you wish to read\n");

gets(fileName);

fp = fopen(fileName,"r"); // read mode

if(fp == NULL)

{

printf("Error while opening the file.\n");

exit(-1);

}

printf("The contents of %s file are :\n", fileName);

while((ch = getc(fp)) != EOF)

printf("%c",ch);

fclose(fp);

return 0;

}

OUTPUT

Enter the name of file you wish to read

test.txt

The contents of test.txt file are :

C programming is fun.

Undo a File Reading: ungetc()
ungetc(): Push a character back onto an input stream.

Syntax:

int ungetc(int c, FILE *fptr)

Arguments:

c The character that you want to push back.

fptr The stream you want to push the character back on.

• Only one character of pushback is guaranteed per file.

• ungetc may be used with any of the input functions like

scanf, getc, or getchar.

Example: ungetc()

#include <stdio.h>

int main(void)

{

int ch;

while ((ch = getchar()) != '1') // reads characters from the stdin

putchar(ch); // and show them on stdout until encounters '1'

ungetc(ch, stdin); // ungetc() returns '1' previously read back to stdin

ch = getchar(); // getchar() attempts to read next character from stdin

// and reads character '1' returned back to the stdin by ungetc()

putchar(ch); // putchar() displays character

puts("");

printf("Thank you!\n");

return 0;

}

OUTPUT

a

a

v

v

c

c

u

u

1

1

Thank you!

Writing into a File

Writing into a File

• Following functions in C (defined in stdio.h) are usually used

for writing simple data into a file

• fputc(…)

• fprintf(…)

• fputs(…)

• putc(…)

Writing into a File: fputc(…)

Syntax for fputc(…)

int fputc(int c, FILE *fptr)

• The fputc() function writes the character c to file fptr and returns the

character written, or EOF if an error occurs.

#include <stdio.h>

filecopy(File *fpIn, FILE *fpOut)

{

int c;

while ((c = fgetc(fpIn) != EOF)

fputc(c, fpOut);

}

Writing into a File: fprintf(…)

Syntax for fprintf(…)

int fprintf(FILE *fptr, char *format,...)

• fprintf() converts and writes output to the steam fptr under the control

of format.

• The function is similar to printf() function except the first argument

which is a file pointer that specifies the file to be written.

• The fprintf() returns the number of characters written, or negative if an

error occur.

Writing into a File: fprintf(…)

#include <stdio.h>

void main()

{

FILE *fptr;

fptr = fopen(“test.txt”, “w”);

fprintf(fptr, “Programming in C is really a fun!\n”);

fprintf(fptr, “Let’s enjoy it\n”);

fclose(fptr);

return;

}

Writing into a File: fputs()

Syntax for fputs:

int fputs(char *s, FILE *fptr)

• The fputs() function writes a string (which need not contain a newline) to

a file.

• It returns non-negative, or EOF if an error occurs.

Example: fputs(…)

#include <stdio.h>

void main()

{

FILE *fptr;

fptr = fopen(“test.txt”, “w”);

fputs(“Programming in C is really a fun!”, fptr);

fputs(“\n”, fptr);

fputs(“Let’s enjoy it \n”, fptr);

fclose(fptr);

return;

}

Writing into a File: putc(…)

Syntax for putc(…)

int putc(FILE *fptr)

• The putc() function is same as the putc(…).

#include <stdio.h>

filecopy(File *fpIn, FILE *fpOut)

{

int c;

while ((c = getc(fpIn) != EOF)

putc(c, fpOut);

}

Writing into a File: Example
• A sample C program to write some text reading from the

keyboard and writing them into a file and then print the content

from the file on the screen.

#include <stdio.h>

main()

{

FILE *f1;

char c;

printf("Data Input\n\n");

/* Open the file INPUT */

f1 = fopen("INPUT", "w");

Contd…

Writing into a File

while((c=getchar()) != EOF) /* Get a character from keyboard*/

putc(c,f1); /* Write a character to INPUT*/

fclose(f1); /* Close the file INPUT*/

printf("\nData Output\n\n");

f1 = fopen("INPUT","r"); /* Reopen the file INPUT */

while((c=getc(f1)) != EOF) /* Read a character from INPUT*/

printf("%c",c); /* Display a character on screen */

fclose(f1); /* Close the file INPUT */

}

OUTPUT

Data Input

This is a program to test

the file handling features on

this system

Data Output

This is a program to test

the file handling features on

this system

Special Streams in C

Special Streams
• When a C program is started, the operating system environment is

responsible for opening three files and providing file pointer for

them. These files are

• stdin Standard input. Normally it is connected to keyboard

• stdout Standard output, In general, it is connected to display screen

• stderr It is also an output stream and usually assigned to a program in

the same way that stdin and stderr are. Output written on

stderr normally appears on the screen

Note:

getc(stdin) is same as fgetc (stdin)

fprintf (stdout,"Hello World!\n");

printf(“"Hello World!\n");

The above two statements are same!

Special Streams

Example: Special Streams

#include <stdio.h>

main()

{

int i;

fprintf(stdout,"Give value of i \n");

fscanf(stdin,"%d",&i);

fprintf(stdout,"Value of i=%d \n",i);

}

OUTPUT

Give value of i

15

Value of i=15

Error Handling : stderr and exit

• What happens if the errors are not shown in the screen instead

if it's going into a file or into another program via a pipeline.

• To handle this situation better, a second output stream, called

stderr, is assigned to a program in the same way that

stdin and stdout are.

• Output written on stderr normally appears on the screen

even if the standard output is redirected.

Example: Error Handling

#include <stdio.h>

/* cat: concatenate files */

main(int argc, char *argv[])

{

FILE *fp;

void filecopy(FILE *, FILE *);

char *prog = argv[0]; /* program name for errors */

if (argc == 1) /* no args; copy standard input */

filecopy(stdin, stdout);

else

while (--argc > 0)

Contd…

Example: Error Handling

if ((fp = fopen(*++argv, "r")) == NULL) {

fprintf(stderr, "%s: can't open %s\n", prog, *argv);

exit(1);

} else {

filecopy(fp, stdout);

fclose(fp);

}

if (ferror(stdout)) {

fprintf(stderr, "%s: error writing stdout\n", prog);

exit(2);

}

exit(0);

}

Direct Input and Output

Structured Input/Output for Files

• Other than the simple data, C language provides the following

two functions for storing and retrieving composite data.

• fwrite() To write a group of structured data

• fread() To read a group of structured data

Writing Records: fwrite()
fwrite() writes data from the array pointed to, by ptr to the

given stream fptr.

Syntax:

• ptr This is the pointer to a block of memory with a minimum size of

size *nobj bytes.

• size This is the size in bytes of each element to be written.

• nobj This is the number of elements, each one with a size of size bytes.

• fptr This is the pointer to a FILE object that specifies an output stream.

int fwrite(void *ptr, int size, int nobj, FILE *fptr);

Example: fwrite()

#include<stdio.h>

struct Student

{

int roll;

char name[25];

float marks;

};

void main()

{

FILE *fp;

int ch;

struct Student Stu;

fp = fopen("Student.dat","w"); //Statement 1

if(fp == NULL)

{

printf("\nCan't open file or file doesn't exist.");

exit(0);

}

Contd…

Example: fwrite()

do

{

printf("\nEnter Roll : ");

scanf("%d",&Stu.roll);

printf("Enter Name : ");

scanf("%s",Stu.name);

printf("Enter Marks : ");

scanf("%f",&Stu.marks);

fwrite(&Stu,sizeof(Stu),1,fp);

printf("\nDo you want to add another data (y/n) : ");

ch = getchar();

}while(ch=='y' || ch=='Y');

printf("\nData written successfully...");

fclose(fp);

}

Contd…

Example: fwrite()

OUTPUT

Enter Roll : 1

Enter Name : AA

Enter Marks : 78.53

Do you want to add another data (y/n) : y

Enter Roll : 2

Enter Name : BB

Enter Marks : 72.65

Do you want to add another data (y/n) : y

Enter Roll : 3

Enter Name : CC

Enter Marks : 82.65

Do you want to add another data (y/n) : n

Data written successfully...

Reading Records: fread()
fread() reads data from the given stream into the array pointed

to, by ptr.

Syntax:

• ptr This is the pointer to a block of memory with a minimum size of

size *nobj bytes.

• size This is the size in bytes of each element to be read.

• nobj This is the number of elements, each one with a size of size bytes.

• fptr This is the pointer to a FILE object that specifies an input stream.

int fread(void *ptr, int size, int nobj, FILE *fptr);

Example: fread()
#include<stdio.h>

struct Student

{

int roll;

char name[25];

float marks;

};

void main()

{

FILE *fp;

int ch;

struct Student Stu;

fp = fopen("Student.dat","r"); //Statement 1

if(fp == NULL)

{

printf("\nCan't open file or file doesn't exist.");

exit(0);

}

Contd…

Example: fread()

printf("\n\tRoll\tName\tMarks\n");

while(fread(&Stu,sizeof(Stu),1,fp)>0)

printf("\n\t%d\t%s\t%f",Stu.roll,Stu.name,Stu.marks);

fclose(fp);

}

OUTPUT

Roll Name Marks

1 AA 78.53

2 BB 72.65

3 CC 82.65

Random Accessing Files

File Positioning Functions in C

• When doing reads and writes to a file, the OS keeps track of where

you are in the file using a counter generically known as the file

pointer.

• So long we have learnt about the sequential access in a file.

• The following are the functions to access file at random

• ftell() Tell the current position of the file pointer

• fseek() To position a file pointer at a desired place

within the file

• rewind() Is equivalent to fseek()

Random Accessing a File: ftell()

long ftell(FILE *fptr);

• ftell() takes a file pointer fptr and returns in a number of

type long, that corresponds to the current position.

• It returns -1L on error.

Example

long n;

n = ftell(fptr);

Note:
In this case, n gives the relative offset (in bytes) of the current position. This

means that n bytes have already been read (or written).

Random Accessing a File: fseek()

int fseek(FILE *fptr, long offset, int whence);

• fseek() function is used to move the file position to a

desired location within the file.

• The first argument is the file in question. offset argument is

the position that you want to seek to, and whence is what that

offset is relative to.

• You can set the value of whence to one of the three things:

SEEK_SET offset is relative to the beginning of the file.

SEEK_CUR offset is relative to the current file pointer position.

SEEK_END offset is relative to the end of the file.

Example: fseek()
• You can set the value of whence to one of the three things:

fseek(fp, 0L, SEEK_SET); // go to the beginning

fseek(fp, 0L, SEEK_CUR); // Stay at the current position

fseek(fp, 0L, SEEK_END); // go to the end of the file, i.e., past

the last character of the file

fseek(fp, 0L, SEEK_SET); // go to the beginning

fseek(fp, m, SEEK_SET); // Move to (m+1)th byte in the file

fseek(fp, m, SEEK_CUR); // Go forward by m bytes

fseek(fp, -m, SEEK_CUR); // Go backward by m bytes from the

current position

fseek(fp, -m, SEEK_END); // Go back by m bytes from the end

Random Accessing a File: rewind()

• rewind(): It repositions the file pointer at the beginning of

the file

void rewind(FILE *fptr);

Example
rewind (fptr); // Set the file pointer at the beginning

fseek(fptr, 0L, SEEK_SET); // same as the rewind()

fseek() vs. rewind()
Return value

• For fseek(), on success zero is returned; -1L is returned on

failure.

• The call to rewind() never fails.

Examples:

fseek(fp, 100, SEEK_SET); // seek to the 100th byte of the file

fseek(fp, -30, SEEK_CUR); // seek backward 30 bytes from the current position

fseek(fp, -10, SEEK_END); // seek to the 10th byte before the end of file

fseek(fp, 0, SEEK_SET); // seek to the beginning of the file

rewind(fp); // seek to the beginning of the file

Examples

File Handling : Example 1

#include <stdio.h>

#include <stdlib.h>

int main()

{

char ch, sourceFile[20], targetFile[20];

FILE *source, *target;

printf("Enter name of file to copy\n");

gets(sourceFile);

source = fopen(sourceFile, "r");

if(source == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

A program to copy a text file to another file.

Contd…

File Handling : Example 1
printf("Enter name of target file\n");

gets(target_file);

target = fopen(targetFile, "w");

if(target == NULL)

{

fclose(source);

printf(“Output File Error! File copy fails...\n");

exit(-1);

}

while((ch = fgetc(source)) != EOF)

fputc(ch, target);

printf("File copied successfully.\n");

fclose(source);

fclose(target);

return 0;

}

File Handling : Example 2

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char ch;

FILE *source, *target;

source = fopen(argv[1], "r");

if(source == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

A program to copy a text file to another file. Read the file names through command line.

Contd…

File Handling : Example 2

target = fopen(argv[2], "w");

if(target == NULL)

{

fclose(source);

printf(“Output File Error! File copy fails...\n");

exit(-1);

}

while((ch = fgetc(source)) != EOF)

fputc(ch, target);

printf("File copied successfully.\n");

fclose(source);

fclose(target);

return 0;

}

File Handling : Example 3

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int ch;

FILE *fpA, *fpB;

fpB = fopen(argv[2], "r"); //Open the file B

if(fpB == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

A program to concatenate a file (say A) to another file (say B) so that the resultant file is A

= A+B. Read the file names for A and B through command line.

Contd…

File Handling : Example 3

fpA = fopen(argv[1], “a"); //Open the file A in append mode

if(fpA == NULL)

{

fclose(fpA);

printf(“Output File Error! File merging fails...\n");

exit(-1);

}

while((ch = fgetc(fpA)) != EOF)

fputc(ch, fpA);

printf("Files are concatenated successfully.\n");

fclose(fpA);

fclose(fpB);

return 0;

}

File Handling : Example 4

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char ch;

FILE *source, *target;

source = fopen(argv[1], "r");

if(source == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

A program to encrypt a text file. Read the file names through command line.

Contd…

File Handling : Example 4

target = fopen(argv[2], "w");

if(target == NULL)

{

fclose(source);

printf(“Output File Error! File copy fails...\n");

exit(-1);

}

while((ch = fgetc(source)) != EOF)

fputc(ch+10, target); //Change the character...

printf("File copied successfully.\n");

fclose(source);

fclose(target);

return 0;

}

File Handling : Example 5

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char ch;

FILE *source, *target;

source = fopen(argv[1], "r");

if(source == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

while((ch = fgetc(source)) != EOF)

fputc(ch);

fclose(source);

return 0;

}

A program to display a file on the screen. Read the file name through command line.

File Handling : Example 6

#include <stdio.h>

#include <stdlib.h>

struct Student {

int rollNo;

char name[20];

float marks;

};

int main(int argc, char *argv[])

{

int choice = 1;

struct Student *data;

FILE *outfile, *infile;

outfile = fopen(argv[1], “w");

if(outfile == NULL)

{

printf(“Input file error. Program abort...\n");

exit(-1);

}

A program to store a record in file. Read the file and store all records in an array.

Contd…

File Handling : Example 6

while (choice) {

data = (struct *)malloc(sizeof(struct Student));

if (data != NULL) {

printf(\nEnter Roll No: “); scanf(“%d”,&data->rollNo;);

printf(\nEnter Name: “); scanf(“%s”,data->name;);

fwrite (data, sizeof(struct Student), 1, outfile);

printf(“\nDo you want to add more record (Type 0 for NO)?”);

scanf(“%d”, &choice);

}

}

fclose(outfile);

return 0;

}

A program to store a record in file. Read the file and store all records in an array.

Contd…

File Handling : Example 6

infile = fopen(argv[1], “r");

struct Student data[100];

if(infile == NULL)

{

printf(“File error. Program abort...\n");

exit(-1);

}

choice = 0;

while (fread (&data, sizeof(struct Student), 1, infile))

data[choice++] = data;

}

return 0;

}

