File Handling in C

What is a File?

* A named collection of data, typically stored in a secondary
storage (e.g., hard disk).

Examples
» Records of all employees in an organization
» Document files created using Microsoft Word

* Video of a movie
e Audio of a music

* Non-volatile data storage
 Can be used when power to computer is off

How a File 1s Stored?

 Stored as sequence of bytes, logically contiguous (may not be
physically contiguous on disk).

 Discrete storage unit for data in the form of a stream of bytes.

 Every file is characterized with a starting of file (or beginning of file
-BOF), sequence of bytes (actual data), and end of stream (or end of

file-EOF).

 Allows only sequential access of data by a pointer performing.

How a File 1s Stored?

Start EOF

b | S0 670 2 (6 o0 @] 0

\

File pointer

Note:

« Meta-data (information about the file) before the stream of
actual data can be maintained to have a knowledge about the

data stored in it.
* The last byte of a file contains the end end-of-file character

(EOF, with ASCII code 1A (Hex).

* While reading a file, the EOF character can be checked to
know the end.

Type of Files

e Text files

— Contain ASCII code only
» C-programs

* Binary files
— Contain non-ASCII characters
« Image, audio, video, executable, etc.

What type of file a .docx file produced by MS-Word?

Operations on Files

- Typical operations on a file are

Open : To open a file to store/retrieve data in it
Read : The file is used as an input

Write : The file is used as output

Close : Preserve the file for a later use

Access: Random accessing data in a file

Opening and Closing a File

File Handling Commands

Include header file <stdio.h> to access all file handling
utilities.

A data type namely FILE is there to create a pointer to a file.

Syntax
FILE * fptr; /[fptr is a pointer to file

To open a file, use fopen () function
Syntax

FILE * fopen(char *filename, char *mode)

To close a file, use fclose () function

Syntax
int fclose (FILE *fptr);

fopen ()

function

* FILE * fopen(char *filename, char *mode)

« The first argument is a string of characters indicating the name of the file to be
opened.

Examples: xyz12.c; student.data

* The second argument is to specify the mode of file opening. There are five file
opening modes in C

I

W

d
Cérb79

“Wb’,

: Opens a file for reading

. Creates a file for writing (overwrite, if it contains data)

. Opens a file for appending - writing on the end of the file
. Read a binary file (read as bytes)

. Write into a binary file (overwrite, if it contains data)

It returns the special value NULL to indicate that it couldn't open the file.

fopen () function

« |f a file that does not exist Is opened for writing or appending, It Is
created as a new.

« Opening an existing file for writing causes the old contents to be
discarded.

« Opening an existing file for appending preserves the old contents,
and new contents will be added at the end.

 File opening error
« Trying to read a file that does not exist.
* Trying to read a file that doesn’t have permission.
 |If there is an error, fopen() returns NULL.

Airelude<stdieh>
vold main ()
{
FILE *fptr; // Declare a pointer to a file
char filename[]= "file2.dat";
fptr = fopen (filename,"w");
/l fptr = fopen (“file2.dat”,"w"); [/lalternatively
if (fptr == NULL) {
printf (“Error in creating file”);
exit (-1); /I Quit the function
}
else /* code for doing something */
fclose (fptr);//

N
y)

Reading from a File

Reading from a File

* Following functions in C (defined Iin stdio.h) are usually used
for reading simple data from a file

¢ fgetc (..)
* fscanft (..)
¢ fgets (..)
* getc(..)

°* ungetc(..)

Reading from a File: fgetc ()

Syntax for f£getc(...)

int fgetc (FILE *fptr)

The fgetc () function returns the next character in the stream fptr as an
unsigned char (convertedto int).

 ltreturns EOF if end of file or error occurs.

(FILE *fptr;

int c;
/* Open file and check it is open */
while ((c = fgetc(fptr)) != NULL)

{
printf ("%c",c);

}

Reading from a File: fscanf ()

Syntax for f£scanf(...)

int fscanf (FILE *fptr, char *format, ...);

fscanf reads from the stream fptr under control of format and assigns
converted values through subsequent assignments, each of which must be a

pointer.
It returns when format is exhausted.

fscanf returns EOF if end of file or an error occurs before any conversion.

It returns the number of input items converted and assigned.

Example: Using fscanf (...)

-
FILE *fptr; inpu}.dat
fptr= fopen (“input.dat”,“r”);
int n; 20 30 40 50
/* Check it's open */
if (fptr == NULL)

{
printf (“Error in opening file \n”);
}
n = fscanf (fptr, “"sd 3d”, &x, &y); | ::> x =20
y =30

Reading from a File: fgets (...)

Syntax for £gets(...)
char *fgets(char *s, int n, FILE *fptr)

S The array where the characters that are read will be stored.
n The size of s.
fptr The stream to read.

« fgets () reads at most n-1 characters into the array s, stopping if a

newline is encountered.
The newline is included in the array, which is terminated by \0’.

« The fgets () function returns s or NULL if EOF or error occurs.

Example: Using fgets (...)

s

FILE *fptr;
char line [1000];
/* Open file and check it is open */

while (fgets(line,1000,fptr) != NULL)
{

printf ("Read line %s\n",line);

}

Reading a File: getc (...)

Syntax for getc(...)
int getc (FILE *fptr)

getc (..) Isequivalentto fgetc (...) exceptthatitisa macro.

Example: Using getc (...)

C program to read a text file and then print the content on the screen.

(#include <stdio.h>

#include <stdlib.h>

int main ()

{
int ch, fileName[25];
FILE *fp;
printf ("Enter the name of file you wish to read\n");
gets (fileName) ;
fp = fopen(fileName,"r"); // read mode

if (fp == NULL)
{

printf ("Error while opening the file.\n");

exit(-1);
}
printf ("The contents of %s file are :\n", fileName) ;
while((ch = getc(fp)) != EOF)

printf ("%c",ch);

~

fclose (fp); //f

return 0O; OUTPUT

test. txt

C Drooarammineag 1e Fiin

Enter the name of file you wish to read

The contents of test.txt file are

»

Undo a File Reading: ungetc ()

ungetc () : Push a character back onto an input stream.
Syntax:
int ungetc(int ¢, FILE *fptr)

Arguments:
C The character that you want to push back.
fptr The stream you want to push the character back on.

* Only one character of pushback is guaranteed per file.

 ungetc may be used with any of the input functions like
scanf, getc, Or getchar.

Example: ungetc ()

/

#include <stdio.h>
int main(void)

{

int ch;
while ((ch = getchar()) != '1') //readscharacters from the stdin
putchar (ch) ; /I and show them on stdout until en

ungetc (ch, stdin); //ungetc() returns 1’ previously read back to stdin

ch = getchar (); //getchar() attempts to read next character from stdin
/[and reads character '1' returned back to the stdin by ungg

putchar (ch) ; /l putchar() displays character

puts ("") ;

printf ("Thank you!\n");
return O;

PRPrce 00 S PD

Writing into a File

Writing Into a File

* Following functions in C (defined in stdio.h) are usually used
for writing simple data into a file
e fputc(..)
e fprintf(..)

e fputs(..)

* putc(..)

Writing Into a File: fputc (...)
Syntax for fputc(...)
int fputc(int ¢, FILE *fptr)

« The fputc () function writes the character ¢ to file fptr and returns the
character written, or EOF if an error occurs.

#include <stdio.h>

filecopy(File *fpIn, FILE *fpOut)
{
int c;
while ((c = fgetc (fpIn) != EOF)
fputc(c, fpOut);

Writing Into a File: fprintf (..)

Syntax for fprint£(...)

int fprintf(FILE *fptr, char *format,...)

fprintf () converts and writes output to the steam fptr under the control
of format.

The function is similar to printf () function except the first argument
which is a file pointer that specifies the file to be written.

The fprintf () returns the number of characters written, or negative if an
error occur.

Writing Into a File: fprintf (..)

/

#include <stdio.h>

volid main ()

{
FILE *fptr;
fptr = fopen (“test.txt”, “w”);

fprintf (fptr, “Programming in C is really a fun!'!\n”);

fprintf (fptr, “Let’s enjoy 1t\n”);
fclose (fptr) ;

return;

Writing Into a File: fputs ()

Syntax for fputs:

int fputs(char *s, FILE *fptr)

« The fputs () function writes a string (which need not contain a newline) to
a file.

[t returns non-negative, or EOF if an error occurs.

Example: fputs (...)

-
#include <stdio.h>

volid main ()

{
FILE *fptr;
fptr = fopen (“test.txt”, “w”);

fputs (“Programming in C 1s really a fun!”, fptr);
fputs (“\n”, fptr);
fputs (“Let’s enjoy it \n”, fptr);

fclose (fptr) ;

return;

Writing Into a File: putc (...)

Syntax for putc(...)

int putc(FILE *fptr)

e Theputc () functionissame asthe putc(..).

{

#include

<stdio.h>

filecopy(File *fpIn, FILE *fpOut)

int c;
while ((c = getc(fpln)
putc(c, fpoOut);

I= EQOF)

Writing Into a File: Example

« A sample C program to write some text reading from the
keyboard and writing them into a file and then print the content
from the file on the screen.

4)

#include <stdio.h>

main ()
{
FILE *fl;
char c;
printf ("Data Input\n\n");
/* Open the file INPUT */

fl — fopen("INPUT", "w") ;

Contd...

Writing Into a File

-

while ((c=getchar()) !'= EOF) /ﬁgt a character from kevhaard*/ W

ouTrPuT \
fclose (£1); /* Close the file INPUT*[@SData Input

printf ("\nData Output\n\n") This is a program to test
the file handling features on

f1 = fopen("INPUT","r"); /* R this system

putc(c, £1); /* Write a character to IN

Data Output
This is a program to test
printf ("%c",c); /*Displayachara the file handling features on

this system
fclose (£1); /* Close the file INPUT */

while ((c=getc(fl)) != EOF) |

Special Streams in C

Special Streams

* When a C program is started, the operating system environment is
responsible for opening three files and providing file pointer for
them. These files are

 stdin Standard input. Normally it is connected to keyboard
 stdout Standard output, In general, it is connected to display screen

 stderr ltisalsoan outputstream and usually assigned to a program in
the same way that stdin and stderr are. Output written on
stderr normally appears on the screen

Note:
getc (stdin) ISsameas fgetc (stdin)

Special Streams

fprintf (stdout,"Hello World!\n");

printf (“'Hello World!\n");

The above two statements are same!

Example: Special Streams

(#include <stdio.h>
main ()

{

int i;

fprintf (stdout, "Give value of i \n");
fscanf (stdin, "%d", &1) ;
fprintf (stdout, "Value of i=%d \n",1):;

}

OouTpPuT

Error Handling : stderr and exit

« What happens if the errors are not shown in the screen instead
If it's going into a file or into another program via a pipeline.

« To handle this situation better, a second output stream, called
stderr, IS assigned to a program in the same way that
stdin and stdout are.

« QOutput written on stderr normally appears on the screen
even If the standard output is redirected.

Example: Erraor Handling

-

#include <stdio.h>

/* cat: concatenate files */
main (int argc, char *argvl[])

{

FILE *fp;
void filecopy (FILE *, FILE *);
char *prog = argv[0]; /* program name for errors */
if (argc ==) /* no args; copy standard input */
filecopy(stdin, stdout);
else
while (-—-argc > 0)

Example: Erraor Handling

p
if ((fp = fopen (*++argv, "r")) == NULL) {
fprintf (stderr, "%s: can't open %$s\n", prog, *argv);
exit (1),
} else {
filecopy (fp, stdout);
fclose (fp) ;
}
1f (ferror(stdout)) {
fprintf (stderr, "%s: error writing stdout\n", prog);
exit (2);
}
exit (0) ;

Direct Input and Output

Structured Input/Output for Files

 Other than the simple data, C language provides the following
two functions for storing and retrieving composite data.

« fwrite () To write a group of structured data

 fread/() To read a group of structured data

Writing Records: fwrite ()

fwrite () writes data from the array pointed to, by ptr to the
given stream fptr.

Syntax:

int fwrite(void *ptr, int size, int nobj, FILE *fptr);

* ptr This is the pointer to a block of memory with a minimum size of
size *nob7j bytes.

« size Thisis the size in bytes of each element to be written,

* nobj This is the number of elements, each one with a size of size bytes.

fptr This is the pointer to a FILE object that specifies an output stream.

Example: fwrite ()

#include<stdio.h>

struct Student

{
int roll;
char name[25];
float marks;

¥,

void main ()

{
FILE *fp;
int ch;
struct Student Stu;

fp = fopen ("Student.dat","w"); //Statement 1

if (fp == NULL)
{

printf ("\nCan't open file or file doesn't exist.");
exit (0) ;

_ Contdl...

Example: fwrite ()

do

printf ("\nEnter Roll : ");
scanf ("%d", &Stu.roll) ;

printf ("Enter Name : ");
scanf ("%s", Stu.name) ;

printf ("Enter Marks : ");
scanf ("%$f", &Stu.marks) ;

fwrite (&Stu,sizeof (Stu),1,£fp);

printf ("\nDo you want to add another data (y/n) : ");
ch = getchar();

}while (ch=='y"' || ch=='Y");
printf ("\nData written successfully...");

fclose (fp);

Example: fwrite ()

add another data (y/ n) 'n

Reading Records: fread ()

fread ()

reads data from the given stream into the array pointed

to, by ptr.

Syntax:

int fread(void *ptr, int size, int nobj, FILE *fptr);

ptr

size
nobj

fptr

This is the pointer to a block of memory with a minimum size of
size *nob7j bytes.

This is the size in bytes of each element to be read.
This is the number of elements, each one with a size of size bytes.

This is the pointer to a FILE object that specifies an input stream.

Example: fread ()

#include<stdio.h>

struct Student
{
int roll;
char name[25];
float marks;
}:

void main ()

{
FILE *fp;
int ch;
struct Student Stu;

fp = fopen ("Student.dat","r"); //Statement 1

if (fp == NULL)
{

printf ("\nCan't open file or file doesn't exist.");
exit (0) ;

Contd...

Example: fread ()

printf ("\n\tRoll\tName\tMarks\n") ;
while (fread (&Stu,sizeof (Stu) ,1, £fp)>0)
printf ("\n\t%d\t%s\t%f",Stu.roll,Stu.name, Stu.marks) ;

fclose (fp);
}

OouTPUT

Name Marks
A 78.53
B 72.65
C 82.65

Random Accessing Files

File Positioning Functions in C

When doing reads and writes to a file, the OS keeps track of where
you are In the file using a counter generically known as the file
pointer.

So long we have learnt about the sequential access in a file.

The following are the functions to access file at random

ftell () Tell the current position of the file pointer
fseek () To position a file pointer at a desired place
within the file

rewind () Is equivalent to fseek ()

Random Accessing a File: ftell ()

long ftell (FILE *fptr);

« ftell () takesa file pointer fptr and returns in a number of
type 1ong, that corresponds to the current position.

e |treturns —11. on error.

Example
long n;
n = ftell (fptr) ;
Note:

In this case, n gives the relative offset (in bytes) of the current position. This
means that n bytes have already been read (or written).

Random Accessing a File: £fseek ()

int fseek (FILE *fptr, long offset, int whence);

« fseek () function is used to move the file position to a
desired location within the file.

« The first argument is the file in question. of fset argument Is
the position that you want to seek to, and whence Is what that

offset is relative to.
* You can set the value of whence to one of the three things:

SEEK SET | offset is relative to the beginning of the file.
SEEK_CUR | offset is relative to the current file pointer position.
SEEK_END | offset is relative to the end of the file.

Example: fseek ()

* You can set the value of whence to one of the three things:

4)
fseek (fp, OL, SEEK SET); //go to the beginning

fseek (fp, OL, SEEK CUR); [/ Stay atthe current position

fseek (fp, OL, SEEK END); //go tothe end of the file, i.e., past
the last character of the file

fseek (fp, OL, SEEK SET); //go to the beginning

fseek (fp, m, SEEK SET); /I Moveto (m+1)th byte in the file
fseek (fp, m, SEEK CUR); [/l Go forward by m bytes

fseek (fp, -m, SEEK CUR); [/ Go backward by m bytes from the
current position

fseek (fp, -m, SEEK END); // Go back by m bytes from the end
. /

Random Accessing a File: rewind ()

volid rewind (FILE *fptr);

 rewind () : It repositions the file pointer at the beginning of
the file

Example
rewind (fptr); I/ Set the file pointer at the beginning

fseek (fptr, 0L, SEEK SET); //same as the rewind()

fseek () VS. rewind ()

Return value

* For £fseek (), on success zero Is returned; —1L s returned on
failure.

e Thecallto rewind () never fails.

Examples:

fseek (fp, 100, SEEK SET); //seek tothe 100th byte of the file
fseek (fp, -30, SEEK CUR); /I seek backward 30 bytes from the current position
fseek (fp, -10, SEEK END); //seek to the 10th byte before the end of file

fseek (fp, 0, SEEK SET); I/ seek to the beginning of the file
rewind (fp) ; I/ seek to the beginning of the file

Examples

File Handling : Example 1

A program to copy a text file to another file.

/

~
#include <stdio.h>
#include <stdlib.h>
int main ()
{
char ch, sourceFile[20], targetFile[20];
FILE *source, *target;
printf ("Enter name of file to copy\n");
gets (sourceFile) ;
source = fopen (sourceFile, "r");
1f(source == NULL)
{
printf (“Input file error. Program abort...\n");
exit (-1);
}
/

Contd...

Flle Handling : Example 1

printf ("Enter name of target file\n");
gets (target file);

target = fopen(targetFile, "w");
if(target == NULL)

{

fclose (source) ;

printf (“Output File Error! File copy fails..

exit(-1);

while((ch = fgetc(source)) != EOF)
fputc (ch, target);

printf ("File copied successfully.\n");

fclose (source) ;
fclose (target) ;

return 0;

.\nn) E

File Handling : Example 2

A program to copy a text file to another file. Read the file names through command line.
4)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl[])
{

char ch;

FILE *source, *target;

source = fopen(argv[1l], "r");

i1f(source == NULL)
{

printf (“Input file error. Program abort...\n");
exit(-1);

Contd...

FiLe Handling : Example 2

target = fopen(argv([(2], "w");

if(target == NULL)
{

fclose (source) ;

printf (“Output File Error! File copy fails...\n");
exit (-1);

while((ch = fgetc(source)) != EOF)
fputc (ch, target);
printf ("File copied successfully.\n");

fclose (source) ;
fclose (target) ;

return 0;

File Handling : Example 3

A program to concatenate a file (say A) to another file (say B) so that the resultant file is A

= A+B. Read the file names for A and B through command line.
~ ™

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv|[])
{

int ch;
FILE *fpA, *fpB;

fpB = fopen(argv(2], "r"); //Open the file B

if (fpB == NULL)
{
printf (“Input file error. Program abort...\n");
exit (-1);
}
N —/

Contd...

File Handling : Example 3

p
fpA = fopen(argv[1l], “a™); //Open the file A in append mode

if (fpA == NULL)
{
fclose (fpA) ;

printf (“Output File Error! File merging fails...\n");
exit (-1);

while((ch = fgetc(fpA)) != EOF)
fputc(ch, fpA);

printf ("Files are concatenated successfully.\n");

fclose (fpA) ;
fclose (fpB) ;

return 0;

File Handling : Example 4

A program to encrypt a text file. Read the file hames through command line.
4

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl[])
{

char ch;

FILE *source, *target;

source = fopen(argv[1l], "r");

i1f(source == NULL)
{

printf (“Input file error. Program abort...\n");
exit(-1);

Contd...

FiLe Handling : Example 4

target = fopen(argv([(2], "w");

if(target == NULL)
{

fclose (source) ;

printf (“Output File Error! File copy fails...\n");
exit (-1);

while((ch = fgetc(source)) != EOF)
fputc (ch+10, target); //Change the character...

printf ("File copied successfully.\n");

fclose (source) ;
fclose (target) ;

return 0;

File Handling ;. Exam

A program to display a file on the screen. Rea

le 5

Rhe file name through command line.

/
#include <stdio.h>

#include <stdlib.h>

int main(int argc,

{

char *argvl([])

char ch;

FILE *source, *target;

source = "r');

fopen (argv[1l],

1 (
{

source NULL)
printf (“Input file error.
exit (-1);

while ((ch
fputc(ch) ;

fgetc (source))

fclose (source) ;

return 0;

Program abort..

A\n");

EOF)

~

File Handlin

A program to store a reco

- Exam

in file. Read the fi

9

P

le 6

and store all records in an array.

4 I
#include <stdio.h>
#include <stdlib.h>
struct Student {
int rollNo;
char name([20];
float marks;
} i
int main(int argc, char *argvl[])
{
int choice = 1;
struct Student *data;
FILE *outfile, *infile;
outfile = fopen(argv([1l], “w");
if(outfile == NULL)
{
printf (“Input file error. Program abort...\n");
exit (-1);
}
- J

Contd...

File Handling : Example 6

A program to store a record in file. Read the file and store all records in an array.

/
while (choice) {
data = (struct *)malloc(sizeof (struct Student));
if (data != NULL) {
printf (\nEnter Roll No: “); scanf (“%d”, &data->rollNo;) ;
printf (\nEnter Name: “); scanf (“%$s”,data->name;);
fwrite (data, sizeof (struct Student), 1, outfile);
printf (“"\nDo you want to add more record (Type 0 for NO)?”);
scanf (“%d”, &choice);
}
}
fclose (outfile) ;
return 0;
}
-

Contd...

File Handling : Example 6

-

infile = fopen(argv[1l], “r");
struct Student data[100];

if(infile == NULL)

{
printf (“File error. Program abort...\n");
exit (-1);

}

choice = 0;

while (fread (&data, sizeof (struct Student), 1, infile))
data[choice++] = data;

return 0O;

