
1 

 

 Compiler Design     

 
Lex Syntax and Example 
 
Lex is short for "lexical analysis". Lex takes an input file containing a set of lexical analysis rules or 
regular expressions. For output, Lex produces a C function which when invoked, finds the next match in 
the input stream. 

1. Format of lex input:     
     (beginning in col. 1) declarations or definitions 
    %% 
    token-rules  ( or) Translation rules 
    %% 
    Auxiliary procedures or subroutines 

2. Declarations: 
 a) string sets;  name  character-class  
 b) standard C; %{   -- c declarations -- 
    %} 

3.  Token rules:       regular-expression  { optional C-code } 
 
 a) if the expression includes a reference to a character class, enclose the class name in brackets { 
} 
 b) regular expression operators;  
 * , + --closure, positive closure   
 " " or \ --protection of special chars 
 |   --or 
 ^ --beginning-of-line anchor 
 () --grouping   
 $ --end-of-line anchor 
 ? --zero or one 
 . --any char (except \n) 
 {ref}  --reference to a named character class (a definition) 
 [ ] --character class 
 [^  ] --not-character class 
 

4. Match rules:   Longest match is preferred.  If two matches are equal length, the first match is 
preferred.  Remember, lex partitions, it does not attempt to find nested matches.  Once a 
character becomes part of a match, it is no longer considered for other matches. 

5. Built-in variables: yytext      -- ptr to the matching lexeme. (char *yytext;) 
    yylen   -- length of matching lexeme (yytext).  Note: some systems use 
yyleng 

6. Aux Procedures:  C functions may be defined and called from the C-code of token rules or from 
other functions. Each lex file should also have a yyerror() function to be called when lex 
encounters an error condition. 

7.  Example header file:  tokens.h 

#define NUM   1  // define constants used by lexyy.c  
#define ID   2         // could be defined in the lex rule file  
#define PLUS  3  
#define MULT  4  
#define ASGN  5  
#define SEMI 6  

7. Example lex file   
 D     [0-9]          /* note these lines begin in col. 1 */ 
 A     [a-zA-Z]  
 %{ 
 #include “tokens.h” 
 %} 
 %%  



2 

 

 {D}+               return (NUM);    /* match integer numbers */ 
 {A}({A}|{D})*   return (ID);         /* match identifiers */ 
 "+"                 return (PLUS);    /* match the plus sign  (note protection) */ 
 "*"                 return (MULT);     /* match the mult sign  (note protection again) */ 
 :=                   return (ASGN);    /* match the assignment string */ 
 ;                    return (SEMI);       /* match the semi colon */ 
  . ;                           /* ignore any unmatched chars */ 
 %%  
  
 void yyerror ()   /* default action in case of error in yylex() */ 
   {   printf (" error\n");   
        exit(0);  
   }  
 
 void yywrap () { }          /* usually only needed for some Linux systems */ 
 

8. Execution of lex:   (to generate the yylex() function file and then compile a user program) 
 
 (MS)  c:> flex rulefile   (Linux)  $ lex rulefile 
   
 flex produces lexyy.c    lex produces lex.yy.c 
 
 The produced .c file contains this function:    int yylex() 

9. User program:  
 (The above scanner file must be linked into the project) 
 

#include <stdio.h>  
#include “tokens.h” 
int yylex (); // scanner prototype 
extern char* yytext; 
  
main ()  
{  int n;  
 while ( n = yylex() )                          // call scanner until it returns 0 for EOF  
  printf (" %d  %s\n", n, yytext);   // output the token code and lexeme string  
}  

 

Table 1: Pattern Matching Primitives 

Metacharacter  Matches 
.  any character except newline 
\n  Newline 
*  zero or more copies of the preceding expression 
+  one or more copies of the preceding expression 
?  zero or one copy of the preceding expression 
^  beginning of line 
\x the special character x, e.g. \$ or \? (prefix unary) 

| either the preceding expression or the following one (infix binary) 

/ 
conditional: match the preceding expression only if followed by the following 
expression; useful for lookahead situations (binary) 

"..." exactly what's inside the quotes 

$  end of line 
a|b  a or b 
(ab)+  one or more copies of ab (grouping) 
"a+b"  literal "a+b" (C escapes still work) 
[]  character class 

[xyz] 
any character from the string of characters; can use - for ranges of characters, 
e.g.[Ii] [0-9] [\_ \n\t] 

[^xyz ] any character not from the string of characters; can use - for ranges 

{name} a named regular expression reference, e.g. {digit} 



3 

 

{n,m} minimum of n to a maximum of m repeats (postfix unary), e.g. {digit}{1,3} 

( ) grouping 

 
Table 2: Pattern Matching Examples 

Expression  Matches 
abc  abc 
abc*  ab abc abcc abccc ... 
abc+  abc abcc abccc ... 
a(bc)+  abc abcbc abcbcbc ... 
a(bc)?  a abc 
[abc]  one of: a, b, c 
[a-z]  any letter, a-z 
[a\-z]  one of: a, -, z 
[-az]  one of: -, a, z 
[A-Za-z0-9]+  one or more alphanumeric characters 
[ \t\n]+  whitespace 
[^ab]  anything except: a, b 
[a^b]  one of: a, ^, b 
[a|b]  one of: a, |, b 
a|b  one of: a, b 

 

Table 3: Lex Predefined Variables 
Name  Function 
main() Invokes the lexical analyser by calling the yylex subroutine. 

int yylex(void)  call to invoke lexer, returns token 
char *yytext  pointer to matched string 
yytext Character string of matched lexeme 

yyleng  length of matched string 

yywleng 
Tracks the number of wide characters in the matched string. Multibyte 
characters have a length greater than 1. 

yylval  value associated with token 
yyval local variable  

yylineno number of the current input line 

int yywrap(void)  
wrapup, called by lex when input is exhausted (EOF) and return 1 if 
done, 0 if not done 

yymore() 
Appends the next matched string to the current value of 
the yytext array rather than replacing the contents of the yytext array. 

yyless(k) 
Retains n initial characters in the yytext array and returns the 
remaining characters to the input stream. 

yyreject() 
Allows the lexical analyser to match multiple rules for the same input 
string. (yyreject is called when the special action REJECT is used.) 

yyparse() It parses (builds the parse tree) of lexeme 

FILE *yyout  output file 
FILE *yyin  input file 
INITIAL  initial start condition 
BEGIN  condition switch start condition 
ECHO  write matched string 

Regular expressions: 
delim [ \t\n] 
ws {delim}+ 
letter [A-Za-z] 
digit [0-9] 
id {letter}({letter}|{digit})* 
unum {digits}+ 
snum [+\-]?{unum} 
rnum {snum}\.{unum}([Ee][+\-]?{unum})? 

 
Translation rules 



4 

 

Translation rules are constructed as follows 
r.e.1 {action1} 
r.e.2 {action2} 
.... 
r.e.n {actionn} 
 
The actionsi are C code to be carried out when the regular expression matches the input. 
Think event-driven programming. 
For example: 
 
{ws}        {/* nothing */} 
[Ii][Ff]    {return(IF);} 
{id}        {yylval = storeId(yytext,yyleng); 
                 return(ID);} 
{snum}      {yylval = storeNum(yytext,yyleng,atoi(yytext),INTEGER); 
                 return(CON);} 
{rnum}      {. . . . } 
"<"         {yylval = LESS; return(RELOP);} 
"<="        {yylval = LESSEQ; return(RELOP);} 

 
Compiling (f)lex 
Create your lexical source in the file lex.l and then compile it with the command 
 • flex lex.l 
The output of flex is a C source file lex.yy.c which you then must compile with the compiler of 
your choice 
 • gcc lex.yy.c –lfl 
 
f/lex can be used as a standalone program generator and does not have to be part of a larger 
compiler system as the diagram above shows. 
lex.cc.y can be set to another filename within flex as can be the input file name (we use 
scanner.specs) 
The key function yylex() can be generated and combined with other code instead of being 
connected to the standard executable a.out 
`-lfl'    library with which scanners must be linked. 
`lex.yy.c'    generated scanner (called `lexyy.c' on some systems). 
`lex.yy.cc'   generated C++ scanner class, when using `-+'. 
`<FlexLexer.h>'   header file defining the C++ scanner base class, FlexLexer, and its derived 
class, yyFlexLexer. 
`flex.skl'    skeleton scanner. This file is only used when building flex, not when flex executes. 
`lex.backup'    backing-up information for `-b' flag (called `lex.bck' on some systems). 
 
%{ 
#include <stdio.h> 
%} 
%option noyywrap 
 
%% 
    [0-9]+  { 
       printf("Saw an integer: %s\n", yytext);  } 
.|\n    {   } 
%% 
int main(void) 
{      yylex(); 
    return 0; 
} 


