1S
It

ProgrAMMING WITH FLEX

" In this chapter, we discuss how to program in Flex. Flex is a software tool for building

lexical analyzers or lexers. A lexical analyzer takes input streams and tokenizes it,
i.e. divides up into lexical tokens. This division into units (which are usually called
tokens) is known as lexical analysis or lexing in short. Flex takes a set of rules for valid
tokens and produces a C program which we call a lexical analyzer or a lexer or a
scanner in short, that can identify these tokens. The set of rules or descriptions you give
to Flex is called a Flex specification.

The token descriptions or rules that Flex uses are known as regular expressions. Flex
turns these regular expressions into the lexer that scans the input text and identifies the
tokens. The lexer generated by Flex is almost always faster than a lexer that you might
write in C by hand. This chapter deals with the syntax and semantics of Flex tool to
generate the lexical analyzer, and the terms Lex and Flex are interchangeably used to
represent the same.

31 FLEX

Flex is a fast lexical analyzer generator—a tool for programming that recognizes lexical
patterns in the input with the help of Flex specifications. Flex specification contains two
parts: (i) patterns and (ii) corresponding action. When you write a Flex specification,
you create a set of patterns which the lexer matches against the input. Each time one
of the patterns matches, the corresponding action part is invoked (which is a C code).
In this way, a Lex program divides the input into tokens.

Flex itself does not produce an executable program; instead, it translates the Lex
specifications into a file containing a C subroutine called yylex(). More precisely, all the
rules in the rules section will automatically be converted into the C statements by the
Flex tool and will be put under the function name of yylex(). That is, whenever we call
the function yylex, C statements corresponding to the rules will be executed. That is, we
call yylex() to run the lexer. The generated lexical analyzer, by default it is lex.yy.c, can
be compiled using regular C compiler along with any other files and Flex libraries you
want.

15

16 @ Compiler Design Using FLEX and YACC

The program that you write in a Lex program contains the Lex specification and
other C statements and subroutines. This file is named with an extension <filename>.l
(for example, file.l). When this Lex program is passed to the Flex, it translates the
<filename>.I into a file named lex.yy.c, which is a C program. Figure 3.1 shows the
phases of a Lexical analyzer.

Flex program —— Flex — lex.yy.c

lex.yy.c

Lexical analyzer Valid tokens

Source program —»

FIGURE 3.1 Phases of a Lexical Analyzer.

The file lex.yy.c is also called the lexer or lexical analyzer. This C program is compiled
with a normal C compiler and it produces an executable program. This can be executed
like a normal C executable file.

3.2 STRUCTURE OF FLEX PROGRAM

Any Flex program consists of three sections separated by a line with just %% in it.

Definition Section

%%

Rules Section

%%

User code (Auxiliary) Section

Let us now look at the basic structure of a Lex program. It consists of three sections.

1. A definition section
2. A rules section
3. A user defined section

The first section, i.e. the definition section contains different user defined Lex
options used by the lexer. It also creates an environment for the execution of the Lex
program.

The definition section helps to create an atmosphere in two areas. First, it creates
an environment for the lexer, which is a C code. This area of the Lex specification is
separated by “%{” and “%]}”, and it contains C statements, such as global declarations,
commands, including library files and other declarations, which will be copied to the
lexical analyzer (i.e. lex.yy.c) when it is passed through the Flex tool. In other words,
Flex copies all the statements in this C declaration section bracketed by “%({" and “%}”
to the lexical analyzer file, which is lex.yy.c.

Chapter 3: Programming with FLEX & 17

Secondly, the definition section provides an environment for the Flex tool to
convert the Lex specifications correctly and efficiently to a lexical analyzer. This section
mainly contains declarations of simple name definitions to simplify the scanner
specifications and declarations of start condition. The statements in this section will
nelp tne Lex rules to run efficiently.

The second section of any Lex program is the rules section that contains the
patterns and actions that specify the Lex specifications. A pattern is in the form of a
regular expression to match the largest possible string. Once the pattern is matched, the
corresponding action part is invoked. The action part contains normal C language
statements(s). They are enclosed within braces (i.e. “{” and “}"), if there is more than
one statement, to make these component statements into a single block of statement.

Most versions of the Lex tools take everything after the pattern to be the action,
while others only read the first statement on the line and silently ignore other
statements. Always use braces to make the code clear, if the action has more than one
statement or more than one line large.

The lexer always tries to match the largest possible string, but when there are two
possible rules that match the same length, the lexer uses the first rule in the Lex
specification to invoke its corresponding action.

The third and the final section of the Lex program is the user defined or user
subroutine section. It is also known as auxiliary section. This section contains any valid
C code. Flex copies the contents of this section into the generated lexical analyzer as it
is. The simplest Flex program is

%%

which generates a scanner that simply copies its input (one character at a time) to its
output. The following Flex programs will explain the syntax and semantics of the Flex
specifications.

PROGRAM 3.1

Before we discuss any specific features of Lex, let us look at some simple Lex programs
and analyze and understand how they work. Consider a simple Lex program given
below, Program 3.1, which prints Hi Good Morning as we press the ‘Enter’ key.

//***

//FLEX program that Program to show the message

//when an ENTER key is pressed

//

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***************'k*‘k***

18 @ Compiler Design Using FLEX and YACC

%{
/*Program to show the message when an
: Definition
ENTER key is pressed */
%)
%%
[\n] { /* Display the following message */ Rules
printf (“\n\nHi..Good Morning..\n”) ;
}
%%
main () Auxiliary procedure
{
yylex();
}

In the first section, definition description of the program is shown. The whole part of
this section will be copied to the lexical analyzer as it is.

The second section, i.e. rules section, contains the pattern and corresponding
action. The pattern part of a Lex specification contains the regular expression of the
lexical analyzer and the second part contains the action part, which is a C code, and
will be carried out when a pattern matches with the input strings. In the above
program, the pattern is “[\n]”, which is an Enter key or a New line. Whenever the
input string matches with the above said pattern string, statements in the action block,
which are in the open curly braces (“{”) and closing curly braces (“}”), will be executed.
Here only one statement (printf(“\n\n Hi....Good Morning....\n"); will be executed.
That is, whenever an Enter key is pressed or a new line is found, it will display or print
Hi.oos 2o Good Morning....

Note that when this Lex program is passed through the Flex tool to generate the
lexical analyzer, it will convert the rules section into a C function, named yylex()
automatically, which enables us to call from the main function. That is why we called

the function yylex() in the main function, even though we have not defined it anywhere
in the program. (Normally in C language we have to define a function before it is

called.)

3.3 TRANSLATING, COMPILING AND EXECUTING A FLEX PROGRAM

Let Program 3.1 be in a file called pro i
gram.l. To create or generate a 1
must enter the following commands. ¢ o el analyzer e

[root@Zion testFlex]#flexprogram.l (i.e. flex <filename.1l>)

Chapter 3: Programming with FLEX ¢ 19

When the above command is executed, Flex translates the Lex specifications into a C
source file called lex.yy.c, which is a lexical analyzer. Any lexical analyzer can be
compiled using the following command.

[root@Zion testFlex]#cc lex.yy.y -1f1

This will compile the lexical analyzer, lex.yy.c (C source file), using any C compiler by
linking it with the Flex library using the extension -Ifl. After compilation, the output,
by default, will write to “a.out” file. If you want to write the output to any one of the
user defined file, then execute the following command to compile the lexer.

[root@Zion testFlex]#cc lex.yy.c -o program. output -1£1

In this case the output will write to the filename program.output. Now we can execute
the resulting program to check out whether that will work out as expected. You may
use the following commands to execute the same.

[root@Zion testFlex]#./a.out
or

[root@Zion testFlex]#./program.output (i.e. /<output filename>)

PROGRAM 3.2

Consider another Lex program, Program 3.2, which scans (or get the input from the
keyboard) the name and prints the message “Hi........ <Name>....... Good Morning”
when the Enter key or new line is found.

//******************************‘k********************************‘k***********

//FLEX program to print the name when an ENTER key is pressed
[/
//The lexer generated using the flex-2.5.44 tool in RedHat Linux EL

//***

#include<stdio.h>
char Name[10]; //Global Declaration of variables Name[10]

%}
%%
[\n] { /*Firstrule ismatched when a new line is found */

/* Following message will be shown along with the given input name */
printf (“*\nHi..%s.....Good Morning..\n”, Name) ;

20 ¢ Compiler Design Using FLEX and YACC

%%
main()
{
char opt;
do
{
printf (“*\n\nWhat is your name: ") ;
scanf (“%s”,Name) ; //scanning your name
yylex(); //calling the rules section function
prinf (“\nPress any key to continue(Y/y):");
scanf (“%c”, &opt) ;
} while ((opt =='Y’) || (opt=="'y’));

The definition section contains global declarations, including the header files and usual
commands. Here there is a global declaration for storing the username.

The second part contains the Lex specification subroutine. You may note that this
subroutine is using the variable which has been globally declared in the definition
section. The Lex rule in this section will be matched when a new line is found.

In the third section, the user defined function section, we have normal C main()
function which scans your name and prints the message whenever an Enter key is
pressed. This procedure is repeated until we input the option as N (for No).

PROGRAM 3.3

Program 3.3, using the user defined function, prints the message Hi..... <<your name>>
Good Morning.... whenever a new line or Enter key is pressed.

//***‘k**‘k*‘k*******************‘k********

//FLEX program to print the name, whenever an ENTER

// key is pressed (using the functions)

//

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//*****************‘k***
void disply(char*); /*Function Declaration */

%}

%%

Chapter 3: Programming with FLEX ¢ 21

[\n] {
char name [20] ; /* Variable is declared */
printf (“Enter your name =") ;
scanf (“%s”,name) ; /* Getting the input */
disply(&name[0]) ;/* Function calling */
return; /* returning to the called function, which is main
here */

%%

/*Function definition to display the message */
void disply (char *in)

{
printf (“\nHi....%s Good Morning. \A",AH) ;
}
- main()
{
printf (“\n\nPress <<ENTER>> key to show the message”) ;
yylex(); /* <Calling the function yylex(), to execute the rules

section */

Note that this program is almost similar to Program 3.2, except that this is using the
C function “disply” to print the message. Moreover, the character variable Name is not
declared globally.

In the definition section we have a function declaration (i.e. disply). This function
returns nothing (void) and gets a parameter of type char *. The definition of this
function is in the user defined function section.

The second section contains rules. The pattern section of the rules contains the
regular expression to denote the new line and its action part contains the variable
declaration and other C statements. At the end, the function disply() is called by passing
the parameter.

Note that the open curly bracket (“{”) in the action part of any rule and the pattern
should be in the same line with a single white space.

For example:

1. [\n] {
Printf (“\n input is a newline”);

2. [\n]

Printf (“\n input is a newline”) ;

}

Example 1 is the correct syntax while Example 2 is not.

22 ¢ Compiler Design Using FLEX and YACC

Also note that in Lex program all the statements should begin at the extreme left
column of the file (because Flex is left recursive tool). Otherwise, the Flex tool may not
be able to generate the lexical analyzer properly, and thus it will be an error.

In the last user defined section, we can see the function disply() defined and the
main() function.

PROGRAM 34

The following Flex program (Program 3.4) will check whether the given word is a
vowel or not and print it.

//**k*

/ /FLEX program to check whether the given word is

// vowels oxr NOT, using functions

//

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//****‘k******‘k*k***‘k***************‘k****‘k************************************

voiddisplay (int) ;
%}
%%

l[ale]i]o|ul [a-zA-Z]+ { /* First Rule where the patterns are matched against its
vowels*/

int flag=1; /* Initializing the variables */
display(£flag); /* Function Calling */
return; /* Return to where it is called */
}

A+ { /* Second rule, where the patterns

arematched if any thing other than the above rule */
int £flag=0;
display(flag);
return;

}
%%

/* Defining the function ‘display’ to the apt message */
voiddisplay (int flag)
{
if(flag==0)
printf (“\nThe given word is NOT a vowel\n”) ;
else
printf (*\nThe given word is a vowel\n”) ;

Chapter 3: Programming with FLEX ¢ 23

in ()

printf (“*\nEnter a word to check whether it is vowel oxr NOT\n"”) ;
’ yylex(); /* Calling the function to execute the rules in the rules section */

tion of thls program contains the usual C commands and a function declaratlon
One parameter is passed to the function display() of type int.
~ In the second section we have two rules. The rules stated first have the highest
riority and will be executed first. If the pattern is not matching with the given input
then it will execute second rules, and so forth. In this program, the pattern of the first
rule checks whether the first letter starts with any one of the characters g4, ¢, i, 0, u and
followed by any character of small case, a-z or a capital case, A-Z. If it matches, the
‘variable flag is set to one and it is passed to the function display. The action part of the
second rule will be executed only when it matches its pattern (.+), i.e. any thing other
than what is said in the first pattern will match the second. The variable flag is set to
zero if the given word is not a vowel.
In the third section, two functions are defined, i.e. the display() function that prints
the message whether it is a vowel or not and the main() function from where the
"e?*ecution begins.

34 ANALYZING LEX PROGRAM WITH C PROGRAM

o

" A Lex program is almost similar to a C program, except for the Flex syntaxes. If the
reader closely analyzes the Flex programs discussed before, they might note the
following points.

(@) InC program, anything declared outside the function is called global declaration
(for example, #include, #define, variable declarations, function declarations,
structure definition, etc.). In Flex, they are placed in the first definition section
in between %/ or %]} or outside any user defined C (auxiliary) functions in the
last section.

(b) Any rule written in the second section, i.e. the rules section, will be converted
by the Flex tool to a function named yylex(). So this is one of the important
sections which need special attention when we discuss Flex tool or Lex
program. Generally, we call this function yylex() from the main() function in the

; user defined section. Besides, the action part of any rule contains normal C
‘ II code, which needs no conversion from Flex tool, because they are already in
C code.

] |

24 ¢ Compiler Design Using FLEX and YACC

(¢) The third and final section, i.e. the user defined section, contains normal user
defined C functions. The necessary function that is to be defined in this section
is main(), from where the execution begins. Generally any operations
performed on normal C functions such as passing a parameter, pointers,
returning a value can also be done in the Lex program.

3.5 yylext AND yyleng

When the generated lexical analyzer is executed, it analyzes its input looking for
strings (tokens) that match any of its patterns. If it finds more than one pattern
matching, the rule listed first in the Flex specification is chosen, and the corresponding
action will be executed.

Once the match is determined, the text/ string corresponding to the match (called
the token) is made available in the global character pointer variable yytext (i.e. yytext
is a globally declared variable by the Flex tool when it generates the lexical analyzer.
By default its data type is character pointer). As soon as the lexical analyzer finds a
token, it will be made available in the variable yytext for any further manipulations.
Note that yytext will contain the recently found token. When another token is found,
earlier one will be replaced with the recently matched token.

The user can define yytext in two different ways: either as a character pointer or as |
a character array. By default it is declared as a pointer. You can control the definition
of yytext by including one of the special directives %pointer or Joarray in the first
(definition) section of your Flex program. The advantage of using Jopointer is
substantially faster scanning and no buffer overflows when matching very large tokens
(unless you run out of dynamic memory). The disadvantage is that input() function
destroys the present contents of yytext, which can be a considerable porting headache
when moved betv-een different Lex version. The advantage of %array is that you can
then modify yytext to your own will, and make calls to the unput() function (detailed
discussion on unput() is in next section). We will discuss more on implementation of
Yytext in the next section with example.

%array defines yytext to be an array size of YYLMAX characters, which by default
is a fairly large value. YYLMAX is a variable defined by the Flex tool when a lexical
analyzer is generated. When the Yytext is declared as array, by default it allocates the
memory for the size YYLMAX. We can change the size by simply defining

#define YYLMAX <constant numbers>

to a different value in the first section of the Lex program. The concept of YYLMAX
is used in Program 3.13.

But when we use %pointer, yytext grows dynamically to accommodate very large
tokens (such as matching entire blocks of commands). Bear in mind that each time the
scanner resizes yytext, it must also re-scan the entire token from the very beginning, so
matching the tokens can prove to be a slow process. Moreover, existing Lex programs
sometimes access yytext externally using declarations of the form

extern char yytext([];

Chapter 3: Programming with FLEX & 25

‘That is, when a Lex program has to use or share other Flex program’s yytext for some
manipulations, we can execute the above statement to access the same.

The length of the string in yytext is copied to Flex variable yyleng. Whenever a new
token is replaced with the old one, it will replace the content of yyleng accordingly. This
is equivalent to execute the statement

int yyleng = strlen(yytext) ;

PROGRAM 3.5

Program 3.5 will check whether the given string is a word or a number. The word
contains one or more (any) alphabetical characters from A to Z or (lower case) a to z
letters. And a number contains one or more (any) digits from 0 to 9.

%{
//***
//FLEX program to check whether the given string is

// word or digit, using functions

i/
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***

void display (char[], int) ;
%}
%%
la-zA-Z]1+[\n] { /* First Rule tomatch a word with alphabet*/
int flag=1;
display (yytext, flag); /* Function is calledby passing two
parameters */
return;
}
[0-9]+[\n] { /* SecondRule tomatchadigit */
int flag=0;
display (yytext, flag); /* FunctionCalling */
return;

.+{ /* Third rule is matched any thing other than the above rules */

int flag=-1;
display (yytext, flag); /* FunctionCalling */
return;

3

%%

Chapter 3: Programming with FLEX & 27

L/

%}

%%

-,

%{

There are a number of special directives which can be included within an action.

3

Directives, like keywords in C, are those words whose meaning has been already pre-
defined in the Flex tool. Mainly, we have three directives in Flex.

1%

“ECHO” copies yytext to the scanner’s output. That is, whatever token we have
recently found (or matched) will be copied to the output.

The directive BEGIN, followed by the name of the start symbol, places the
scanner in the corresponding rules. Flex activates the rules by using the
directive BEGIN and a start condition.

The directive REJECT directs the scanner to proceed into the “scanned best”
rule to match the prefix of the input. That is, as soon as REJECT statement is
executed in the action part, the last letter will be treated (or prefixed) from the
recently matched token and will go ahead with the prefixed input for next best
rule. To be more precise, Flex makes a DFA (Determinative Finite Automata)
state machine out of your rules, so it only needs to keep track of the stacks it
was in, and REJECT just jumps back to the last state. Program 3.6 will explain
how REJECT statement works.

PROGRAM 3.6

//***

//FLEX program to check REJECT statement

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//********************‘k****************:)(*************************************

[a-z]+ { /* First Rule that matches small case alphabets*/

printf (*\nString contains only lower case letters =");
ECHO; /* the content of yytext is displayed */

[a-zA-Z]+ { /* SecondRule that matches lower and upper case

alphabets */ ;
printf (“"\nlts contains both lower & upper case letters
=");

ECHO;REJECT; /* Lastmatched token is rejected */

28 ¢ Compiler Design Using FLEX and YACC

« { /* Third Rule any one character other than the above rule*/
printf(“\nlts containsmixed letters=");
ECHO;

}

%%

main ()

{

yylex();

In the rules section, we have three rules. The first rule’s pattern will match
combination of tokens with any number of lower case letters from a—z. The second will
match a combination of tokens with any number of lower and upper case letters from
a-z and A-Z. The third rule will match any unmatched character other than a-z and |
A-Z. Note that the third rule only matches one letter, while the other rules match one |
or more. Let us closely analyze the behaviour of Program 3.6 with the typical input |
asDF.

[root@localhost rejectTest]# ./a.out
asDF

Its contains both lower & upper case letters = asDF
Its contains both lower & upper case letters = asD
String contains only lower case letters = as

Its contains both lower & upper case letters = DF
Its contains both lower & upper case letters =D
String contains only lower case letters =D

Its contains both lower & upper case letters = F
String contains only lower case letters = F

[1]+ Stopped . /a.out
[root@localhost rejectTest]#

Flex always tries to match the longest possible string it can, so it matches as with
the help of the first rule, but does not quit there since it is able to match asD. It does
not stop there since it is also able to match asDF through the second rule. When it does
so, it has run out of input, so it has to accept the string asDF. But it executes the action
statements including REJECT, so it has to backtrack one state to where it matched with
asD, which is prefixed (by one) input of asDF.

Chapter 3: Programming with FLEX ¢ 29

The second rule accepts string asD and executes the corresponding actions,
including the REJECT again, and has to try with prefixed input as for the second rule
as earlier. The third rule only matches any one of the character strings. It does not
match with our prefixed input as, and has to try with other rules.

Now the first rule accepts as and runs the corresponding action statements, which
do not include any “REJECT” or return to start over with a new input.

Flex goes back to the DFA states from where we have backtracked or prefixed, here
it is DF. Flex matches the string through the second rule and execution of
corresponding actions will REJECT again to prefix the input to D, which will be again
matched by the second rule and go for the third rule to match the token. Then again
it will go back to the translated prefix string F to match the second and third rules
successively. Program 3.7 is a modified version of Program 3.6, that will explain all
rules accepting (or matching) more than one letters.

PROGRAM 3.7

//***‘k*******************************

/ /FLEX program to check REJECT statement
%/
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***

%}
%%

l[a-z]+ { /* FirstRule thatmatches small case alphabets*/
printf (*\nString contains only lower case letters =)
ECHO; /* the content of yytext is displayed */
}

la-zA-2]1+ { /* SecondRule that matches lower and upper case
alphabets */
printf (*\nlts contains both lower & upper case letters =");
ECHO;REJECT; /* Lastmatched token is rejected */
}

A4 /* Third Rule anything other than the above rule*/
printf (“\nlts contains mixed letters =) ;
ECHO;
}
%%
main()
{
yylex() ;

30 e Compiler Design Using FLEX and YACC

In this program the third rule is matching with any number of letters that have failed
to match by the first two rules. In this case, once the input asDF is matched through
the second rule, REJECT statement will be executed when its action statements are
executed. Then the matching will proceed for the second best rule with the prefixed
input asDF, to find the last rule. The third rule matches and accepts the token asD.
REJECT should be avoided at all costs when performance is important and is an
expensive option. Also, note that unlike the other special actions, REJECT is a branch;
the code (statements) immediately following it in the action will not be executed.

3.7 START CONDITION

Start conditions are declared in the definition (first) section of the Flex program using
unintended lines beginning with either %s or %x, followed by a list of names called
start symbols. If a start condition is declared with %s, then it is called an inclusive start
condition, and if it is declared with %x, then it is called an exclusive start condition.

A start condition rule is activated using the directive BEGIN. Until the next BEGIN

action is executed, rules with the given start conditions will be active and those with |

other conditions will be inactive.

If the start condition is declared as inclusive, then all rules without any
start condition and rules with corresponding start condition will be active. If it
is exclusive, then only rule(s) that is/are qualified with the start condition will be

active. Programs 3.8 and 3.9 show how an inclusive start condition differs from an |

exclusive one.

BEGIN(<start condition>) will activate the corresponding declared rule(s) for the
given start condition. BEGIN(0) returns to the original (initial) state where only the
rules without start conditions are active. This state can also be referred to as the start
condition INITIAL, therefore BEGIN(INITIAL) is equivalent to BEGIN(0).

PROGRAM 3.8

//*****************‘k****************‘k**

//FLEX program that implements inclusive start condition
P4
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**‘k**'k***‘k***************‘k***
%}

%s SM SMBG

%%

BEGIN (SM) ; /* First Rule that matches ‘#’ */
BEGIN(SMBG) ; /* Second Rule that matches ‘##’ */

Chapter 3: Programming with FLEX ¢ 31

[0-91+ { /* Third Rule that matches any digit */
printf(“\nlItsa digit”);
}

<SMBG>[A-Z]+ { /* FourthRule that will get activatedwhen SMBG
begins and match wih A-Z *./
printf (“\nGiven string contains big letter(s)”);

}

<SM>. { /*Fifthrule?*/
printf (*\nExiting from # start condition”) ;
BEGIN(INITIAL); /* Invoking initial start conditions */
}

<SM, SMBG>[a-z]1+ { /* SixthRule */
printf (“*\nGiven string contains small letters (s)");

}

<SMBG>. + { /* Seventh Rule */
printf (*\nExiting from ## start conditions”) ;

}

A+ { /* Eight Rule */
printf (“\nNOaction to execute”) ;

%%

main ()

{ &
printf (“*\nEnter # whenur expecting digits and small case letter strings”);
printf (“\nEnter ## whenur expecting only big and small case letter strings”):
yylex();

Program 3.8 has two start conditions and they are declared inclusively. %s SM SMBG
declares two start conditions, i.e. SM and SMBG. In the second section it has eight
rules. The rules one, two, three and eight will be active as soon as the function yylex()
is called, and also note that they are not attached to any start symbol. Others will be
inactive whenever we input ‘#. The ‘# will call and execute BEGIN(SM) to activate all
the rules having start condition SM. In this case the rules fifth and sixth will be
activated along with the earlier ones. If we input any strings of characters with lower
case alphabet, from a-z, then the sixth rule will be executed, and if we input any
numerical digit from 0-9, then the third rule will be executed. Execution of
BEGIN(INITIAL) will initialize all the earlier conditions. That is, only one, two, three,
and eight conditions will be active, and all the other rules that start with start symbol
SM will be disabled.

32 ¢ Compiler Design Using FLEX and YACC

Whenever we irput “##”, BEGIN(SMBG) will be called and all the rules having
start condition SMBG will be activated. The rules 4th, 6th and 7th will be activated
along with the earlier ones. Note that the 6th rule is activated only when any one of
its start condition (i.e. SM or SMBG) is activated. If we input any:

(i) Strings of directives with lower case alphabets from a-z, then the sixth rule
will be executed.
(i) Numerical digits from 0-9, then the 3rd rule will be executed.

(iil) Strings of characters with upper case alphabets from A-Z, then the fourth rule
will be executed.

And if any other input other than the above, is given, then the seventh rule, followed
by the 8th rule, will be executed. Execution of BEGIN(INTIAL) will initialize to earlier
condition, where the rules one, two, three and eight are active. All other rules that start
with start symbol SMBG will be disabled.

Program 3.9 shows how an exclusive start condition behaves.

PROGRAM 3.9

//**

//FLEX program that implements exclusive start condition
//
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**************************‘k*******‘k*************‘k*********************

%}
%x SM SMBG
%3

BEGIN(SM) ; /* First Rule that matches ‘#' */
BEGIN (SMBG) ; /* SecondRule that matches ‘##’ */

[0-9]1+ { /* Third Rule that matches any digit */
printf(“\nlts adigit”);
}
<SMBG>[A-Z]+ { /* FourthRule that will get activated when SMBG
begins and matchwih A-Z */
printf (“\nGiven string contains big letter(s)”);
}
<SM>. + { /*Fifthrule*/
printf (*\nExiting from # start condition”) ;
BEGIN(INITIAL); /* Invoking initial start conditions */

Chapter 3: Programming with FLEX & 33

<SM, SMBG>[a-z]+ { /* SixthRule */
printf (“\nGiven string contains small letter(s)”);

<SMBG>.+ { /* Seventh Rule */
printf (“\nExiting from ## start conditions”) ;

4 /* Eight Rule */
printf (“\nNO action to execute”) ;

%%
main ()
{
printf (“\nEnter # when u r expecting only small case letter strings”);
printf (“\nEnter ## when u r expecting only big and small case letter strings”):
yylex();

Here the start symbols are declared exclusively using %x in the first section of the Lex
program. The second section contains eight rules. The rules one, two, three and eight
will be active whenever the function yylex() is called. And also note that they are not
attached to any start symbol.
Whenever we input ‘#, BEGIN(SM) will be called and all rules starting with SM
will be activated. That is, only the rules fifth and sixth will be activated and all other
. rules will be disabled. Any input string with lower case letters will match and show
the corresponding message. Input strings other than lower case letters will cause to
execute 5th rule. The action part of the fifth rule will execute BEGIN(INITIAL) to
initialize to initial conditions, i.e. the rules one, two, three and eight are active.
Whenever we input “##”, BEGIN(SMBG) will be called and all rules starting with
SMBG will be made active. That is, only the rules fourth, sixth and seventh will be
disabled. Any input string with upper or lower case letters will be matched and the
corresponding messages will be displayed and letters in the input string other than
upper or lower case letters will cause to execute the seventh rule. The action part of the
seventh rule will execute BEGIN(INITIAL) to initialize to initial condition, i.e. the rules
one, two, three and eight are active. Note that start conditions do not have their own
name space; %s and %x declare the names in the same fashion as #define does.

38 SPECIAL FUNCTIONS

Special functions are those that are available in the Flex libraries that could be used as
normal statements.

34 e Compiler Design Using FLEX and YACC

3.8.1 yymore()

The special function yymore() will output the yytext, when execution of the action part
of any rule that invoked yymore() ends. For example, consider Program 3.10 which has
two rules, one that matches the lower case letters and the other that matches upper case
letters only.

PROGRAM 3.10

//****************‘k**‘k*********

//FLEX program that checks the special function yymore ()
/7
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***

%}

%%

[a-z]+ { printf(“\nltsa lower case letter="); /* Firstrule*/
ECHO; printf (“\nBeginning of the 1lst yymore”) ;
yymore () ;printf (*\nEnd of the 1st yymore\n”) ;
}

[A-Z]+ {printf(“\n\nlts a upper case letter="); /* Secondrule */
ECHO; printf (“\nBeginning of the 2nd yymore”) ;
yymore () ;printf (“\nEnd of the 2nd yymore\n”) ;
}

%%

main()
{
yylex();

[root@localhost yymmoreTest]# ./a.out

good MORNING

Its a lower case letter = good
Beginning of the 1st yymore
End of the 1st yymore

Good

Its a upper case letter = MORNING
Beginning of the 2nd yymore

End of the 2nd yymore

MORNING

Chapter 3: Programming with FLEX 4 35

[1]+ Stopped . /a.out
[root@localhost yymmoreTest] #

For a given input good MORNING, the first rule matches the token good and echoed to
the output. Subsequently, the yymore() function will be executed and the content of the
yytext (i.e. presently active token good) is echoed when the execution of the

corresponding first rule finishes.
The second rule matches the MORNING and the presence of yymore() will echo the
yytext at the end of the execution of the second rule.

3.8.2 yyless()

yyless(n) returns all characters, except the first n characters of the current token, back
to the input stream, where they will be re-scanned when the scanner looks for the next
match. yytext and yyleng are adjusted appropriately (i.e. yyleng will now be equal to n).
The concept of yyless is explained in Program 3.11. It has two rules. The first rule
matches any token with the lower case letters and the second one matches any token
with lower and upper case letters.

PROGRAM 3.11

//*******************************‘k***********************************‘k*

//FLEX program that uses yyless ()

7/,
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***

%%

la-z]+ { /*FirstRule*/
printf (*\n\nThe word is =") ; ECHO;
yyless(2); /* Reducing 2 character and pushing back the rest */
printf (“*\nThe word after yyless =") ; ECHO;
}
[a-zA-Z]+ { /* Second Rule */
printf (“\n\nThe mixed word is =") ; ECHO;

%%

main ()

yylex();

36 ¢ Compiler Design Using FLEX and YACC

[root@localhost yymmoreTest]# ./a.out
Nicemorning
The mixed word is = Nice

The word is = morning

The word after yyless = mo
The word is = rning

The word after yyless =rn
The word is = ing

The word after yyless = in
Thewordis =g

The word after yyless =g

[11+ Stopped . /a.out
[root@localhost yymmoreTest] #

The first word Nice is matched by the second rule and the following action statements
are printed. And the given input morning is matched by the first rule and the following
action statements are executed, including yyless(2). It will return all the characters in
the current token (i.e. morning) back to the input stream, except the first two characters
where they will be re-scanned. Here rning is being re-scanned and the process is
continued until it runs out of input. An argument of 0 to yyless will cause the entire
current input string to be scanned again. This will cause an endless loop since the input
is scanned again and again unless and until we change the scanner’s action statements.

3.8.3 unput()

The function unput(a) puts or returns the character a back into the input stream and it
will be the next character to be scanned. Program 3.12 will explain the concept of
unput().

PROGRAM 3.12

//***
//FLEX program to check the function of unput (a),
// which returns the character a back to the input stream

/7
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//***********************‘k*************‘k*************************************

%}

