Reg.	No.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ANNA UNIVERSITY, CHENNAI-25.

<u>LABORATORY INTERNAL ASSESSMENT - 1</u>

M.E. (CSE / SOFTWARE ENGINEERING / BIG DATA ANALYTICS) Session: JUNE 2022 to SEPTEMBER 2022

II Semester - (Regulation R-2019)

<u>CP5261 / SE5072</u> <u>MACHINE LEARNING TECHNIQUES LABORATORY / FUNDAMENTALS OF MACHINE LEARNING</u>

Answer Any TWO of the following

Time: 2 Hours 17/08/2022 Max. Marks: 20

Instructions:

- Write your Name, Register Number, Branch, and Department.
- > Put your signature with date on the first page of the answer booklet.

Q.No	Question	Max marks	CO Mapping
1.	Use the supplied dataset (car_evaluation.csv) and build a Naiive Bayesian / Decision Tree classifier (CART)r: i) Print the Descriptive statistics of the data ii) Preprocess the data as required iii) preview the data after preprocessing iv) Build the Naiive Bayesian model/Decision Tree model (CART) v) Test the model vi) print the classification report vii) print the confusion matrix Use the Hyper parameters: test_size = 0.20, random_state = 5	15	CO2
2.	Fine-tune the hyperparameter, <i>test_size</i> (for either of the classifiers of Q-1) by varying the test_size value in small intervals and plot the test_size vs accuracy.	5	CO2
3.	Build a Linear Regression Model on (50_ Startups.csv) Dataset Create a scatter plot for any of the features with the target data Print the Regression equation, intercept, coefficient Compute and print the R ² statistic	10	CO2
4.	Build a Linear Support Vector Machine Model on (Social_ Networks_ Ads.csv) Dataset Preprocess the data as required Build SVM with linear kernel Test the model Prepare Confusion matrix and the Classification report with accuracy score Use the Hyper parameters: test_size = 0.20, random_state = 2	10	CO2