TheORY OF FLEX

This chapter discusses the theory and format of the Lex specifications and describes the
features and options available. It also explains the theoretical aspects of Flex syntax and
semantics that summarizes the capabilities of the Flex specifications demonstrated in
the previous chapters.

4.1 STRUCTURE OF A FLEX PROGRAM

As we had discussed earlier, a Lex program consists of three sections—the definition
section, rules section, and auxiliary section (or user defined section or user
subroutines). They are separated by a line consisting of two percent signs, %%.

Definition section
%%

Rules section

%%

Auxiliary section

The first two parts are necessary, even though they are empty. The third part and the
preceding %% line may be omitted.

4.1.1 Definition Section

The definition section of a Lex program can be empty. This may contain the literal
block, definitions, internal table declaration, variable name definitions, start conditions
and translations for both C and Lex statements and functions. They also create an
atmosphere in which the Lex program can work more efficiently. The declaration and
definitions attached to the C statements are separated by “%{" and “}%", and they are
copied verbatim to the C file, which is a lexical analyzer; lex.yy.c (by default).

58 e Compiler Design Using FLEX and YAGC

4.1.2 Rules Section

The rule section contains patterns and actions C code. That is, a rule contains a pattern
(which is a regular expression), followed by a white space and C code, which will be
executed when the input stream matches the pattern. If the C code is more than one
statement or spaces or multiple lines, it must be placed within braces “{” and “}” to
show that it is a single block of statements. In the absence of braces, some versions of
Lex take the entire rule of the statement line; others just take up to the first semicolon
(i.e. first statement only).

When we execute the lexical analyzer, it matches the input stream against the
patterns in the rule sections, and if it is so, it executes the corresponding C code
associated with that pattern. If the matched pattern is followed by a single vertical bar,
instead of action C code, the matched pattern uses the same action code as that of the
next pattern. When one input character does not match with any patterns, it is simply
copied into the output (i.e. standard output or stdout).

4.1.3 Auxiliary Section

The auxiliary section contains user defined C function (subroutines, including the
main() function, from where the execution begins). They are copied as it is to the lexical
analyzer C file by Flex. In this section you can redefine your own versions of input(),
unput(), output, yymore, etc.

4.2 PATTERN SUBSTITUTION

The pattern definition allows you to give a name to all or part of a regular expression,
to refer and substitute by the given name in the rules section. This can be useful to
break up complex expressions and to document them. For example, in Program 4.1
DIGIT is declared as [0-9] in the definition section, which will be replaced in the rules
section wherever DIGIT is found in the pattern.

PROGRAM 4.1

DIGIT [0-9]
Alphabet [A-Z a-z]
OPERATOR [+ | \~ | / | *]

%%
{DIGIT}+ { Integer_Action(); }
{Alphabet}+ ({ Character_Action(); }

{OPERATOR}+ ({ Operator_Action(); }

Chapter 4: Theory of FLEX & 59

4.3 BEGIN

The BEGIN macro switches among start states. It has the structure BEGIN<start
symbol>. We can invoke any start state patterns just by calling the same using BEGIN.
When the scanner starts scanning, the lexer is in a state 0 (zero), also known as
INITIAL state. At any point of execution, we can go back to the initial state by just
invoking BEGIN INITIAL.
All the other start symbols (other than INITIAL) must be declared in the line along
with %s or %x in the definition section of the Flex program.

Note: Even though BEGIN is a macro, and does not take any argument itself, the start
symbol name need not be enclosed in parentheses. But it is always a good practice to
do so.

44 ECHO

The macro ECHO, in the action C code of any pattern, writes the recently matched
token to the current output file yyout. Program 4.2 explains the same.

PROGRAM 4.2

-Z]+ { printf("\nThe token is (using ECHO) = "); ECHO;
fprintf(yyout, "The token is (using fprintf) = %s", yytext);

is (using ECHO) = Flex
is (using fprintf) = Flex

' {9
is explained in the above program, ECHO is equivalent to
f(yyout, “%s”, yytext) ;

ome versions of Lex, we can redefine ECHO, to do something else with recently
token characters. Along with redefining ECHO, we should also have to
e the function output(), which normally sends as single character to yyout.

60 ¢ Compiler Design Using FLEX and YACC

4.5 REJECT

The directive REJECT directs the scanner to proceed to the second best rule to match
the prefix of the input. That is, when an action REJECT executes REJECT, Lex
conceptually puts back the text matched by the pattern and finds the next best match
for it. Program 3.8 explains the REJECT concept.

Lexical scanners that use REJECT may be much larger and slower than those that
do not, since they need considerable extra information to allow backtracking and
re-lexing.

4.6 START STATE

We can declare start states, also called start conditions and start rules, in the definition
section of the Flex program. They are used to limit the scope or life-time of certain
rules. This will change the way the lexer tracks some parts of the file. That is, we can
use a start state to apply a set of rules only at certain time. Flex provides two types of
start conditions, which are discussed in Section 3.7. Flex has exclusive start states
declared using unintended line, beginning with %x and inclusive start states with %s.

Note that these rules that do not have start states will be active throughout the
execution of the lexer, and it can be applied from any state.

4.7 LEFT AND RIGHT CONTEXT

There are several ways to make a pattern sensitive to the left and right context. Lex
provides several methods to give higher or lower precedence to the patterns that
precede or follow the token.

Left Context

There are three ways to handle the left context, which will give different precedence
to different rules.

The first method that we use to make a pattern left context is to have some special
character at the beginning of the pattern. That is, the character “/” at the beginning of
a pattern tells Flex to match the pattern only at the beginning of the line, which does
not match any character that is just followed in the context. For example, the pattern
[*a-z] will match any character other than the lower case letter ‘a to z".

The second way to make a pattern precede another is to use start states. We can
activate or disable a pattern by using start state as we need one token to precede
another. This is shown in Program 4.3.

Chapter 4: Theory of FLEX ¢ 61

PROGRAM 4.3

%s START1 START2

{ BEGIN START1; }
{ BEGIN START2; }

|
<START1> [a-z]+ { statementl I
statement 2 I

statement n i
BEGINO; ‘

<START2> [0-91+ { statement 1
statement 2

statement n
BEGIN INITIAL;

Refer to Section 3.7; for more explanation on Program 4.3.

In some case you can have explicit code (same as we write C code) for specifying
the left context sensitivity by setting different values to different variables to pass from
one pattern to another. Program 4.4 shows the same.

PROGRAM 4.4

%%

[a-z]+ { flag=0; }
[A-Z]+ { flag =1; }
[0-9]+ { flag=2; }
ACTION { switch(flag)

62 e Compiler Design Using FLEX and YACC

{

case 0: lower_case_token() ;
break;

case 1: upper_case_token() ;
break;

case 2: digit_token() ;
break;

default:
break;

Right Context

Lex provides three ways to make the pattern sensitive to the right context, that is, to
the text to the right of the token.

The first method that we use to make a pattern right context is to have special
character at the end of a pattern. The ‘¢’ character at the end of a pattern makes the
token match only at the end of a line (i.e. immediately before a \n character). Like "
character, ‘4’ does not match any character, it just specifies the context.

The second method is slash operator. The /" character in a pattern allows you to
include the explicit trailing context. For example, the pattern abc/xyz matches the token
abc, only if it is immediately followed by xyz. The trailing context characters (i.e. xyz)
do not appear in yytext, nor are counted in yyleng.

The yyless() function is another method to make the pattern right context sensitive.
It pushes back part of the token to the input stream that was just read. For example,

abcdef { yyless(3); }

It returns all characters, except first three characters (i.e. abc) of the current token
(i.e. abcdef) back to the input stream, where they will be re-scanned when the scanner
looks for the next match.

4.8 FLEX INPUT()

The lexical analyzer reads from the input file (by default it is yyin), which is a standard
input (i.e. stdin) file. The input() function is used to read from the source file to get
characters and strings as it is in the memory.

The input() function provides characters to the lexer when the scanner matches
characters. It conceptually calls input() to fetch each character from the input file.
Program 3.14 explains how the input() processes the characters until either end-of-file
or the characters “*/” occur to handle C comments.

Chapter 4: Theory of FLEX & 63

Although Flex provides an input() function, it gets characters using optimized-in-
line code. We can redefine YY-INPUT, a macro used to read blocks of data, to read
from any input file. It is of the form

YY INPUT (buffer, result, max-size)

Where buffer is a character buffer, result is a variable to store the number of characters
read, and Max_Size is the maximum size of the buffer where string characters are read
into. We can redefine YY_INPUT for reading from a string buffer as follows.
Program 4.5 shows how a YYINPUT can be used to read a block of input datas.

PROGRAM 4.5

%{
#undef YY_INPUT
#define YY_INPUT (bu,re,ms)
{
re = my_vyyinput (bu,ms)
}
%}

extern char muinput[];

/* myInputPtr is a pointer variable that points to current position of the given
input file */

extern char *myInputPtr;

extern int *myInputLim;

int mu_yyinput (char*buffer, int max_size)
{
int n =min (max_size, myInputLim, myInputPtr);
if (n>0)
{
memoryCopy (buffer, myInputPtr,n);
myInputPtr +=n;
}

returnn;

64 e Compiler Design Using FLEX and YACC

4.9 FLEX OUTPUT()

Flex defines a function output(c), in flex library, which writes its argument to the output
file yyout. This is equivalent to

putc(c,yyout) ;

The output() function can be used along with the action C code. It can be redefined to
match all possible inputs. If we redefine output(), then we must also redefine the macro
ECHO which copies the current contents of yytext to the output.

4.10 REGULAR EXPRESSION

The rule section of a Flex program contains the number of rules, which match against
the given input stream. Each rule contains the pattern and the corresponding action
statements (i.e. C code). Lex patterns are an extended version of the regular expressions
used by the editors and utilities such as ‘grep’ in Linux. Regular expressions are -
composed of normal characters, which represent themselves and meta-character which
have a special meaning in a pattern. All characters other than those listed in Section 2.7
are regular characters.

4.11 FLEX LIBRARY FUNCTIONS

Many programming languages have include (i.e. #include) statements that logically
insert another file in place of the include statement. But unfortunately, there is no way
in Flex to handle the inclusion of another input files, except assigning the input file to
yyin to have scanner to read from that file.

When a lexer reaches the end of the input file, it calls yywrap(). If yywrap() returns
false (i.e. zero), then it is assumed that the function has gone ahead and set up yyin to
point to another input file, and scanning continues and if it returns true (i.e. non-zero)
then the scanner terminates returning 0 to its caller.

But we can write our own yywrap() that switches to a new input file by changing
or re-opening yyin, and continues scanning. See Program 3.18 for more details on
yywrap().

Like yywrap(), Flex comes with a number of functions and macros; they come along
with Flex libraries. We can link these libraries by giving the—Ifl flag at the end of cc
command line.

All the Flex programs should have (minimum) main() functions, from where the
execution begins. Main() function is defined in the auxiliary section of the Lex
program, by the Flex tool if the user is not providing one. The user can redefine the
main() function at the auxiliary section.

4.11.1 unput()

The function unput(a) puts or returns the character 4 into the input stream and it will
be the next character to be scanned. Even though we can call unput() function several

Chapter 4: Theory of FLEX & 65

times in a row to push several characters back to the input, the limit of data pushed
back by unput() varies. It depends on how it is defined in library; but it is always at
least as great as the largest token the lexer recognizes.

Some versions of Lex allow us to redefine unput() to change the scanners input to
handle multiple push back characters. The unput function is further explained in Flex
Program 3.13.

4.11.2 yyinpul(), yyoutput(), yyunput()

Flex provides the function yyinput(), yyoutput() and yyunput() as wrappers for the
macro input(), output() and unput(), respectively. They can be redefined by the user in
the auxiliary section and can be called from other modules such as the lex library.

4.11.3 yytext and yyleng

The lexical analyzer matches the input stream with rules to identify tokens. Whenever
the scanner matches a token, the text of the token is stored in the null terminated string
yytext and its length in yyleng. The length in yyleng is the same as the value returned
by strlen(yytext).

The yytext is a character variable that can be declared as an array or pointer
variable

exterm char yytext|[];
exterm char *yytext;

The contents of the yytext are replaced as and when the new token is found and
- matched by a rule. If the size of the token is larger than the size of the yytext array, then
an overflow occurs. In Flex the standard size for yytext[] is 200 characters. Even if yytext
is a pointer, the pointer points into an I/O buffer, which is also of limited size, and
similar problems can arise from very large tokens. In Flex the default I/ O buffer is 10K,
and it can handle tokens up to 8K, which is certainly large enough.

Imagine a situation, where we need to handle bigger tokens of size greater than 8K
bytes, and then we have the option to redefine buffer size if the memory space is
available. Flex buffers are created by a function called yy_create_buffer(), and
yy_current_buffer points to the current buffer (which is active). We can create a buffer
of any size as follows.

%%
setupbuf (int size)

{

yy_current_buffer=yy create_buffer(yyin,size)

}

The technique for increasing the buffer size differs as the lex version differs.

:

66 & Compiler Design Using FLEX and YACC

4.11.4 vyyless()

We can call yyless(n) from the C code associated with a rule to return or put all
characters except first n characters to the input stream, where they will be re-scanned
when the scanner looks for the next match. The yytext and yyleng is adjusted
approximately. Section 3.8.2 explains the use of yyless() in detail.

Note that a call to yyless() has the same effect as calling unput() with the characters
to be pushed back, but yyless() is often faster because it can take advantage of the fact -
that the characters pushed back are the same ones just fetched from the input.

4.11.5 yylex()

yylex(), an entry point to the scanner, is a function created by the Flex from the rules
section. All C codes in the rules section are copied into yylex. We can call yylex() to start
or resume scanning. If any Lex action executes return statement to pass a value to the
calling function, the next call to yylex() will continue or restart from the point where
it left off. :

Returning values from yylex() have got wide use in parser, for example, identifying
and returning valid tokens such as keyword, variable name or operator of the parser’s
interest from the lexer. And when it matches a token not of interest (i.e. white space
or a comment) to the parser, it does not return and the scanner immediately proceeds
to match other tokens by restarting from the point where it left off. We cannot restart
a lexer just by calling yylex() again. Instead, we have to reset it into the default state
using BEGIN INITIAL and discard all the input buffered by unput(), and so on. But
Flex makes restarting a lexer considerably easier by calling yyrestart(file), and when the
file is a standard I/O file pointer, arranges to start reading from that file.

4.12 MULTIPLE LEXERS IN ONE PROGRAM

We can have two different lexers, meant to identify different types of token, with an
entirely different syntax in one file or in different files. This concept is mainly used in
interactive debugging interpreter, where we need one lexer for the programming
language and the other for debugging statements.

There are two basic approaches for handling two lexers in one program:

e Combine them into a single lexer
e Put them (two complete lexers) in a separate file

4.12.1 Combined Lexers

We can combine two lexers to one by using start states. All the patterns in a rule
sections are prefixed by a unique set of start states, which help us to enable or disable
any rule conditionally. That is, a few rules are enabled when a start state calls with
special directive BEGIN, which constitutes a lexer. When another condition satisfies, or
else when we want to switch on to another lexer, BEGIN calls start symbol, which will
enable another set of rules (i.e. another lexer) by disabling the earlier rules, and so on.

Chapter 4: Theory of FLEX ¢ 67

The main advantage of this approach is that, different lexers can share rules and
other object codes. That is, a rule will remain to stay active in some or all lexers, when
they are defined with start symbols. So the object code is somewhat smaller since there
is only one copy of the lexer code and the different rule sets can share the same rules.
The disadvantage is that, we have to be very careful to use the correct start status
everywhere, because we cannot have both the lexers active simultaneously.

4.12.2 Multiple Lexers

In multiple lexers, we have different lexers in different files with different entry points,
and later club them all into one file to call it.

Multiple lexer is an approach to include two complete different lexers in one
program. This is not easy to implement, because every lexer generated by the Flex has
the same entry point: yylex(). Moreover, the scanning table, scanner buffers and other
functions are like global variables and their scope is throughout the program execution.
To avoid duplicate variable and function calling and others, it is better that we change
the names that Flex uses for its functions and variables.

Flex provides a command-line switch -P” to change the prefix used on the names
in the scanner generated by Lex (see the option -P in Section 4.13); that is, using the “P”
flag we can change the names that Lex uses in two scanners, which is actually there in
one program file. For example,

flex-Pmul multiply.1l

produces a scanner with the entry point mullex(), which reads from file mulin and so
forth. The names affected are yylex(), yyin, yyout, yytext, yylineno, yyleng, yymore(),
yyless(), yywrap(), as well as all of the implementation specific variables.

There is no other method, but to fake the name of the generated C functions. The
most easier way to fake it, create the file yy_sed containing following sed commands,
and use the stream editor command sed (here we use a prefix mul).

s/yyback/mulback/g

s/yybegin/mulbegin/g

s/yycrack/
s/yyerror/
(s/yyestate/

s/yyextra/

s/yyfind/

s/yyin/

s/yyinput/mulinput/g

s/yyleng

s/yylex

s/yylineno

s/yy/sp

s/yylook

68 & Compiler Design Using FLEX and YACC

s/yy/val

s/yylstate/mul/state/g

s/ymatch/
s/yy/morefg/
s/yyout/

s/yyolsp/mulolsp/g

s/yyoutput/
s/yypreviour/
s/yystart/
s/yysptr/
s/yysvec/
s/yytchar/
s/yytext/
s/yytop/
s/yyunput/
s/yyvatop/

s/yywrap/mulwrap/g

After we have created scanner (i.e. lex.yy.c), the following command is executed.

sed -fyy_sed lex.yy.c> lex.mul.c

Another approach that will help us to avoid using sed is to use C preprocessor
#define at the beginning of the grammar to rename the variables:

%{
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

%}

yvyback
yybgin
yycrack
yyerror
yyestate
yyextra
yyfind
yyin
yyinput
vyleng
yylex
yylineno
vylook
yylsp
yylstate
yylval

mulback
mulbgin
mulcrack
mulerror
mulestate

”

”

Chapter 4: Theory of FLEX & 69

For Flex lexers, the variables that need to be renamed are

yy_create_buffer
yy_delete_buffer
yy_init_buffer
yy_load_buffer_state
yy_switch_to _buffer
yyin

yyleng

yylex

yyout

yyrestart

yytext

You can use any one of above techniques to rename them.

As we have discussed earlier, one Flex program will be written and the lexer will
be generated normally with an entry point yylex(). The second lexer is another and
generated with an entry point mullex() (or <prefix name>lex()).

Generally in Flex, we define or include the token specification of the parser as the
normal C preprocessor statement #include<y.tab.h>, which will be discussed in
Chapter 6. But as far as the prefixed lexer is concerned, we include the lexer as
#include<mul.tab.h>. Thus, we can include or combine multiple lexers (which are in
different files) into one file to access from that program.

413 OPTIONS AVAILABLE IN FLEX

Flex has the following options to make a lexical generation more efficient.

-b This option generates backing up information to lex.backup. This is a list of
scanner states which require backup. They are called backing up states. If we
eliminate all backing up states, then the generated scanner will run faster.

-d This option makes the generated scanner run in the debug mode.

- This option specifies fast scanner. No table compression is done and stdio is
bypassed.

-h It generates the summary of Flex's options (i.e. help) to stdout file before it
exits.

4 This option instructs Flex to generate a case insensitive scanner. The case of
letters given in the Flex input patterns will be ignored and tokens in the input
will be matched regardless of the case. The matched token will be made
available to yytext and the case sensitive will be preserved.

-p This generates a performance report of the Lex program to stderr. The report
contains comments regarding features of the Flex input file, which will cause
a serious loss of performance in the resulting scanner.

70 @ Compiler Design Using FLEX and YACC

-t It instructs the Flex to write the scanner that generates to standard output
instead of lex.yy.c.

-w This option suppresses the warning messages.

-s It will suppress the default rule. Generally, unmatched inputs are verbatim
copied to the output (e.g. echoed to stdout).

-J It instructs Flex to generate an interactive scanner. An interactive scanner is
one that only looks ahead to decide what token has been matched.

-B This option instructs Flex to generate a batch scanner, the opposite of
interactive scanners generated by “-I”.

-V It prints the version number to stdout and exits.

-7 This option tells Flex to generate a 7-bit scanner. That is, one which can only
recognize 7-bit characters in its input. The advantage of using ‘-7’ is that
scanners table can be up to half the size those generated using the -8’ options
(see below). The disadvantage is that such scanners hang or crash if their
input contains an 8-bit character.

-8 It instructs Flex to generate an 8-bit scanner, i.e. one which can recognize
8-bit characters.

-o<output file> It directs Flex to write the scanner to the given output file instead
of lex.yy.c.

-P<prefix name> This option changes default yy prefix used by Flex for all
globally visible variable and function names to the given new prefix name. For
example, -Pmul changes the name of yytext to multext. It also changes the name of the
default output file from lex.yy.c to lex.mul.c. Note that this option will help us to link
multiple Flex programs together into the same executable. Since we are using a
renamed yymap(), we must either provide our own version of redefined subroutine or
use %option noyywrap. Because as we link with -Ifl, Flex no longer provides any library
functions to execute.

-s<skeleton-file> This option overrides the default skeleton file from which Flex
constructs its scanners. We should never use this option unless we are doing Flex
maintenance or development. All these Flex options can be used along with lexical
analyzer generation command-line as follows.

flex <options> <flex program name> Flex also provides a mechanism for controlling
options within the scanner specification itself, rather than from the Flex command line.
This is done by including %option directive in the first section of the scanner
specifications. We can specify multiple options with a single %option directive or
multiple directives.

Chapter 4: Theory of FLEX & 71

414 GENERATING C++ SCANNERS

Flex provides two different ways to generate C++ scanners. The first way is to simply
compile a scanner generated by Flex using a C++ compiler instead of a C compiler. We
have to use C++ code in the action part of the rules section instead of C code, to avoid
any compilation errors. Remember that the default input source for the scanner
remains yyin, and the default standard output is echoed to yyout. These variables
remain “file *” file pointer variable, not the C++ streams.

The second method that Flex provides to generate C++ scanner is to use the option
‘-+' (equivalent to use %option C++), which is automatically specified if the name of
the Flex execution ends in a ‘+, such as flex++. When we use this option, the generated
scanner will write to the file lex.yy.cc instead of lex.yy.c. The generated scanner includes
the header file FlexLexer.h, which defines the interface to two C++ classes.

The first class, FlexLexer, provides an abstract base class defining the general
scanner class interface. The second class yyFlexLexer, which is defined from FlexLexer,
defines additional member functions and protected virtual functions that can be
redefined by the user. This book restricts itself to C++ scanners generation.

