Chapter 3: Programming with FLEX ¢ 37

%%

fun" { /* First rule that matchesun *7
printf (*\nThe unput char=");
ECHO;
}
la-z1+ { /* Second Rule */
printf (“\nThe lower case token is =");
ECHO;unput (‘n’) ;unput (*u’) ;
printf (“\nThe token after unput =") ; ECHO;
}
[a-zA-2]1+ { /* Third rule */
printf (“\nThe mixed token is =");
ECHO;

[root@vinu yytextTest]# ./a.out
good Day

The lower case token is = good
The token after unput = goun
The unput char = un

The mixed token is =Day

[1]+ Stopped ./a.out
[root@vinu yytextTest1#

For a given input good Day, the second rule matches the token good and the following
action statements are executed including unput(n) and unput(u). 1t will return the
character 7 & u back to the input stream to be scanned again. The token 7 & u will be
matched by the first rule to proceed to the next of the input stream, which is Day,
matched by the third rule.

Note that since each unput() puts the given character back to the beginning of the
input stream, pushing back strings must be done back-to-front. That is, after the
execution of unput(n), yytext changed from good to goon replacing the last character of
the token good to 1, as you can see in the output. The unput(u) has changed the second
character from the right to u, that is, the content of yytext is changed from goon to goun.
The unput character nu must be put back to the input stream by passing back-to-front.

An important potential problem while using unput() is that if you are defining the
yytext using the directives, %pointer (by default) will destroy the contents of yytext,

38 e Compiler Design Using FLEX and YACC

starting with its right most character and devouring one character to the left with each
unput() call. If you need the value of Yyytext to be preserved after a call to unput(), you
must either first copy it elsewhere, or build the Lex program using %arrays to define
yytext in the definition section. This prevents destroying the present content of the
Yyytext. Program 3.13 explains the same.

PROGRAM 3.13

//**

//FLEX program that check unput () without destroying the
//content of yytext, by re-declaring the yytext variable as arrays
//

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//*****************************‘k*)\'******‘k‘k*****************************

#define YvIMAX 10
%}

%array yytext

%%

“un” { printf(“\nThe unput char =7) ;
ECHO;
}

[a-z]+ {printf (“*\nThe lower case tokenis ="); ECHO;
unput (‘n’);
printf (“\nThe token after first unput = ”) ; ECHO;
unput (‘u’) ;
printf (“\nThe token after second unput = ”) ; ECHO;
}

[a-zA-Z]+ { printf (“\nThe mixed token is=");
ECHO;

%%

main()

{
vylex();

Chapter 3: Programming with FLEX ¢ 39

yytextTest]# ./a.out

r case token is = good
yafter first unput = good
after second unput = good
har = un

ced token is = Day

ed ./a.out
uyytextTest]#

text to 10,

YYLMAX 10 statement, declaring the size of the character variable yy
put good

tement %array yytext defining the yytext as an array. For a given in
 second rule matches the token good and the following action statements are
rom the output that even after the execution of the unput(), the content of the

is preserved.

~ input(

) reads the next character from the input stream. The read
vailable to the scanner. Program 3.14 illustrates the concept of input().

character will not be

**

program to matchmixed letters of type
>z, AtoZ and 0 to 9 & eat up the C comment lines
4

a

s lexer generated using the flex-2.5.4a tool in RedHat Linux EL

."Q*****************'k**

{

\-70-9]+ { printf (“\nlt contains mixed letters =") ;
ECHO;

"' }

{ printf (*\nThe comment begins”);

B char c;
» while((c=input()) !='*");

40 ¢ Compiler Design Using FLEX and YACC

1f((c=input()) =='/")
printf (“*\nThe comment ends”) ;

%%

main ()
{
yylex();

[roovt@localhost inputTest]# ./a.out
This program is coded by /* the Author */

It contains mixed letters = This

It contains mixed letters = program
It contains mixed letters =is

It contains mixed letters = coded
It contains mixed letters = by

The comment begins

The comment ends

[3]1+ Stopped . /a.out
[root@localhost inputTest]#

The first rule in this program matches the token that consists of lower and upper case
letters and digits. The second rule will match whenever a ‘/* is found in the input
stream. The input() function will execute until the *" is found, this is one way to eat up
C comments.

This program gets the input ‘This program is coded by /* the Author */” and the first
five words are matched by the first rule. When “/*” is encountered in the input, the
second rule will be matched and its action statements will be executed, where it accepts
all the characters using the function input() and does nothing until it finds “*/”.

In effect, the second rule will be matched when any C comment begins (with “/*")
and the function input() reads all the next character(s) from the input stream until it
finds “*/” in the input, which is same as eat up C comments.

3.8.5 yyterminate()

yyterminate() can be used in lieu of a return statement in an action. yyterminate()
terminates the execution of the scanner and returns a 0 to the function where the
scanner is called, indicating that “all done” (see Program 3.15).

Chapter 3: Programming with FLEX ¢ 41

PROGRAM 3.15

//***‘k****

//FLEX program that checks the function of yyterminate ()

bl
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//****************************‘k********‘k******************************
%}
%%
[a-z]+ { printf(“\nlts a lower case letter =");
ECHO;
printf (“\nBeginning the yyterminate”) ;

yyterminate() ;
printf (*\nEnd of yyterminate\n” Y:

}
[a-zA-Z]+ { printf (*\n\nMixed case token =") ;
ECHO;
}
%%
main ()
{
yylex() ;

[root@localhost yymmoreTest] # ./a.out
Good morning

Mixed case token = Good
It is a lower case letter = morning

Beginning the yyterminate

[1]+ Stopped ./a.out
[root@localhost yymmoreTest]#

Program 3.15 gets the input Good morning. Remember that the input Good morning
matches three tokens and not two. The first token Good matched by the second rule
(ie. [a-zA-Z]+) and the following action statements are executed. The second token
while spacing between the input stream Good and morning was supposed to be matched
with “. | \n” (which is what Flex default rule matches a single character of any type).
But we can even explicitly write a rule to match the white space. The third token
morning matched by the first rule (i.e. [a—z]+) and the following statements are executed

42 ¢ Compiler Design Using FLEX and YACC

including yyterminate(). Note that as soon as yyterminate executes, it quits ‘all the
executions and returns to the scanners caller. By default yyterminate() is also called
when an end of file is encountered. It is a macro and may be redefined.

3.8.6 YY Flush Buffer

YY FLUSH BUFFER flushes the scanner’s internal buffer so that the next time the
scanner attempts to match a token, it will first refill the buffer using YY_INPUT
(YYINPUT is discussed along with the next topic). This action is a special case of the
more general yy_flush_buffer() function.

Program 3.16 describes how a Flex program behaves in ECHO and prints the yytext
when we use yy_flush_buffer.

PROGRAM 3.16

%{

//******‘k‘k********‘k**‘k***********

/ /FLEX program to implement the function of the special directive
//function YY_FLUSH_BUFFER

L

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**‘k*********'k*******************k********‘k***********‘k*************‘k****

%}

%%

[a-z]+ {
printf (*\nThe lower case token is (Using yytext) = %$s”,yytext) ;
printf (*\nThe length of the token = %d”,yyleng) ;
printf (“\nThe lower case token is (Using Echo) =") ; ECHO;
YY_FLUSH_BUFFER;
printf (*\nToken after yyflush (Using yytext) =%s”, yytext) ;
printf (*\nThe length of the token after yyflush =%d”,yyleng);
printf (“\nToken after yyflush (Using Echo) =") ; ECHO;
}

%%

main()

{

yylex();

}

[root@vinu yyFlush]# ./a.out
good

Chapter 3: Programming with FLEX ¢ 43

The lower case token is (Using yytext) = good
The length of the token = 4

The lower case token is (Us ing Echo) = good
Token after yyflush (Using yytext) =

The length of the token after yyflush=14
Token after yyflush (Using Echo) = od

[1]+ Stopped ./a.out
[root@vinu yyFlush] [

Program 3.16 receives the input good and it matches with the first rule, the following
action statements are executed. The action statements have displayed the yytext and
ECHOed the token, after and before the execution of yy_flush_buffer. Note that after the
execution of the yy_flush_buffer, yytext does not show anything when it displayed, but
ECHO shows od. Also note when we tried to find the length of yytext, it is 4 instead
of 0. Even though, theoretically, yy _flush_buffer flushes out the scanners internal buffer,
practically it flushes out only the first two characters of the token (i.e. yytext) by making
it to the NULL ('\0") character. That is why when we echoed after yy_flush_buffer, it
showed the output as od (or od) and the internal buffer length was printed as 4.
Generally, whenever asked to print the yytext, it will print character stream in the
internal buffer starting from the first character array index to the place, where it finds
“\0” (or NULL character). In this case, the scanner could find the NULL character at
the first place of the yytext. It is for this reason that, it has not shown anything for yytext
when it is printed using printf.

39 REDEFINING MACROS

As we have discussed earlier, the output of Flex is in the file lex.yy.c, which contains
the scanning routine yylex(), and a number of auxiliary routines/functions and macros.
By default, yylex() is declared as follows.

int yylex()
{

various definitions and the actions

}

This definition may be changed by defining the YY_DECL macro, for example you
“could use

#define YY_DECL int yylex(int a, flexb)

Program 3.17 explains how we can change the datatype of the values that return from
the yylex() and pass the parameters to the functions.

44 ¢ compiler Design Using FLEX and YACC

PROGRAM 3.17

//'*********‘k**

//FLEX program to change the data type of yylex () by specifically definingit.
//

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**

#define YY DECL int yylex(int flag)

%}

%%

[a-zA-Z1+[\n] { /* First Rule */
printf(“\nHi....%s Good morning”,yytext) ;
printf (*\nThe length of the name is = %d\n”, (yyleng-1)) :
flag++; ‘
return(flag);

}
.+ { /* Second Rule */
int flag=1;

return(flag) ;

%

main()

{
int flag=-1;
printf (“\nEnter a word = Yi
scanf (“%s”,yyin) ;
flag:yylex(flag) ;
if(flag==1)

printf (*\nThe given string is NOT a alphabetical word\n”) ;

yyin (by default, it is defined in the flex tool) until it either reaches on end-of-file (at
which point it returns the value 0) or one of its actions executes a return statement.

Chapter 3: Programming with FLEX ¢ 45

Program 3.17 matches the first rule, when we input any English alphabet and an
ter key. During the execution of the following action statements of the first rule, the
value of yytext and yyleng is displayed and the value of variable is incremented to ‘0’
and returned to the caller, which is a main function. Whenever you input anything
other than English alphabets, the variable flag is set to 1 and returned to the caller.

If the scanner reaches on end-of-file (EOF), subsequent calls are undefined unless
either yyin is pointed at a new input file (in this case scanning continuous from that file
to match the tokens) or yyrestart() is called.

Program 3.18 shows how the yyrestart() is implemented in Flex program. yyrestart()
takes one argument, a FILE* pointer (which could be NULL, if you have set up
YY_INPUT to scan from a source other than yyin) and initializes yyin for scanning from

that file.
Xy
' PROGRAM 3.18

3¢
J/**
'//FLEX program that implements the yyrestart ()

i/ /

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**

%}
%%
[a-zA-Z]+ { printf (“\nlts a lower case token =") ;

ECHO; return;
}

%%

main ()

{

yylex();
printf (“\nENDING lst yylex”) ;

FILE * fpt; /* Opening the input file using the function fopen */
fpt=fopen (“input.txt”, “r+");
yyrestart (fpt); /* Calling torestart the input file scanning */

yylex() ;
printf (“\nENDING 2nd yylex”) ;

Morning

46 ¢ Compiler Design Using FLEX and YACC

[root@Zion restartYY]# ./a.out
Good

Its a lower case token = Good
ENDING lst yylex

Its a lower case token = Morning
ENDING 2nd yylex

[root@Zion restartYY]#

Essentially there is no difference between just assigning a new input file to yyin and
using yyrestart(), such as yyin = fopen(“input.txt”, “r+”) directly available for
compatibility with previeus version of Flex and it can be used to switch input file in
the middle of scanning.

By default (and for the purpose of the efficient Flex programming), the scanner
uses block-reads rather than simple getch(); to read characters from yyin. The way it
gets its input can be controlled by YY_INPUT macro. YY_INPUT’s calling sequence is
YY_INPUT(buf, result, max-size), its action is to place upto max-size character read or
the constant YY_INPUT (0 on unix systems) to indicate EOF. The default YY_INPUT
reads from the global file pointer yyin.

A sample definition of YY_INPUT is as follows. You may redefine it in the
definition section of the flex input file.

%{
#define YY_INPUT (buf, result, max_size)
{
int ¢ = getchar () ;

Teswlt T (e =2 B8 B W WL - Thut1d) = ¢, })
%)

This definition will change the input processing to occur one character at a time.
When the scanner receives an end-of-file file indication from YY_INPUT, it checks the
yywrap() function. If yywrap() returns false (i.e. zero), then it is assumed that the
function has gone ahead and set the yyin to point to another input file and scanning
continues. If it (i.e. yywrap()) returns true (non-zero) then the scanner terminates,
returning 0 to its caller. Note that in either case, the start condition remains unchanged;
it does not revert to INITIAL.

The default yywrap() always returns 1. But we can provide our own version of
yywrap() by specifying program files. If we do not supply our own version of yywrap(),
then we must either use %option noyywrap (i.e. in this case the scanner behaves as
though yywrap() returned 1) or we must link with -Ifl to obtain the default version of
the routine, which always returns 1.

Chapter 3: Programming with FLEX ¢ 47

~ Program 3.19 provides user defined version of the yywrap() that counts the number
f links, words and characters of multiple files.

ROGRAM 3.19

LA e e

/r*****************'k**

//FLEX program to count the line/word/char of multiple files

i/
//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

"/**

declaring variables to calculate the statics of individual files/
unsigned long charCount=0, wordCount=0, lineCount=0;

/*Undefining the default yywrap definition in the FLEX tool*/
#undef yywrap

3 ﬁ}

WORD [\t\n]+

- EOL \n

2%

~ {WORD} { wordCount++;

/*Adding the present token length to previous char count*/

charCount:charCount+yy1eng 7

}
{EOL} { charCount++;
lineCount++;
}
. { charCount++;
}

%%

- char **fileList;

 unsigned currentFile=0, noFiles;

/*declaring variables to calculate the statics of all files*/
unsigned long totalCC=0, totalWC=0, totalLC=0;

/*main () function takes two arguments; argv is a list of files names
and argc gives number of input (or file names) that we give to argv*/
main (int argc, char **argv)
{

FILE *fpt;

fileList = argv+1l;

noFiles=argc-1;

48 ¢ Compiler Design Using FLEX and YACC

/*we handle single file casedifferently from themultiple
file case since we don't need to print a total summary details*/
if(argc==2)
i ;
currentFile=1;
fpt=fopen(argv([1l], “r”);
if (! fpt)
{
/*printing the automatically generated error
message with our error message*/
fprintf (stderr, “\nCouldnot open $s\n”,argv(1l]);
exit (1) ;
}
yyin=£fpt;
}

/*here user defined yywrap function is called only
when there is more than one files as input arguments*/
if(argc > 2)

yywrap () ;

yylex();

/*printing the details of the last file*/

printf (*%81lu %8lu %8lu %s\n”, lineCount, wordCount, charCount, fileList
[currentFile-1]) ;

/*calculating the total statics of all file

and displaying the same*/

totalCC=totalCC+charCount;

totalWC=totalWC+wordCount;

totalLC=totalLC+lineCount;

printf (*%81lu %$81lu %8lu\n”, totallC, totalWC, totalCC) ;

return 0;

}

/* The lexer calls yywrap to check EOF condition*/
yywrap ()
{
FILE *fp=NULL;
if ((currentFile !=0) && (noFiles > 1) && (currentFile <noFiles))
{
/*printing the statics of previous file*/
printf (*%81u %$81u %81lu %s\n”, lineCount, wordCount, charCount, fileList
[currentFile-1]);
/*Calculating the statics of the present file*/
totalCC=totalCC+charCount;
totalWC=totalWC+woxrdCount;

Chapter 3: Programming with FLEX ¢ 49

~ totalLC=totalLC+lineCount;
' ~ /*initialise the variable to calculate
the statics of next file*/
charCount=wordCount=1lineCount=0;
fclose(yyin) ;
b
while(fileList[currentFile] !=NULL)
B
] fp=fopen (fileList [currentFile++], WY -
 if(fp !=NULL)
-

yyin=£fp;

break;
i}
fprintf (stderr, “\nCouldnot open %¥s\n”, fileList[currentFile-1]);
L }
 return(fp?0:1);

New Age International

B T e input2.txt ———--—---—--------——————————————
 Compiler Design

Using
J‘FLEX & YACC

This is a word count program
~ implemented using FLEC and YACC
with the help of undef yywrap()

[root@localhost wrapYY]# ./a.out inputl.txt input2.txt input3.txt
418 95 inputl. txt

3634 input2.txt

317 93 input3.txt

1041 222

[root@localhost wrapYY] #

Our example reports both the size of the individual files and a cumulative total of the
entire set of files at the end.

50 e Compiler Design Using FLEX and YACC

As we have discussed earlier, any macros can be redefined as C (such as yywrap())
function. In fact, you can even change the actual purpose of any macro. For example,
Program 3.20 illustrates the Flex program that redefined the macro yymore() as
C function to add two numbers.

PROGRAM 3.20

//***i

//FLEX program that implements a user defined yymore by
//un-defining the already declared yymore ()

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**********************‘k*****‘k********‘k************************

#undef yymore /* undefinif the already declared yymore () */
inta,b,c;

%}
%%

add {/* First Rule that matches the patternadd */
printf (“*\nEnter any two numbers =");

scanf (“%d%d”, &a, &b) ;yymore () ;

printf (“\nThe sumis =%d”,c);

}

-+ { /* Second rule */
printf (“\nEnter ‘add’ to add two numbers...”);
}

%%

main()
£

yylex();
}

/* User defined yymore () function */
yymore ()
{

c=a+b;

[root@vinu yymoreTest]# ./a.out
12

Chapter 3: Programming with FLEX ¢ 51

Enter ‘add’ to add two numbers. ..
add

Enter the twomunbers = 10
11

The output is =21

[2]+ Stopped ./a.out
[root@vinu yymoreTest]#

In the above program, yymore() function is redefined to add two numbers, which will
get into the program whenever we input “add”. Then the user defined yymore()
function is called to add two numbers, and to show the sum of input numbers.

PROGRAM 3.21

Program 3.21 checks whether the parenthesis in a statement is missing or not. The
input text file input.txt contains the number of expressions. The Flex program will scan
' thidugh the given file to check whether the expression has the correct number of right

and left parenthesis or not.

R e e —— ———— = — =
4 .
${

'
//**

//FLEX program checks whether the
//parenthesis in a statement is missing or not

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**

int flag=0,1n=1;
%}
%%

v (» { flag++; /* First Rule that matches (Y

}

“)7 { flag--; /* SecondRule that matches) */

}

[\n] { /*ThirdRule - If the flag is equal to zero, the right and left
parenthesis are of correct order, otherwise ERROR */

if(flag==0)
printf (*\n\nThe statement in the line %d has NO parenthesismissing\n”,1n);

 else

52 & Compiler Design Using FLEX and YACC

printf (“\n\nERROR. . in the line : 4", 1n) ;
if(flag<0)

printf (“\nIt has missed (parenthesis or extra) parenthesis\n”) ;
else if (flag>0)
printf (“\nIt hasmissed) parenthesis or extra (parenthesis\n”) ;

flag=0;1ln++;
}

.+ { /*Fourthrule todonothing */
}

%%

main ()
{
char fileName[20];
printf (“\nEnter the filename =");
scanf (“%$s”, fileName) ;
yyin=fopen (fileName, “r+") ;

yylex();
}
————————————————————————————————— input. txXt —==——m
((a+b* (b+c))
(a* (b+c))
((a/c)*b)+(b-(-c)))
(a+b) - (c* (d-e))
——————————————————————————————————— OMEPUE, mom e i i st st it

[root@Zion parenthl]# ./a.out
Enter the file name = input. txt

ERROR.. intheline : 1
It hasmissed) parenthesis or extra (parenthesis

The statement in the line 2 has NO parenthesis missing

ERROR. . in theline : 3
It hasmissed (parenthesis or extra) parenthesis

The statement in the line 4 has NO parenthesis missing
[root@Zion parenth]#

A variable flag is set to 0, initial condition, and line number (In) to one. As the scanner
gets the token “(”, the flag is incremented by expecting a closing parenthesis. At the end
of every expression, that is, when the scanner gets the new line (i.e. \n), the flag must

Chapter 3: Programming with FLEX ¢ 53

be zero if it (expressions) has correct number of right and left parenthesis; otherwise
it shows an error in the appropriate line. The output given above is the testimony of
the same. Note that the fourth rule does nothing whenever the scanner gets a token
that matches other than the above three rules patterns.

PROGRAM 3.22

Program 3.22 is a Flex program that simulates a simple desktop calculator to calculate
the expressions with basic operators.

%{

//**

//FLEX program that implements the simple desktop calculator

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//**

float opl=0,0p2=0,ans=0;
char oper;
it £1=0,£2=0;

voideval () ;
%}

DIGIT [0-9]
NUM {DIGIT}+(\.{DIGIT}+)?
OP [+\-*/]

%%

{NUM} { /* First Rule that checks for digits */
if (£l ==0)
{
opl=atof (yytext) ;
£l=173
}
else if (f2 == -[1)
{)
op2=atof (yytext) ;
£2=1;

}

if((fl==1) && (f2 ==1))
eval();

54 o

Compiler Design Using FLEX and YACC

{op} {

[\n]{

[\t] {

/* Second rule that checks for operators */
oper=(char) *yytext;
£2=-1;

/* Third rule that checks for new line */
if((fl==1) && (f2==1))

eval();
£1=047£2=0;
}

/* Fourth rule that checks against tab space and does nothing */
}

/* Fifth Rule */

printf (“\n”");

%%

main()

{

yylex();

}

/* Function definition to evaluate the operations */
voideval ()

{
£1=0;£2=0;
switch (oper)
{
case '+’ :ans=opl+op2; /* Addition */
break;
case ‘-’ :ans=opl-op2; /* Substation */
break;
case ‘*’:ans=opl*op2; /*Multiplication */
break;
case '/’ :1f (op2==0) /* Division */
{
printf (*\nDivision by ZERO. ERROR”) ;
return;
}
else

{
ans=opl/op2;
break;

Chapter 3: Programming with FLEX ¢ 59

default:
printf (“\Program is NOT supporting the %c”, oper) ;
break;
}

printf (“\nThe answer is = %$1£”,ans);

[root@Zion calcuLex]# ./a.out
2+5

The answer is =7.000000
52
The answer is =10.000000

[1]+ Stopped ./a.out
[root@Zion calcuLex] #

The above program gets a simple expression as input with basic operators to evaluate
the same. The first rule is the rule section of the Flex program that assigns the first
operand to opl and the second to op2. The second rule assigns the operator to the
variable oper to evaluate the expression by calling the function eval(). Note that the
function eval() is called only after assigning the first operand to op1 the operator to oper,
and the second operator to op2. The eval() function does the appropriate calculations by
checking the operator.

PROGRAM 3.23

Program 3.23 is a Flex program that implements the positive closure. The program will
accept all strings (i.e. valid tokens) that accept the language (10)+.

%{

//**

//FLEX program to implement the positive closure.
// For eg. (10)+ That is 10 and its any combinations

//The lexer generated using the flex-2.5.4a tool in RedHat Linux EL

//*************************f*************************************

%}
LANGUAGE “10”

%%

56 ¢ Compiler Design Using FLEX and YACC

{LANGUAGE}+ { /* First rule that matches all the combinations of 1’sand 0’s */
printf (“\nlts apositive closure....\n”);
return; ,

}

.+{ /* Second rule is matched when the input isNOT 1’s and 0’'s*/
printf (“*\nSORRY.... It isNOT a positive closure\n”);
return;

The first rule is matched against the input streams only when there is one or more
numbers of “10” combinations. In any other case, the second rule is matched and the
following action statements are executed.

EXERCISES

3.1 Flex program to simulate at least 7 operations in a desktop calculator.
3.2 Flex program that accepts the language

L={a"b"}; wheren>=0m >=1
(Ans: see Appendix A)
3.3 Flex program that accepts the language

L={1""0"; where n>=1
(Ans: see Appendix A)
3.4 Flex program that accepts the language

L={1""b™™: wheren>=1m>=0

3.5 Flex program that identifies no of {, }, (and) in C program.

