LEXICAL ANALYZER

The function of the lexical analyzer is to read the source program, one character at a
time, and to translate it into a sequence of primitive units called tokens such as
keywords, identifiers, constants and operators. A token is a sequence of characters that
can be treated as a unit in the grammar of a programming language. This chapter
discusses the different problems faced during the designing and implementation of
lexical analyzers, such as representing tokens using regular expressions. A regular
expression is a notation used to represent tokens of any programming language.
The regular expression can be expressed as transition diagrams, because those
finite automations are convenient ways of designing token recognizers. One advantage
of using regular expression to specify tokens is that, from a regular expression we can
automatically construct a recognizer for tokens denoted by that regular expression.

2.1 INTRODUCTION TO LEXICAL ANALYZERS

In compilers, the lexical analyzer acts as a subroutine or function, which is called by
the parser whenever it needs a new token. The lexical analyzer represents valid tokens
as integer, and once it is found, returns to the parser.

In most of the compilers, the lexical analyzer and the parser are in the same pass.
But in some compilers, they are in different passes to specify the structure of tokens
more efficiently. ,

Other functions sometimes performed by a lexical analyzer are keeping track of
line numbers, producing an output listing if necessary, skipping out white space, and
deleting commands.

2.2 SCANNING THE INPUT

The lexical analyzer scans the characters of the source program one at a time to
discover tokens; however, many characters beyond the next token may have to be

7

o

8 ¢ Ccompiler Design Using FLEX and YACC

Token beginning Look ahead pointer

FIGURE 2.1 Scanning the Input.

2.3 DESIGN OF LEXICAL ANALYZERS

transition diagram, the boxes of the flow chart are drawn as circles called state. The
states are connected by arrows called edges. The labels on the various edges leaving a
state indicate the input characters that can appear after that state.

Figure 2.2 shows a transition diagram for a valid identifier or variable, defined to
be a letter followed by any number of letters or digits. The starting state of the
transition diagram is state Sy, called initial state, the edge from this state indicates that
the first input character must be a letter. If this is the case, we enter state 1 and look
for the next input character. If it happens to be a letter or digit, we re-enter state 1 and

Letter or digit

& Delimiter

1

Any other
character

FIGURE 2.2 Transition Diagram for an Identifier.

Chapter 2: Lexical Analyzer & 9

Now we can convert these collections of transition diagrams into programs.
Figure 2.3 shows the typical transition diagram of keywords used in the C language.

i /1\ n

©

FIGURE 2.3 Transition Diagram for Keywords.

24 LANGUAGES

Let us first discuss few basic terms dealing with languages. The term “language”
means a set of strings formed from some specific alphabet. We shall use the term
alphabet to denote any finite set of symbols or character, which is the basic entity of
a language.

For example, the set {0, 1} is an alphabet. It consists of two symbols, 0 and 1 and
it is known as binary alphabets. A string is a finite sequence of symbols, such as 0011.
The length of a string is the total number of symbols in it. For example, the length of
a string 0011 is 4. A special string whose length is zero is called an empty string. The
empty strings are denoted by &, read as epsilon.

Let L and M be two languages, then the concatenation of two languages, L.M or just
LM, is the language consisting of all strings ab, where 4 is a string in language L and
b is in M. That is,

LM = {ab; where a is in L and b is in M}

For example, let L {0, 10, 11} and M = {11, 1} be a language. Then LM = {011, 01, 1011,
101, 1111, 111}. Hence the string in LM 1011 can be written as the concatenation of 10
from L and 11 from M.

The empty set is a language, which contains only the empty string. It can be
denoted as ¢ or {e}.

10 ¢ Compiler Design Using FLEX and YACC

If an empty set is concatenated with a language L, then we get the same language.
That is,
{e}L=L{e} =L

The unit of two languages L and M is given by the set of all strings that contains either
in language L or in M. That is,

L UM = {x; where x is in L or x is in M}
LuM={e={eful=L

2.5 REGULAR EXPRESSIONS

The regular expression (RE) is a very useful notation suitable for describing tokens,
when the lexical analyzer is generated. Actually these regular expressions are
converted automatically into finite automata which are just formal specifications of
transition diagrams. So, in this section we will discuss how a regular expression can be
used to represent a token.

Consider an example of identifiers in a programming language. An 1dent1f1er is
defined to be a letter followed by zero or more letters or digits. It can be represented
as a regular expression as

Identifier = letter (letter/digit)*

The vertical bar means or, the parentheses are used to group sub expressions, and the
start(*) is the closure operator meaning “zero or more instances”.

In other words, an identifier can be defined as tokens that must have at least one
character, which should be a letter, and followed by zero or more letter(s) or digits.
Each of these regular expressions denotes a language, and the rules for constructing a
regular expression that denotes a language are shown below.

1. eis a regular expression denoting the language {¢}, and then the language will
accept only the empty string.

2. If a is a regular expression denoting the language {a}, then the language will
accept only one string, which is a.

3. If L and M are regular expressions denoting the language L; and L, then:
(@) (L)/(M) is a regular expression denoting the language L; or L.
(b) (L) - (M) is a regular expression denoting the language L; and Ly,.
(c) (L)* is a regular expression denoting the language L;*.

The * operator has the highest precedence followed by /. If two regular expressions L

and M denote the same language, that is, L = M, then L and M are said to be equivalent
languages. For example, a* = (a*)*.

Chapter 2: Lexical Analyzer ¢ 11

2.6 CLOSURE

A closure is an operator to show “any number of strings”. We use the operator * for
representing closure L* to denote the concatenation of language L with itself any
number of times, that is

For example, if L = {aa}, then the L* means all strings of an even number of 4’s including
empty string, that is, L° = {¢}, L' = {aa}, L? = {aaaa}, and so on. In other words, the
language will accept all the strings that contain null string and an even number of a’s.

If we want to exclude empty string, {¢} we can denote the language as L.(L*), that
is,

L- (%=L O L
=0

oo

= U Li+1

i=0

=] J¢
i=1
In short, we can denote the language L - (L*) as L*. We use the unary postfix operator
+ to denote “one or more instance” of a string, and it is called positive closure.

For example, if L = {aa}, then the L* means all strings of an even number of a’s
excluding empty string. That is, L' = {aa}, L? = {aaaa}, and so on. Note that there is no
I°. Thus, the language will accept all the strings that contain only an even number
of a’s.

We can represent the regular expression of an identifier as follows.

Identifier = letter (letter/digit)*
Letter = A/B/C/D/ ereecerene /x/y/z
Digit =0/1/2/3/ crrsrecens /8/9

2.7 REGULAR EXPRESSIONS IN LEX

Before we describe the structure of the Lex specifications, let us discuss the regular
expressions used by Lex. Regular expressions are widely used in rules section of the
Lex specifications, which will be discussed in the next chapter.

In Lex, the regular expression is a pattern description using a meta language, a
language that you use to describe particular patterns of interest. The characters used
in this meta language are part of the standard ASCII character list. The characters that
form regular expressions are:

uyﬁ

12 & Compiler Design Using FLEX and YACC

. : matches any single ASCII character except the new line character (“\n”).
* matches zero or more copies of the preceding expression or character.
[1 This is to represent the character class that matches any character within

the brackets.

A If any character set or expression comes just after the operator, it will
accept all the characters except the one within the character class, that is,
this character can be used to negate any character class within the
square brackets.

- A dash inside the square brackets indicates a character range, for
example [0-9] means the same thing as [0123456789] and [A-Z] means
all the English alphabet letters A to Z.

{1 It indicates how many times the previous pattern is allowed to match
which contains one or two numbers. For example, A {1, 3} matches one
to three occurrences of the letter A.

\ It is used to escape meta-characters and as part of the usual C escape
sequence, for example, “\n” is a new line character, while “*” is literal
asterisk.

+ Matches one or more characters of the preceding regular expressions or

a character set. For example, [0-9] + matches one or more combinations
of the character 0 to 9. That is, this regular expression accepts the strings
0112, 1231456, or 9012, but not an empty string.

? It matches zero or one occurrence of the preceding regular expression,
for example, —[0-9] + matches a signed number including an optional
leading minus.

Matches any one of the preceding or following regular expressions, for
example, pen/pencil/eraser.

This expression will match any one of the three words.

y“” ”
oo

It interprets everything within the equation marks as meta-characters
other than the C escape sequences.

0 Groups a series of regular expressions together into a new expression.
For example, (10101) represent a character sequence 10101.

<> A name or a list of names in angle brackets at the beginning of a pattern
makes that pattern apply only in the given start states.

<<EOF>> In Flex, the special pattern matches the end of the file.

Usually, complex regular expressions are built up from these simple regular
expressions by combining one or more.

Chapter 2: Lexical Analyzer ¢ 13

2.8 EXAMPLES FOR REGULAR EXPRESSIONS

First, let us take the example that we had discussed earlier for an identifier.
identifier = letter (letter/digit)*

An identifier can be defined as the tokens that must have at least one character or letter
and followed by zero or more letters or digits.

letter = [A-Z a-2z]
digit = [0-9]

A letter can be defined as the any one character ranging from capital A to Z or small
letter a to z and a digit as numerical digits ranging from 0 to 9. This can be used to build
a regular expression for an integer.

integer = [0-9]+

An integer can be any one digit followed by zero or more digits. We can expand this
to allow decimal numbers.

[0-9]*\.[0-9]+

Notice that the use of “\” before the period is to make it a literal period rather than
a meta-character. That is, simply “.” means, it matches any single character except the
new line character, so we used “\.” to specify the period of the decimal numbers. This
pattern matches “0.0”, “1.2” or “.312”. But it will not match “0” or “2”.

Following are the few examples for the regular expressions discussed above:

a " matches the character ‘a’.

[abc] A character class that matches the pattern, either 4, b or c.

[abi-uZ] A character class that matches “a”, “b” any letter from “7” through “u”
and a “Z”.

[AM-Z\n] A negated character class, i.e. any character except an upper case letter
or a new line.

a* Zero or more a’s where a is any regular expression pattern.
at one or more a’s.
a? Zero or one 4.

af2, 5} Two to five number of a’s.

a{3} Three or more 4a’s.

a{4} exactly four a’s.

\0 A NULL character (ASCII code 0).

\123 The character with octal value 123.

\x2a The character with hexadecimal value 2a.

a$ An a but only at the end of a line, i.e. just before a new line equivalent

to “r/\n”".

14 ¢ Compiler Design Using FLEX and YACC

There are several other regular expressions that can be specified from the combinations
of the pattern that we have already discussed. Those regular expressions will be dealt
while discussing programming with Flex.

2.9 FINITE AUTOMATA

The lexical analyzer can be viewed as a recognizer to identify the tokens from the input
strings. The lexical analyzer that identifies the presence of a token on the input, is a
recognizer for the language, using the regular expression defining that token.

A better way to convert a regular expression to a recognizer is to construct a
generalized transition diagram from the expression. This diagram is called a
Nondeterministic Finite Automata (NFA). In general, it can be converted into its
variant, which is a simpler program, called a Deterministic Finite Automata (DFA). A
NFA recognizing the language (a/b)*abb is shown in Figure 2.4.

Stan%)aQb;®b@ '
<,

FIGURE 2.4 NFA Accepting (a/b)*abb.

If we analyze Figure 2.4 closely, we can see that the nondeterministic finite
automata is a labelled directed graph. The values are called states and the labelled
edges are called transitions. Here state 0 is a start (or initial) state, and state 3, with
double circles, is a final state. The NFA has two or more transition states by accepting
a character. Figure 2.4 shows a typical NFS outputting the language (a/b)*abb.

The DFA has only one transition state by accepting a character. Figure 2.5 shows
the DFA of Figure 2.4.

FIGURE 2.5 DFA Accepting (a/b)*abb.

Since there is at most one transition from any state for any input symbol, a DFA
is easier to simulate than an NFA. Fortunately, for each NFA we can find a DFA
accepting the same language. You may refer any standard textbook related to “Theory
of Computation & Automata” for more details on finite automata.

.~ =y

ey

