
gdb command in Linux with examples

GDB, the acronym for GNU Debugger, is a powerful debugging tool used to analyze and

debug programs written in languages like C, C++, Ada, and Fortran. It allows developers

to inspect the behavior of their programs, step through code, set breakpoints, and

examine variable values in real-time. GDB is an essential tool for debugging complex

code, providing insights into runtime behavior that are invaluable for troubleshooting

and optimization.

Basic Syntax of GDB

gdb [-help] [-nx] [-q] [-batch] [-cd=dir] [-f] [-b bps] [-tty=dev] [-s symfile]

[-e prog] [-se prog] [-c core] [-x cmds] [-d dir] [prog[core|procID]]

Example:

The program to be debugged should be compiled with '-g' option. The below given C++

file that is saved as 'gfg.cpp'. We are going to use this file in this article.

#include <iostream>
#include <stdlib.h>

#include <string.h>

using namespace std;

int findSquare(int a)

{

 return a * a;

}

int main(int n, char** args)

{

 for (int i = 1; i < n; i++)
 {

 int a = atoi(args[i]);

 cout << findSquare(a) << endl;

 }

 return 0;

}

Preparing a Program for Debugging with GDB

Compile the above C++ program using the command:

g++ -g -o gfg gfg.cpp

To start the debugger of the above 'gfg' executable file, enter the command 'gdb gfg'. It

opens the gdb console of the current program, after printing the version information.

Key Commands in GDB

1. run [args]

This command runs the current executable file. In the below image, the program was

executed twice, one with the command line argument 10 and another with the command

line argument 1, and their corresponding outputs were printed.

2. Quit GDB (quit or q):

To quit the gdb console, either quit or q can be used.

3. Get Help ('help')

It launches the manual of gdb along with all list of classes of individual commands.

4. Setting Breakpoints (break)

The command break [function name] helps to pause the program during execution

when it starts to execute the function. It helps to debug the program at that point.

Multiple breakpoints can be inserted by executing the command wherever necessary. 'b

findSquare' command makes the gfg executable pause when the debugger starts to

execute the findSquare function.

b

break [function name]

break [file name]:[line number]

break [line number]

break *[address]

break ***any of the above arguments*** if [condition]

b ***any of the above arguments***

In the above example, the program that was being executed(run 10 100), paused when it

encountered findSquare function call. The program pauses whenever the function is

called. Once the command is successful, it prints the breakpoint number, information of

the program counter, file name, and the line number. As it encounters any breakpoint

during execution, it prints the breakpoint number, function name with the values of the

arguments, file name, and line number. The breakpoint can be set either with the address

of the instruction(in hexadecimal form preceded with *0x) or the line number and it can

be combined with if condition(if the condition fails, the breakpoint will not be set) For

example, break findSquare if a == 10.

5. Continue Execution ('continue' or 'c')

This command helps to resume the current executable after it is paused by the

breakpoint. It executes the program until it encounters any breakpoint or runs time error

or the end of the program. If there is an integer in the argument(repeat count), it will

consider it as the continue repeat count and will execute continue command "repeat

count" number of times.

continue [repeat count]

c [repeat count]

6. Step Over ('next' or 'n')

This command helps to execute the next instruction after it

encounters the breakpoint.

Whenever it encounters the above command, it executes the next instruction of the

executable by printing the line in execution.

7. Delete Breakpoints ('delete')

This command helps to deletes the breakpoints and checkpoints. If the delete command

is executed without any arguments, it deletes all the breakpoints without modifying any

of the checkpoints. Similarly, if the checkpoint of the parent process is deleted, all the

child checkpoints are automatically deleted.

d

delete

delete [breakpoint number 1] [breakpoint number 2] ...

delete checkpoint [checkpoint number 1] [checkpoint number 2] ...

In the above example, two breakpoints were defined, one at the main and the other at

the findSquare. Using the above command findSquare breakpoint was deleted. If there is

no argument after the command, the command deletes all the breakpoints.

8. Clear Breakpoints ('clear')

This command deletes the breakpoint which is at a particular function with the name

'FUNCTION_NAME'. If the argument is a number, then it deletes the breakpoint that

lies in that particular line.

clear [line number]

clear [FUNCTION_NAME]

In the above example, once the clear command is executed, the breakpoint is deleted

after printing the breakpoint number.

9.

disable [breakpoint number 1] [breakpoint number 2] (disable and

enable)

Instead of deleting or clearing the breakpoints, they can be disabled and can be enabled

whenever they are necessary.

10. enable [breakpoint number 1] [breakpoint number 2]

To enable the disabled breakpoints, this command is used.

11. Inspect Breakpoints ('info breakpoints')

When the info breakpoints in invoked, the breakpoint number, type, display, status,

address, the location will be displayed. If the breakpoint number is specified, only the

information about that particular breakpoint will be displayed. Similarly, when the info

checkpoints are invoked, the checkpoint number, the process id, program counter, file

name, and line number are displayed.

info breakpoints [breakpoint number 1] [breakpoint number 2] ...

info checkpoints [checkpoint number 1] [checkpoint number 2] ...

12. Checkpoints and Process Management (checkpoint and restart)

These command creates a new process and keep that process in the suspended mode and

prints the created process's process id.

For example, in the above execution, the breakpoint is kept at function findSquare and

the program was executed with the arguments "1 10 100". When the function is called

initially with a = 1, the breakpoint happens. Now we create a checkpoint and hence gdb

returns a process id(4272), keeps it in the suspended mode and resumes the original

thread once the continue command is invoked. Now the breakpoint happens with a =

10 and another checkpoint(pid = 4278) is created. From the info checkpoint information,

the asterisk mentions the process that will run if the gdb encounters a continue. To

resume a specific process, restart command is used with the argument that specifies the

serial number of the process. If all the process are finished executing, the info

checkpoint command returns nothing.

13. Set and Show Arguments (set args [arg1] [arg2] ...)

This command creates the argument list and it passes the specified arguments as the

command line arguments whenever the run command without any argument is invoked.

If the run command is executed with arguments after set args, the arguments are

updated. Whenever the run command is ran without the arguments, the arguments are

set by default.

14.

show

args

The show args prints the default arguments that will passed if the run command is

executed. If either set args or run command is executed with the arguments, the default

arguments will get updated, and can be viewed using the above show args command.

15. display [/format specifier] [expression] and undisplay [display id1]

[display id2] ...

These command enables automatic displaying of expressions each time whenever the

execution encounters a breakpoint or the n command. The undisplay command is used

to remove display expressions. Valid format specifiers are as follows:

o - octal

x - hexadecimal

d - decimal

u - unsigned decimal

t - binary

f - floating point

a - address

c - char

s - string

i - instruction

In the above example, the breakpoint is set at line 12 and ran with the arguments 1 10

100. Once the breakpoint is encountered, display command is executed to print the value

of i in hexadecimal form and value of args[i] in the string form. After then, whenever the

command n or a breakpoint is encountered, the values are displayed again until they are

disabled using undisplay command.

16. Print Expressions ('print')

This command prints the value of a given expression. The display command prints all

the previously displayed values whenever it encounters a breakpoint or the next

command, whereas the print command saves all the previously displayed values and

prints whenever it is called.

print [Expression]

print $[Previous value number]

print {[Type]}[Address]

print [First element]@[Element count]

print /[Format] [Expression]

17. Load Executables ('file')

gdb console can be opened using the command gdb command. To debug the executables

from the console, file [executable filename] command is used.

Conclusion

GDB is an indispensable tool for developers working with compiled languages like C

and C++. Its robust set of debugging features makes it possible to pinpoint and res

olve bugs, analyze program behavior, and optimize performance. By understanding and

mastering GDB commands and options, you can greatly enhance your debugging skills,

leading to more efficient and effective development.

Makefile tutorial

https://makefiletutorial.com/

