
Execution Exercises – Date : 12.09.2025

1. Implement basic inter-process communication using System V message queues.

• Write two separate C programs: sender.c and receiver.c.

• The sender should send a string message to the receiver.

• The receiver should print the message received.

• Use msgget(), msgsnd(), and msgrcv().

• Define a message structure with long mtype

2. *Implement a Producer-Consumer using Message Queues*

Write two programs: producer.c and consumer.c.

• The producer generates numbers from 1 to 10 and sends them as messages.

• The consumer receives the numbers and prints their square.

Use a common message queue.

• Delete the message queue after processing

3. *Multiple Message Types Handling ⁠*

Write a single program that sends 3 messages with different mtype values (e.g., 1 for INFO, 2

for WARNING, 3 for ERROR).

• The receiver should be able to receive only messages of a specific type (e.g., ERROR). Allow

the user to specify which message type they want to receive.

4. *POSIX Message Queue Implementation*

• Write a program that uses POSIX message queues (mq_open, mq_send, mq_receive).

• Create a sender and receiver program that exchange messages containing temperature

sensor values.

• Set message queue attributes (max msg, msg size).

• Handle queue creation, usage, and cleanup.

5.*Send and Receive Structured Data*

• Define a structure with fields: int id, char name[20], float marks.

• Sender should send 3 student records via the message queue.

• Receiver should read and print each student record.

6. *Message Queue with Timeout (POSIX)*

• Modify a receiver program to wait for messages only for a fixed duration (e.g., 5 seconds).

• If no message is received, print a timeout warning. Hint: Use mq_timedreceive() with struct

timespec.

7. *Logging System via Message Queues*

• Create a logger.c program that runs in the background and listens on a message queue.

• Write another program log_client.c that sends messages (e.g., “User logged in”, “Error

occurred”) to the logger.

• Logger writes these messages to a file.

8. *Chat Between Two Processes*

• Implement two processes (user1.c and user2.c) that can send and receive messages from

each other using one or two queues.

• Include sender name, timestamp, and message body.

9. *Delete and Recreate Message Queue Safely*

• Write a script or C code that:

• Checks if a message queue with a given key exists.

• Deletes it if found.

• Creates a fresh queue and starts communication.

10. *Error Handling and Edge Case Testing*

• Intentionally try to send a message larger than the allowed size.

• Try receiving from an empty queue in non-blocking mode.

• Handle all errors with descriptive messages using perror().

