
POLYMORPHISM-METHOD OVERLOADING AND OVERRIDING

Q1. Design a class named Person and its two subclasses named Student and Employee. Make

Faculty and Staff subclasses of Employee. A person has a name, address, phone number,

and e-mail address. A student has a class status (freshman, sophomore, junior, or senior).

Define the status as a constant. An employee has an office, salary, and date hired. A faculty

member has office hours and a rank. A staff member has a title. Override the toString

method in each class to display the class name and the person’s name.

Write a test program that creates a Person, Student, Employee, Faculty, and Staff, and

invokes their toString() methods.

Q2. Design a simulation of a Multi-Mode Payment System that supports different payment

methods: CreditCard, DebitCard, UPI, and NetBanking.

Each payment method has:

 A unique transaction fee logic.

 A way to authorize a payment.

 Custom initialization messages using static and instance initializer blocks.

Requirements:

1. Create a base class PaymentMethod with:

o A double amount field.

o A constructor to set the amount.

o A method double calculateFee() — to be overridden.

o A method void authorize() — to be overridden.

2. Create 4 subclasses:

o CreditCard

o DebitCard

o UPI

o NetBanking

Each subclass should:

o Override calculateFee() and authorize() with its own logic.

o Include a static block to print "Class [ClassName] loaded".

o Include an instance initializer block to print "Instance of

[ClassName] created".

3. Create a PaymentProcessor class:

o Has a method void process(PaymentMethod method) that:

 Calls authorize() and calculateFee() polymorphically.

o In the main method:

 Randomly choose one of the four payment types.

 Create an instance (with random amount ₹500 to ₹5000).

 Upcast to PaymentMethod.

 Call process()

Q3. Design a Custom Calculator that demonstrates the full depth of method overloading

You must overload the calculate() method for different operations and data types. The

program should highlight how Java resolves overloaded methods based on:

 Number of arguments

 Argument types

 Type promotion

 Varargs

 Ambiguity in overloads

Requirements:

1. Create a class CustomCalculator with at least 6 overloaded versions of a method

named calculate():

o int calculate(int a, int b) – returns sum

o double calculate(double a, double b) – returns product

o long calculate(long a, int b) – returns difference

o float calculate(float a, float b, float c) – returns average

o int calculate(int... values) – uses varargs to return total

o void calculate(short a, short b) – just prints "Short version called"

2. In the main() method of a separate class:

o Call all the overloaded versions of calculate() with appropriate arguments.

o Intentionally call the method with values like calculate(10, 10) and observe

which version is called.

o Call calculate(10L, 10) and calculate(10, 10L) – and explain the results.

o Attempt to call calculate(10, 10) when both int and short versions are

available, and observe ambiguity.

o Resolve ambiguity explicitly using type casting.

