
CS23304- JAVA PROGRAMMING

 LAB TEST (III SEMESTER - Q BATCH)

Date: 3-9-2025 Marks: 25

Draw the following table in your first page

MARK SPLIT-UP

Q.NO. COMMENTS MARK

 Total

Answer All Questions

Q1. Design a system that processes a 2D array of encrypted strings. Each string contains alphanumeric

characters and is supposed to follow a strict pattern. You must:

1. Validate the format of each string. (3)

2. Decrypt valid strings using a custom decryption algorithm.(5)

3. Handle all exceptions gracefully without halting the program.(5)

4. At the end, return a new 2D array of decrypted strings, preserving the matrix structure. (2)

Requirements:

Input: A 2D array of strings: String[][] encryptedMatrix.

String Format Rule:

Each string must follow the pattern: 3 uppercase letters followed by 3 digits (e.g., "ABC123").

Decryption Rule:

For valid strings:

 Shift each letter backward by 1 (e.g., 'B' → 'A', 'A' → 'Z')

 Invert each digit (e.g., '0' → '9', '1' → '8', ..., '9' → '0')

Example:

Encrypted: "BCD345" → Decrypted: "ABC654"

Custom Exceptions:

Define and use the following exceptions:

 InvalidFormatException – when a string doesn't match the required pattern.

 DecryptionException – for any error during decryption.

 MatrixProcessingException – wraps all other exceptions during matrix processing.

Sample Input

{

 {"ABC123", "XYZ789", "INVALID1"},

 {null, "DEF456", "GHI000"},

 {"JKL999", "MNO111", "123ABC"}

}

Sample Output

{

 {"ZAB876", "WXY210", null},

 {null, "CDE543", "FGH999"},

 {"IJK000", "LMN888", null}

}

Q2. Design a smart vehicle simulation system using Java inheritance and polymorphism, where different types

of smart vehicles (e.g., electric cars, drones, and trucks) can perform actions such as moving, charging, and

reporting status.

Requirements

Abstract Class: SmartVehicle

Represents the base for all smart vehicles.

Properties:

String id

double batteryLevel

Methods:

void charge(double amount)

abstract void move(double distance)

abstract String getStatus()

Subclasses (Each must override move() and getStatus()):

a. ElectricCar

Property: int passengerCount

Battery Consumption: distance × 0.5

getStatus(): Returns battery level and passenger count

b. AutonomousDrone

Property: double altitude

Battery Consumption: distance × 1.0 + altitude × 0.2

getStatus(): Returns battery level and current altitude

c. SelfDrivingTruck

Property: double cargoWeight

Battery Consumption: distance × (0.7 + cargoWeight × 0.1)

getStatus(): Returns battery level and cargo weight

Write a main class where you:

Create an array or list of SmartVehicle objects. (2)

Initialize each object with different data. (1)

Invoke move() and getStatus() for each object using a polymorphic reference

(e.g., SmartVehicle vehicle = new ElectricCar(...);) (5)

Ensure output is dynamically bound at runtime. (2)

