
END SEMESTER EXAMINATION (LAB)

CS23304- JAVA PROGRAMMING

SEMESTER – III BATCH: Q

Date: 5-11-2025 Marks: 100

Draw the following table in your first page

MARK SPLIT-UP

Q.NO. COMMENTS MARK

 Total

1. You are developing a multithreaded ticket booking system for a concert.

There are 100 tickets available initially, and multiple users can book tickets at the same

time through different devices (threads).

However:

 Each user can book 1–5 tickets at a time.

 If not enough tickets remain, the system should show “Tickets Sold Out” or “Not

enough tickets available.”
 The system must ensure thread safety, i.e., the total tickets sold never exceeds 100.

 The system should display the remaining ticket count after each booking attempt.

Requirements:

 Create a class TicketCounter with: (15)

o A variable availableTickets initialized to 100.

o A method bookTickets(String userName, int numTickets) that:

 Checks availability.

 Deducts tickets if available.

 Displays messages accordingly.

 Create a class UserBookingThread that extends Thread and: (15)

o Takes the TicketCounter object and user details.

o Calls bookTickets() in its run() method.

 Use the synchronized keyword to ensure multiple users cannot book tickets at the same

time incorrectly. (10)

 Simulate 5–10 users (threads) booking tickets concurrently. (10)

Sample Output

User A booked 5 tickets. Tickets remaining: 95

User B booked 3 tickets. Tickets remaining: 92

User C booked 10 tickets. Tickets remaining: 82

User D tried to book 30 tickets. Not enough tickets available!

...

User J tried to book 5 tickets. Tickets Sold Out!

2. You are hired to develop a simple Student Records Management System for a college.

The college wants to store, retrieve, and update student data in a text file instead of a

database.

Each student record contains:

StudentID, Name, Department, Marks

Example:

101, Alice Johnson, Computer Science, 89

102, Bob Smith, Electrical, 76

103, Carol White, Mechanical, 92

The data is stored in a file named "students.txt".

Requirements:

Create a Class for Student

Create a Student class with: (10)

o Attributes: studentId, name, department, marks

o Methods: constructor, getters/setters, and toString().

Implement File Operations

Create a class StudentFileManager with the following methods:

addStudent(Student s) (5)
Appends a new student record to students.txt.

displayAllStudents() (5)
Reads all records from students.txt and displays them neatly.

searchStudent(int studentId) (10)
Searches for a student by ID and displays the details.

updateStudentMarks(int studentId, int newMarks) (10)
Reads all data, updates the specific student’s marks, and rewrites the file.

calculateAverageMarks() (10)
Calculates and displays the average marks of all students.

Sample Output:
All Students:

101 - Alice Johnson - Computer Science - 89

102 - Bob Smith - Electrical - 76

103 - Carol White - Mechanical - 92

Search by ID 102:

Student Found: Bob Smith, Department: Electrical, Marks: 76

Updating Marks...

Bob Smith’s marks updated to 82 successfully.

Average Marks of all Students: 87.66

