
1 

CORE JAVA CHEATSHEET  
 
Object Oriented Programming Language:​ based on the concepts of “objects”. 
Open Source: ​Readily available for development.  
Platform-neutral: ​Java code is independent of any particular hardware or software. This is 
because Java code is compiled by the compiler and converted into byte code. Byte code is 
platform-independent and can run on multiple systems. The only requirement is Java needs a 
runtime environment i.e, JRE, which is a set of tools used for developing Java applications.  
Memory Management: ​Garbage collected language, i.e. deallocation of memory. 
Exception Handling: ​Catches a series of errors or abnormality, thus eliminating any risk of 
crashing the system. 

THE JAVA BUZZWORDS 

Java was modeled in its final form keeping in consideration with the primary objective of having 
the following features: 
 
 
Simple, Small and Familiar 

Object-Oriented  

Portable and Platform Independent 

Compiled and Interpreted  

Scalability and Performance 

Robust and Secure 

Architectural-neutral  

High Performance  

Multi-Threaded 

Distributed 

Dynamic and Extensible 

 



2 

DATA TYPES IN JAVA

 

Primitive Data Types 

Data Type Default Value Size (in bytes) 
1 byte = 8 bits 

boolean FALSE 1 bit 

char  “ “ (space) 2 byte 
 

byte 0 1 byte 

short 0 2 byte 
 

int 0 4 byte 

long 0 8 byte 

float 0.0f 4 byte 

double 0.0d 8 byte 

 

Non-Primitive Data Types 

Data Type 

String 

Array 

Class 

Interface 

 

 ​TYPECASTING  

It is a method of converting a variable of one data type to another data type so that functions 
can process these variables correctly. 
Java defines two types of typecasting: 

●  Implicit Type Casting (Widening) 



3 

Storing a variable of a smaller data type to a larger data type.  
●  Explicit Typecasting (Narrowing) 

Storing variable of a larger data type to a smaller data type.  

OPERATORS IN JAVA 

Java supports a rich set of operators that can be classified into categories as below : 
 
 

Operator Category Operators 

Arithmetic operators +,-,/,*,% 

Relational operators <, >, <=, >=,==, != 

Logical operators && , ||  

Assignment operator  =, +=, −=, ×=, ÷=, %=, &=, ^=, |=, <<=, >>=, >>>= 

Increment and Decrement  operator ++ , - - 

Conditional operators ?: 

Bitwise operators ^, &, | 

Special operators . (dot operator to access methods of class)  

 

JAVA IDE and EXECUTING CODE 

Amongst many IDEs the most recommended ones are : 
● Eclipse  
● NetBeans  

 
Java code can also be written in any text editor and compiled on the terminal with following 
commands :  

 
$ java [file_name].java 
 
$ java [file_name] 

 
Note​:  File name should be the same as the class name containing the main() method, with a 
.java extension. 

VARIABLES IN JAVA 

Variables are the name of the memory location. It is a container that holds the value while the 
java program is executed. Variables are of three types in Java : 
 



4 

Local Variable Global or Instance Variable Static Variable 

Declared and initialized inside 
the body of the method, block or 
constructor. 

Declared inside the class but 
outside of the method, block or 
constructor. If not initialized, the 
default value is 0. 

Declared using a “static” 
keyword. It cannot be local. 

   

It has an access only within the 
method in which it is declared 
and is destroyed later from the 
block or when the function call is 
returned. 

Variables are created when an 
instance of the class is created 
and destroyed when it is 
destroyed. 

Variables created creates a 
single copy in the memory which 
is shared among all objects at a 
class level. 

 

class TestVariables 

{ 

int data = 20; // instance variable 

static int number = 10; //static variable 

 

void someMethod() 

{ 

int num = 30; //local variable 

} 

} 

 

 

RESERVED WORDS  

Also known as keywords, are particular words which are predefined in Java and cannot be used 
as variable or object name. Some of the important keywords are :  
 
 
 
 



5 

 
Keywords Usage 

abstract used to declare an abstract class. 

catch used to catch exceptions generated by try statements. 

class used to declare a class. 

enum defines a set of constants 

extends indicates that class is inherited  

final indicates the value cannot be changed 

finally  used to execute code after the try-catch structure.  

implements used to implement an interface. 

new used to create new objects. 

static used to indicate that a variable or a method is a class method. 

super used to refer to the parent class. 

this used to refer to the current object in a method or constructor. 

throw used to explicitly throw an exception. 

throws used to declare an exception. 

try block of code to handle exception 

 

METHODS IN JAVA 

The general form of method :  
 
type name (parameter list) 
{ 

//body of the method 
 

//return value              (only if type is not void) 
} 
 
Where type           - return type of the method  

name           - name of the method 
parameter list            -  sequence of type and variables separated by a comma 
return          - statement to return value to calling routine 

 

 

 



6 

CONDITIONAL STATEMENTS IN JAVA 

1. if-else  
 

Tests condition, if condition true if block is executed else the else block is executed. 
 

class TestIfElse 
{ 

public static void main(String args[])  
 { 

int percent = 75; 
 

if(percent >= 75) 
{ 

System.out.println("Passed"); 
} 
else 
{ 

System.out.println("Please attempt again!"); 
} 

 } 
 
}  

 
 
 
2. Switch  
 
Test the condition, if a particular case is true the control is passed to that block and executed. 
The rest of the cases are not considered further and the program breaks out of the loop. 
 

 
class TestSwitch 
{ 

public static void main(String args[])  
 { 

int weather = 0; 
 

switch(weather) 
{ 
case 0 : 

System.out.println("Sunny"); 



7 

break; 
case 1 :  

System.out.println("Rainy"); 
break; 

case 2 :  
System.out.println("Cold"); 
break; 

case 3 :  
System.out.println("Windy"); 
break; 

default :  
System.out.println("Pleasant"); 
} 

 } 
} 

 

LOOPS IN JAVA 

Loops are used to iterate the code a specific number of times until the specified condition is 
true. There are three kinds of loop in Java :  
 
For Loop  

Iterates the code for a specific number of times until 
the condition is true. 

class TestForLoop 
{ 

public static void main (String args[]) 
{ 

for(int i=0;i<=5;i++) 

System.out.println("*"); 
} 

} 

While Loop  

If condition in the while is true the program enters the 
loop for iteration. 

class TestWhileLoop 
{ 

public static void main (String args[]) 
{ 

int i = 1; 
while(i<=10) 
{ 

System.out.println(i); 
i++; 

} 
} 

} 

Do While Loop   



8 

The program enters the loop for iteration at least once 
irrespective of the while condition being true. For 
further iterations, it is depends on the while condition 
to be true. 

class TestDoWhileLoop 
{ 

public static void main (String args[]) 
{ 

int i = 1; 
do 
{ 

System.out.println(i); 
i++; 

}while(i<=10); 
} 

} 

 

JAVA OOPS CONCEPTS 

An object-oriented paradigm offers the following concepts to simplify software development and 
maintenance.  
 
1. Object and Class 
 
Objects are basic runtime entities in an object-oriented system, which contain data and code to 
manipulate data. This entire set of data and code can be made into user-defined data type using 
the concept of class. Hence, a class is a collection of objects of a similar data type. 
Example: apple, mango, and orange are members of class fruit.  

 
2. Data Abstraction and Encapsulation  
 
The wrapping or enclosing up  of data and methods into a single unit is known as encapsulation. 
Take medicinal capsule as an example, we don’t know what chemical it contains, we are only 
concerned with its effect. 
 
This insulation of data from direct access by the program is called data hiding. For instance, 
while using apps people are concerned about its functionality and not the code behind it.  
 
3.Inheritance 
 
Inheritance provides the concept of reusability, it is the process by which objects of one class 
(Child class or Subclass) inherit or derive properties of objects of another class (Parent class).  
 
 
 
 
Types of Inheritance in Java: 
 
Single Inheritance 



9 

The child class inherits properties and behavior from a single parent class. 

Multilevel Inheritance 

The child class inherits properties from its parent class, which in turn is a child class to another parent class 

Multiple Inheritance 

When a child class has two parent classes. In Java, this concept is achieved by using interfaces. 

Hierarchical Inheritance 

When a parent class has two child classes inheriting its properties. 

 
 

class A  
{ 

int i, j; 
void showij() { 
System.out.println("i and j: " + i + " " + j); 
} 

} 
// Create a subclass by extending class A. 
class B extends A { 

int k; 
void showk() { 
System.out.println("k: " + k); 
} 
void sum() { 
System.out.println("i+j+k: " + (i+j+k)); 
} 

} 
 
class SimpleInheritance { 

public static void main(String args[]) { 
A objA = new A(); 
B objB = new B(); 
// The superclass may be used by itself. 
objA.i = 10; 
objA.j = 20; 
System.out.println("Contents of objA: "); 
objA.showij(); 
System.out.println(); 
/* The subclass can access to all public members of 
its superclass. */ 
objB.i = 7; 
objB.j = 8; 
objB.k = 9; 



10 

System.out.println("Contents of objB: "); 
objB.showij(); 
objB.showk(); 
System.out.println(); 
System.out.println("Sum of i, j and k in objB:"); 
objB.sum(); 
} 

} 
 
 
Some limitations in Inheritance : 

● Private members of the superclass cannot be derived by the subclass. 
● Constructors cannot be inherited by the subclass. 
● There can be one superclass to a subclass. 

 
4. Polymorphism  
 
Defined as the ability to take more than one form. Polymorphism allows creating clean and 
readable code.  
In Java Polymorphism is achieved by the concept of method overloading and method 
overriding, which is the dynamic approach.  
 

● Method Overriding  
 
In a class hierarchy, when a method in a child class has the same name and type signature as a 
method in its parent class, then the method in the child class is said to override the method in 
the parent class. 
 
In the code below, if we don’t override the method the output would be 4  as calculated in 
ParentMath class, otherwise, it would be 16.  
 

class ParentMath 
{ 

void area() 
{ 

int a =2; 
System.out.printf("Area of Square with side 2 = %d %n", a * a); 
System.out.println(); 

} 
} 
 
class ChildMath extends ParentMath 
{ 



11 

void area() 
{ 

int a =4; 
System.out.printf("Area of Square with side 4= %d %n", a * a); 

} 
 

public static void main (String args[]) 
{  

ChildMath obj = new ChildMath(); 
obj.area(); 

} 
} 

 
●  Method Overloading  

 
Java programming can have two or more methods in the same class sharing the same name, 
as long as their arguments declarations are different. Such methods are referred to as 
overloaded, and the process is called method overloading.  
 
Three ways to overload a method : 
 
1. Number of parameters  

example:  add(int, int)  
add(int, int, int) 

 
2. Data type of parameters 

example add(int, int) 
add(int, float) 

 
3.Sequence of data type of parameters 

example add(int, float) 
add(float, int) 

 
Program to explain multilevel inheritance and method overloading : 
 

class Shape  
 {  
     void area() 
     { 
        System.out.println("Area of the following shapes are : "); 
     } 
 }  
  



12 

 class Square extends Shape  
 {  
  
      void area(int length)  
      {  
           //calculate area of square  
           int area = length * length;  
           System.out.println("Area of square : "+area);  
      }  
 }  
  
 class Rectangle extends Shape  
 {  
       //define a breadth  
  
      void area(int length,int breadth)  
      {  
            //calculate area of rectangle  
           int area = length * breadth;  
           System.out.println("Area of rectangle : " + area);  
      }  
 }  
  
 class Circle extends Shape  
 {  
      void area(int breadth)  
      {  
           //calculate area of circle using length of the shape class as radius  
           float area = 3.14f * breadth * breadth;  
           System.out.println("Area of circle : " + area);  
      }  
 }  
 
 class InheritanceOverload 
 {  
      public static void main(String[] args)  
      {  
            int length = 5; 
            int breadth = 7;  
            Shape s = new Shape(); 
           //object of child class square  
           Square sq = new Square();  
           //object of child class rectangle  



13 

           Rectangle rec = new Rectangle();  
           //object of child class circle  
           Circle cir = new Circle();  
  
           //calling the area methods of all child classes to get the area of different objects  
           s.area(); 
           sq.area(length);  
           rec.area(length,breadth);  
           cir.area(length);  
      }  
 }  

 

ABSTRACT CLASS  

Superclass that only defines a generalized form that will be shared by all of its subclasses, 
leaving it to each subclass to implement its methods.  
 

abstract class A { 
abstract void callme(); 
// concrete methods are still allowed in abstract classes 
void callmetoo() { 
System.out.println("This is a concrete method."); 
} 
} 
class B extends A { 
void callme() { 
System.out.println("B's implementation of callme."); 
} 

} 
 
class Abstract { 

public static void main(String args[]) { 
B b = new B(); 
b.callme(); 
b.callmetoo(); 
} 

} 

INTERFACES 



14 

A class’s interface can be full abstracted from its implementation using the “interface” keyword. 
They are similar to class except that they lack instance variables and their methods are 
declared without any body.  
 

● Several classes can implement an interface. 
● Interfaces are used to implement multiple inheritances. 
● Variables are public, final and static. 
● To implement an interface, a class must create a complete set of methods as defined by 

an interface.  
● Classes implementing interfaces can define methods of their own. 

 
interface Area 
{ 

final static float pi = 3.14F; 
float compute(float x , float y); 

} 
 
class Rectangle implements Area  
{ 

public float compute (float x, float y) 
{ 

return (x*y); 
} 

} 
 
class Circle implements Area 
{ 

public float compute (float x, float y) 
{ 

return (pi * x * x); 
} 

} 
 
class InterfaceTest 
{ 

public static void main (String args[]) 
{ 

float x = 2.0F; 
float y = 6.0F; 
Rectangle rect = new Rectangle(); //creating object 
Circle cir = new Circle(); 
 
float result1 = rect.compute(x,y); 



15 

System.out.println("Area of Rectangle = "+ result1); 
 

float result2 = cir.compute(x,y); 
System.out.println("Area of Circle = "+ result2); 

} 
} 

CONSTRUCTORS IN JAVA 

● A constructor initializes an object on creation. 
● They have the same name as the class. 
● They do not have any return type, not even void. 
● Constructor cannot be static, abstract or final. 
● Constructors can be : 
● Non - Parameterized or Default Constructor: Invoked automatically even if not declared 

 
class Box { 

double width; 
double height; 
double depth; 
// This is the constructor for Box. 
Box() { 
System.out.println("Constructing Box"); 
width = 10; 
height = 10; 
depth = 10; 
} 
// compute and return volume 
double volume() { 
return width * height * depth; 
} 

} 
 
class BoxVol { 

public static void main(String args[]) { 
// declare, allocate, and initialize Box objects 
Box mybox1 = new Box(); 
Box mybox2 = new Box(); 
double vol; 

 
vol = mybox1.volume(); 
System.out.println("Volume is " + vol); 
 



16 

vol = mybox2.volume(); 
System.out.println("Volume is " + vol); 
} 

}  
 

 
Parameterized : 
 
Used to initialize the fields of the class with predefined values from the user. 
 

class Box { 
double width; 
double height; 
double depth; 

Box(double w, double h, double d) { 
width = w; 
height = h; 
depth = d; 
} 

 
double volume() { 
return width * height * depth; 
} 

} 
class BoxVolP { 

public static void main(String args[]) { 
 
Box mybox1 = new Box(10, 20, 15); 
Box mybox2 = new Box(3, 6, 9); 
double vol; 
 
vol = mybox1.volume(); 
System.out.println("Volume is " + vol); 
 
vol = mybox2.volume(); 
System.out.println("Volume is " + vol); 
} 

} 
 

ARRAYS IN JAVA  



17 

Array is a group of like-type variables that are referred by a common name, having continuous 
memory. Primitive values or objects can be stored in an array. It provides code optimization 
since we can sort data efficiently and also access it randomly. The only flaw is that we can have 
a fixed-size elements in an array.  
 
There are two kinds of arrays defined in Java: 
 
1. Single Dimensional: Elements are stored in a single row 
 

import java.util.Scanner; 
 
class SingleArray 
{ 

public static void main(String args[]) 
{ 

int len = 0;  
//declaration 
int [] numbers = {3,44,12,53,6,87};  
Scanner s = new Scanner(System.in); 

 
System.out.println("The elements in the array are: "); 
for(int i=0;i<numbers.length;i++) 
{ 

System.out.print(numbers[i] + " "); 
} 
System.out.println(); 

 
System.out.println("The sum of elements in the array are: "); 
int sum =0; 
for(int i=0;i<numbers.length;i++)  
{ 

sum = sum + numbers[i]; 
} 
System.out.println("Sum of elements = " + sum); 

} 
} 
 

 
2. Multi-Dimensional: Elements are stored as row and column 

 
class MatrixArray  



18 

{ 

public static void main(String args[]) 

{ 

int [][] m1 = { {1,5,7}, {2,4,6}}; 

int [][] m2 = {{1,2,1},{4,4,3}}; 

int [][] sum = new int [3][3]; 

 

//printing matrix  

 

System.out.println("The given matrix is : "); 

 for(int a=0;a<=m1.length;a++) 

 { 

 for(int b=0;b<=m2.length;b++) 

 { 

 System.out.print(m1[a][b] + " "); 

 } 

 

 System.out.println(); 

 } 

 

 //matrix addition  

 System.out.println("The sum of given 2 matrices is : "); 



19 

 for(int a=0;a<=m1.length;a++) 

 { 

 for(int b=0;b<=m2.length;b++) 

 { 

 sum[a][b] = m1[a][b] + m2[a][b]; 

 System.out.print(sum[a][b] + " "); 

 } 

 System.out.println(); 

 } 

} 

} 

STRINGS IN JAVA  

● Strings are non-primitive data type that represents a sequence of characters.  
● String type is used to declare string variables. 
● Array of strings can also be declared. 
● Java strings are immutable, we cannot change them.  
● Whenever a string variable is created, a new instance is created.  

 
 
Creating String 
 
 

Using Literal Using new keyword 

String name = “John” ;  String s = new String(); 

 
 
String Methods  
 
The String class which implements CharSequence interface defines a number of methods for 
string manipulation tasks. List of most commonly used string methods are mentioned below: 
 



20 

 
Method Task Performed 

toLowerCase() converts the string to lower case 

toUpperCase() converts the string to upper case 

replace(‘x’ , ‘y’) replaces all appearances of ‘x’ with ‘y’ 

trim() removes the whitespaces at the beginning and at the end 

equals() returns ‘true’ if strings are equal 

equalsIgnoreCase() returns ‘true’ if strings are equal, irrespective of  case of 
characters 

length() returns the length of string 

CharAt(n) gives the nth character of string 

compareTo() returns     negative                   if string 1 < string 2 
                 positive                    if string 1 > string 2 
                 zero                         if string 1 = string 2 

concat() concatenates two strings 

substring(n) returns substring returning from character n 

substring(n,m) returns a substring between n and ma character. 

toString() creates the string representation of object  

indexOf(‘x’) returns the position of first occurrence of x in the string. 

indexOf(‘x’,n) returns the position of after nth position in string 

ValueOf (Variable) converts the parameter value to string representation 

 
 
Program to show Sorting of Strings: 
 
 

class SortStrings { 
static String arr[] = { 
"Now", "the", "is", "time", "for", "all", "good", "men", 
"to", "come", "to", "the", "aid", "of", "their", "county" 
}; 
public static void main(String args[])  
{ 

for(int j = 0; j < arr.length; j++)  
{ 
for(int i = j + 1; i < arr.length; i++)  
{ 

if(arr[i].compareTo(arr[j]) < 0) 
{ 

String t = arr[j]; 
arr[j] = arr[i]; 



21 

arr[i] = t; 
} 

} 
System.out.println(arr[j]); 

} } 
} 

 
 

String Buffer and String Builder  
 

● For mutable strings, we can use StringBuilder and StringBuffer classes which as well 
implement CharSequence interface. 

● These classes represent growable and writable character interface. 
● They automatically grow to make room for additions , and often has more characters 

preallocated than are actually needed, to allow room for growth. 
 
Difference between length() and capacity()  
 

length()  :  To find the length of StringBuffer 
capacity() :  To find the total allocated capacity 

 
/* StringBuffer length vs. capacity */ 

class StringBufferTest { 
public static void main(String args[]) { 
StringBuffer sb = new StringBuffer("Hello"); 
System.out.println("buffer = " + sb); 
System.out.println("length = " + sb.length()); 
System.out.println("capacity = " + sb.capacity()); 
} 

} 
StringBuilder versus StringBuffer 

String Builder String Buffer 

Non-Synchronized : hence efficient. Synchronized 

Threads are used, multithreading.  Thread Safe 

 

MULTITHREADING  

Multitasking: ​Process of executing multiple tasks simultaneously, to utilize the CPU.  
 
This can be achieved in two-ways: 



22 

● Process-based multitasking.(Multitasking) 
● Thread-based multitasking (Multithreading) 

 
Multitasking versus Multithreading 
 
 

Multitasking Multithreading  

OS concept in which multiple tasks are performed 
simultaneously. 

Concept of dividing a process into two or more 
subprocess or threads that are executed at the 
same time in parallel. 

Multiple programs can be executed 
simultaneously. 

Supports the  execution of multiple parts of a 
single program simultaneously.  

Process has to switch between different programs 
or processes. 

Processor needs  to switch between different 
parts or threads of the program. 

less efficient highly efficient 

program or process in the smallest unit in the 
environment 

thread is the smallest unit 

cost effective expensive 

 
  
 
Life Cycle Of Thread 
 
A thread is always in one of the following five states, it can move from state to another by a 
variety of ways as shown. 

 
New thread:​ Thread object is created. Either it can be scheduled for running using start() 
method. 
Runnable thread :​ Thread is ready for execution and waiting for processor. 
Running thread: ​It has got the processor for execution. 
Blocked thread: ​ Thread is prevented from entering into runnable state. 
Dead state:  ​Running thread ends its life when it has completed executing its run() method. 
 
 



23 

 
  

Creating Thread  
 

Extending Thread class 
Implementing Runnable interface 

 
Common Methods Of Thread Class 
 

Method Task Performed 

public void run() Inherited by class MyThread 
It is called when thread is started, thus all the action takes place in 
run() 

public void start() Causes the thread to move to runnable state. 

public void sleep(long 
milliseconds) 

Blocks or suspends a thread temporarily for entering into 
runnable and subsequently in running state for specified 
milliseconds. 

public void yield Temporarily pauses currently executing thread object and allows 
other threads to be executed. 

public void suspend() to suspend the thread, used with resume() method. 

public void resume() to resume the suspended thread 

public void stop() to cause premature death of thread, thus moving it to dead state. 

 
 
Program to create threads using thread class. 



24 

 
class A extends Thread 
{ 

public void run() 
 

{ 
for(int i=1;i<=5;i++) 
{ 

System.out.println("From thread A : i " + i); 
} 
System.out.println("Exit from A "); 

} 
} 
 
class B extends Thread  
{ 

public void run() 
 

{ 
for(int i=0;i<=5;i++) 
{ 

System.out.println("From thread B : i " + i); 
} 
System.out.println("Exit from B "); 

} 
} 
 
class C extends Thread  
{ 

public void run () 
{ 

for(int k=1;k<=5;k++) 
{ 

System.out.println("From thread C : k " + k); 
} 
System.out.println("Exit from C "); 

} 
} 
 
class ThreadTest 
{ 

public static void main(String args[]) 
{ 



25 

new A().start(); 
new B().start(); 
new C().start(); 

} 
} 

 
Implementing Runnable Interface 
 
The run( ) method that is declared in the Runnable interface which is required for implementing 
threads in our programs. 
 
Process consists of following steps :  

● Class declaration implementing the Runnable interface 
● Implementing the run() method 
● Creating a thread by defining an object that is instantiated from this “runnable” class as 

the target of the thread. 
● Calling the thread’s start() method to run the thread.  

 
 
Using Runnable Interface 
 

class X implements Runnable  
{ 

public void run() 
{ 

for(int i=0;i<=10;i++) 
{ 

System.out.println("Thread X " + i); 
} 
System.out.println("End of thread X "); 

} 
} 
 
class RunnableTest 
{ 

public static void main(String args[]) 
{ 

X runnable = new X (); 
Thread threadX = new Thread(runnable); 
threadX.start(); 
System.out.println("End of main Thread"); 

} 
} 



26 

 
Thread Class Versus Runnable Interface 
 

Thread Class Runnable Interface 

Derived class extending Thread class itself is a 
thread object and hence, gains full control over 
the thread life cycle. 

Runnable Interface simply defines the unit of work 
that will be executed in a thread, so it doesn’t 
provide any control over thread life cycle. 

The derived class cannot extend other base 
classes 

Allows to extend base classes if necessary 

Used when program needs control over thread life 
cycle 

Used when program needs flexibility of extending 
classes. 

 
EXCEPTION HANDLING  

Exception is an abnormality or error condition that is caused by a run-time error in the program, 
if this exception object thrown by error condition is not caught and handled properly, the 
interpreter will display an error message. If we want to avoid this and want the program to 
continue then we should try to catch the exceptions.This task is known as exception handling.  
 
Common Java Exceptions 
 
 

Exception Type Cause of Exception 

ArithmeticException caused by math errors 

ArrayIndexOutOfBoundException caused by bad array indexes 

ArrayStoreException caused when a program tries to store wrong data type in an 
array 

FileNotFoundException caused by attempt to access a nonexistent file 

IOException caused by general I/O failures. 

NullPointerException caused by referencing a null object. 

NumberFormatException caused when a conversion between strings and number fails. 

OutOfMemoryException caused when there is not enough memory to allocate 

StringIndexOutOfBoundException caused when a program attempts to access a non-existent 
character position in a string. 

 
 
Exceptions in java can be of two types: 
 
Checked  Exceptions :  

● Handled explicitly in the code itself with the help of try catch block. 
● Extended from java.lang.Exception class 

Unchecked Exceptions :  



27 

● Not essentially handled in the program code, instead JVM handles such exceptions. 
● Extended from java.lang.RuntimeException class 

 
TRY AND CATCH  
 
Try keyword is used to preface a block of code that is likely to cause an error condition and 
“throw” an exception. A catch block defined by the keyword catch “catches” the exception 
“thrown” by the try block and handles it appropriately. 
 
A code can have more than one catch statement in the catch block, when exception in try block 
is generated, multiple catch statements are treated like cases in a switch statement. 
 
 Using Try and Catch for Exception Handling  
 

class Error 
{ 

public static void main(String args[]) 
{ 

int a [] = {5,10}; 
int b = 5; 

 
try 
{ 

int x = a[2]/b-a[1]; 
} 
catch(ArithmeticException e) 
{ 

System.out.println("Division by zero"); 
} 
catch(ArrayIndexOutOfBoundsException e) 
{ 

System.out.println("ArrayIndexError"); 
} 
catch(ArrayStoreException e) 
{ 

System.out.println("Wrong data type"); 
} 

 
int y = a[1]/a[0]; 
System.out.println("y = " + y); 

} 
} 
 



28 

 
FINALLY 
 
Finally statement: ​used to handle exceptions that is not caught by any of the previous catch 
statements. A finally block in guaranteed to execute, regardless of whether or not an exception 
is thrown. 
 
We can edit the above program and add the following finally block. 

 
finally 

{ 
int y = a[1]/a[0]; 

System.out.println("y = " + y); 
} 

 
THROWING YOUR OWN EXCEPTION 
 
Own exceptions can be defined using throw keyword.  
 

throw new Throwable subclass; 
 

/* Throwing our own Exception */ 
 
import java.lang.Exception; 
class MyException extends Exception 
{ 

MyException(String message) 
{ 

super(message); 
} 

} 
 
class TestMyException 
{ 

public static void main(String args[]) 
{ 

int x = 5 , y = 1000; 
try 
{ 

float z = (float) x / (float) y ;  
if(z < 0.01) 
{ 

throw new MyException("Number is too small"); 



29 

} 
} 
catch (MyException e) 
{ 

System.out.println("Caught my exception "); 
System.out.println(e.getMessage()); 

} 
finally  
{ 

System.out.println("I am always here"); 
} 

} 
} 

MANAGING FILES IN JAVA  

Storing data in variables and arrays poses the following problems: 
 

● Temporary Storage:​ The data is lost when variable goes out of scope or when program 
is terminates. 

● Large data:​ It is difficult  
 
Such problems can be solved by storing data on secondary devices using the concept of files.  
Collection of related records stored in a particular area on the disk, termed as file. The files 
store and manage data by the concept of file handling. 
 
Files processing includes: 
 

● Creating files  
● Updating files  
● Manipulation of data 

 
Java provides many features in file management like : 

● Reading/writing of data can be done at the byte level or at character or fields depending 
upon the requirement. 

● It also provides capability read/write objects directly. 
 
STREAMS 
 
Java uses concept of streams to represent ordered sequence of data, which is a path along 
which data flows. It has a source and a destination. 
 
Streams are classified into two basic types : 
 



30 

● Input Stream: ​which extracts i.e. reads data from source file and sends it to the 
program. 

● Output Stream:​ which takes the data from the program and send i.e writes to the 
destination. 

 
STREAM CLASSES 
 
They are contained in​ ​java.lang.io​ package. 
 
They are categorized into two groups  

1.​ Byte Stream Classes:​ provides support for handling I/O operation on bytes. 
2. ​Character Stream Classes: ​provides support for managing I/O operations on  

characters. 
 
BYTE STREAM CLASSES  
 
Designed to provide functionality for creating and manipulating streams and files for 
reading/writing bytes. 
 
Since streams are unidirectional there are two kinds of byte stream classes : 
 

● Input Stream Classes  
● Output Stream Classes 

 
INPUT STREAM CLASSES  
 
They are used to read 8-bit bytes include a super class known as InputStream. InputStream is 
an abstract class and defines the methods for input functions such as : 
 

 
Method Description 

read( ) Reads a byte from input stream 

read(byte b [ ]) Reads an array of bytes into b 

read(byte b [ ], int n, int m) Reads m bytes into b starting from the nth byte of b 

available( ) Tells number of bytes available in the input  

skip(n) Skips over n bytes from the input stream 

reset ( ) Goes back  to the beginning of the stream 

close ( )  Closes the input stream 

 
 
OUTPUT STREAM CLASSES 

http://java.lang.io/
http://java.lang.io/


31 

 
These classes are derived from the base class OutputStream. OutputStream is an abstract 
class and defines the methods for output functions such as : 
 

Method Description 

write( ) Writes a byte to the output stream  

write(byte b[ ]) Writes all the bytes in the array b to the output stream 

write(byte b[ ], int n, int m) Writes m bytes from array b starting from the nth byte  

close( ) Closes the output stream 

flush( ) Flushes the output stream 

 
  
READING/WRITING BYTES 
 
Two common subclasses used are FileInputStream and FileOutputStream that handle 8-bit 
bytes. 
FileOutputStream is used for writing bytes to a file as demonstrated below: 
 

// Writing bytes to a file  
 
import java.io.*; 
 
class WriteBytes 
{ 

public static void main(String args[]) 
{ 

bytes cities [] = {'C','A','L','I','F','O','R','N','I','A', '\n', 
'V','E','G','A','S','\n','R','E','N','O','\n'}; 
 

//Create output file stream 
FileOutputStream  outfile = null; 
try 
{ 

//connect the outfile stream to "city.txt" 
outfile = new FileOutputStream("city.txt"); 
//Write data to the stream 
outfile.write(cities); 
outfile.close(); 

} 
catch(IOException ioe) 
{ 

System.out.println(ioe); 



32 

System.exit(-1); 
} 

} 
} 

 
FileIntputStream is used for reading bytes from a file as demonstrated below: 
 

//Reading bytes from a file  
 
import java.io.*; 
 
class ReadBytes 
{ 

public static void main(String args[]) 
{ 

//Create an input file stream 
FileInputStream  infile = null; 
int b; 
try 
{ 

//connect the infile stream to required file 
infile = new FileInputStream(args [ 0 ]); 

 
//Read and display 
while( (b = infile.read ( ) ) !=-1) 
{ 

System.out.print((char) b ); 
} 
infile.close(); 

} 
catch(IOException ioe) 
{ 

System.out.println(ioe); 
System.exit(-1); 

} 
} 

} 
 
CHARACTER STREAM CLASSES 
 
Two kinds of character stream classes : 
 
Reader Stream Classes  



33 

 
● Designed to read character from the files.  
● Class Reader is the base class for all other classes. 
● These classes are similar to input stream classes except their fundamental unit of 

information, while reader stream uses characters. 
 
Writer Stream Classes 
 

● Performs all output operations on files.  
● Writes characters  
● The Writer class is an abstract class which is the base class, having methods identical to 

those of OutputStream. 
 
READING/WRITING CHARACTERS 
 
The two subclasses of Reader and Writer classes for handling characters in files are FileReader 
and FileWriter.  
 

// Copying characters from one file to another 
 
import java.io.*; 
 
class CopyCharacters 
{ 

public static void main (String args[]) 
{ 

//Declare and create input and output files 
File inFile = new File("input.dat"); 
File outFile = new File("output.dat"); 
FileReader ins = null; //creates file stream 

ins 
FileWriter outs = null; //creates file stream 

outs 
 

try 
{ 

ins = new FileReader(inFile); //opens inFile 
outs = new FileWriter(outFile); //opens outFile 

 
//Read and write  
int ch; 
while((ch = ins.read( ))!=-1) 
{ 



34 

outs.write(ch); 
} 

} 
catch(IOException e) 
{ 

System.out.println(e); 
System.exit(-1); 

} 
finally 
{ 

try 
{ 

ins.close(); 
outs.close(); 

} 
catch (IOException e) 
{} 

} 
} 

} 
 

JAVA COLLECTIONS 

 
The collections framework contained in the java.util package defines a set of interfaces and their 
implementations to manipulate collections, which serve as a container for a group of objects.  
 
INTERFACES 
 
Collection framework contains many interfaces such as Collection, Map and Iterator.  
The interfaces and their description are mentioned below: 
 

 
Interface Description 

Collection collection of elements 

List (extends Collection) sequence of elements 

Queue (extends Collection) special type of list  

Set (extends Collection) collection of unique elements  

SortedSet (extends Set) sorted collection of unique elements 

Map collection of key and value pairs, which must be unique 



35 

SortedMap (extends Map) sorted collection of key value pairs  

Iterator  object used to traverse through a collection 

List (extends Iterator)  object used to traverse through a sequence 

 
 
CLASSES  
 
The classes available in the collection framework implement the collection interface and 
sub-interfaces. They also implement Map and Iterator interfaces. 
 
Classes and their Corresponding interfaces are listed : 
 

Class Interface 

AbstractCollection Collection 

AbstarctList List 

Abstract Queue 

AbstractSequentialList List 

LinkedList List 

ArrayList List, Cloneable and Serializable 

AbstractSet Set 

EnumSet Set 

HashSet Set 

PriorityQueue Queue 

TreeSet Set 

Vector List, Cloneable and Serializable 

Stack List, Cloneable and Serializable 

Hashtable Map, Cloneable and Serializable 

 
 
Array List Implementation 
 

// Using the methods of array list class 
 
import java.util.*; 
class Num 
{ 

public static void main(String args[]) 
{ 

ArrayList num = new ArrayList (); 
num.add(9); 



36 

num.add(12); 
num.add(10); 
num.add(16); 
num.add(6); 
num.add(8); 
num.add(56); 

 
//printing array list 
System.out.println("Elements : "); 
num.forEach((s) -> System.out.println(s)); 

 
//getting size 
System.out.println("Size of array list is: "); 
num.size(); 

 
//retrieving specific element 
int n = (Integer) num.get(2); 
System.out.println(n); 

 
//removing an element 
num.remove(4); 

 
//printing array list 
System.out.println("Elements : "); 
num.forEach((s) -> System.out.println(s)); 

} 
}  

 
 
 
Linked List Implementation 
 

import java.util.Scanner; 
class LinkedList 
{ 

public static void main (String args[]) 
{ 
Scanner s = new Scanner(System.in); 

List list = new List(); 
System.out.println("Enter the number of elements you want to enter in LL 

: "); 
int num_elements = s.nextInt(); 



37 

int x; 
for(int i =0;i<=num_elements;i++) 
{ 

System.out.println("Enter element : "); 
x = s.nextInt(); 
list.insert(x);  

} 
System.out.println(">>>>> LINKED LIST AFTER INSERTION IS  : "); 
list.print(); 
int size = list.count(); 
System.out.println(">>>>> SIZE OF LL => "+size); 
System.out.println("Enter the node to be inserted in the middle: "); 
int mid_element = s.nextInt(); 
list.insertMiddle(mid_element); 
System.out.println(">>>> LL AFTER INSERTING THE NEW ELEMENT 

IN THE MIDDLE "); 
list.print(); 

} 
} 

 
HashSet Implementation  
 

import java.util.*; 
class HashSetExample 
{ 

public static void main(String args[]) 
{ 

HashSet hs = new HashSet(); 
hs.add("D"); 
hs.add("W"); 
hs.add("G"); 
hs.add("L"); 
hs.add("Y"); 
System.out.println("The elements available in the hash set are :" + hs); 

} 
} 

 
Tree Set Implementation 
 

import java.util.*; 
class TreeSetExample 
{ 

public static void main(String args[]) 



38 

{ 
TreeSet ts = new TreeSet(); 
ts.add("D"); 
ts.add("W"); 
ts.add("G"); 
ts.add("L"); 
ts.add("Y"); 
System.out.println("The elements available in the hash set are :" + ts); 

} 
} 

 
 
Vector Class Implementation 
 

import java.util.*; 
class VectorExample 
{ 

public static void main(String args[]) 
{ 

Vector fruits = new Vector ();  
fruits.add("Apple"); 
fruits.add("Orange"); 
fruits.add("Grapes"); 
fruits.add("Pineapple"); 
Iterator it = fruits.iterator(); 
while (it.hasNext()) 
{ 

System.out.println(it.next); 
} 

} 
} 

 
Stack Class Implementation 
 

import java.util.*; 
 
public class StackExample 
{ 

public static void main (String args[]) 
{ 

Stack st = new Stack (); 
st.push("Java"); 
st.push("Classes"); 



39 

st.push("Objects"); 
st.push("Multithreading"); 
st.push("Programming"); 

 
System.out.println("The elements in the Stack : " + st); 
System.out.println("The elements at the top of Stack : " + st.peek()); 
System.out.println("The elements popped out of the Stack : " + st.pop()); 
System.out.println("The elements in the Stack after pop of the element : " 

+ st); 
System.out.println("The result of search : " + st.search ("r e")); 

} 
} 

 
HashTable Class Implementation 
 

import java.util.*; 
 
public class HashTableExample 
{ 

public static void main (String args[]) 
{ 

Hashtable ht = new Hashtable(); 
ht.put("Item 1","Apple"); 
ht.put("Item 2","Orange"); 
ht.put("Item 3","Grapes"); 
ht.put("Item 4","Pine"); 
ht.put("Item 5","Kiwi"); 

 
Enumeration e = ht.keys(); 
while(e.hasMoreElements()) 
{ 

String str = (String) e.nextElement(); 
System.out.println(ht.get(str)); 

} 
} 

} 
 

MEMORY MANAGEMENT  IN JAVA 

Memory is a collection of data represented in the binary format.  
 
Memory management is : 



40 

● Process of allocating new objects  
● Properly removing unused objects( garbage collection)   

 
 

 
 

 
 
 

 
 
Example Illustrating Memory Management  
 
 



41 

 
 
 

1. When a method is called , frame is created on the top of the stack. 
2. Once a method as completed execution, the flow of control returns to the calling method 

and its corresponding stack frame is flushed. 
3. Local variables are created in stack. 
4. Instance variables are created in the heap and are part of the object they belong to.  
5. Reference variable are created in stack. 

 
SOME COMMON JAVA CODING QUESTIONS 

1.   Enter radius and print diameter, perimeter and area 
 

import java.util.Scanner; 
 
class Circle  
{ 

public static void main (String args []) 
{ 

double r,dia,peri,area ; 
System.out.println("Enter the radius of circle : "); 



42 

Scanner s = new Scanner (System.in); 
r = s.nextDouble(); 

 
dia = 2*r;  
peri = 2*Math.PI*r; 
area = Math.PI*r*r; 

 
System.out.printf("The dia of circle is : %.2f \n", dia); 
System.out.printf("The peri of circle is : %.2f \n", peri); 
System.out.printf("The area of the circle is : %.2f \n", area); 

} 
} 

 
2.  Print all the even numbers between x and y. 
 

import java.util.Scanner; 
class EvenOdd  
{ 

public static void main (String args[]) 
{ 

int x,y; 
Scanner s = new Scanner (System.in); 
System.out.println("Enter the values x , y : "); 
x = s.nextInt(); 
y = s.nextInt(); 

 
System.out.println(" **** EVEN NUMBERS BETWEEN GIVEN RANGE 

ARE **** >> "); 
int count = x; 
while(count <=y) 
{ 

if(count % 2 == 0) 
{ 

System.out.println(count); 
} 
count ++; 

} 
} 

} 
 

 
3.  To check if given number is prime  
 



43 

import java.util.Scanner;  
 
class Prime 
{ 

public static void main (String args[]) 
{ 

double num; 
int n; 
boolean isPrime = true; 
Scanner s = new Scanner(System.in); 

 
System.out.println("Enter the number to check :"); 
num=s.nextDouble(); 

 
n = (int) Math.sqrt(num); 

 
for(int i=2;i<=n;i++) 
{ 

if(num % i == 0) 
{ 

isPrime = false; 
} 
else  
{ 

isPrime = true; 
} 

} 
 

if(isPrime) 
{ 

System.out.println("***** NUMBER IS PRIME !!!! ****** "); 
} 
else 
{ 

System.out.println("***** NUMBER IS NOT PRIME !!!! ****** "); 
 

} 
} 

} 
 

 
 
4. To check if the entered number is Palindrome 



44 

 
import java.util.Scanner; 
 
class Palindrome 
{ 

public static void main(String args[]) 
{ 

int num,reverse=0,mode; 
Scanner s = new Scanner(System.in); 

 
System.out.println("Enter a number to check for Palindrome: "); 
num = s.nextInt(); 

 
int number = num; 
while(num!=0) 
{ 

//System.out.println(" number entering =  "+num); 
mode = num % 10; 
//System.out.println(" mode = "+mode); 
reverse =(reverse * 10 )+ mode; 
//System.out.println(" reverse = "+reverse); 
num = num/10; 
//System.out.println(" new num = "+num); 

} 
 

//System.out.println(" reverse out = "+reverse); 
 

if(reverse == number) 
{ 

System.out.println(" **** PALINDROME !!! **** "); 
} 
else  
{ 

System.out.println(" **** NOT A PALINDROME !!! **** "); 
} 

}  
} 

 
 
5. Pattern printing  
 

* 
* * 



45 

* * * 
* * * *  
* * * * * 

 
import java.util.Scanner; 
 
class TriStars  
{ 

public static void main(String args[]) 
{ 

for(int i=0;i<=5;i++) 
{ 

for(int j=0;j<i;j++) 
{ 

System.out.print(" * "); 
} 

System.out.println(); 
} 
System.out.println(); 

} 
} 
 

 
 


