
Graph

UNIT II

2

What is a graph?

• Graph is a non-linear data structure. Graphs

represent the relationships among data items.

• A graph G consists of

– a set V of nodes (vertices)

– a set E of edges: each edge connects two nodes

• Each node represents an item

• Each edge represents the relationship between

two items

node

edge

3

Examples of graphs

H

H

C HH

Molecular Structure

Server 1

Server 2

Terminal 1

Terminal 2

Computer Network

Other examples: electrical and communication networks,
airline routes, flow chart, graphs for planning projects

4

Formal Definition of graph

• The set of nodes is denoted as V

• For any nodes u and v, if u and v are

connected by an edge, such edge is denoted

as (u, v)

• The set of edges is denoted as E

• A graph G is defined as a pair (V, E)

v

u

(u, v)

5

Adjacent

• Two nodes u and v are said to be adjacent if

(u, v)  E

v

w
u

(u, v)

u and v are adjacent
v and w are not adjacent

6

Path and simple path

• A path from v1 to vk is a sequence of nodes v1, v2, …, vk

that are connected by edges (v1, v2), (v2, v3), …, (vk-1, vk)

• A path is called a simple path if every node appears at

most once.

v1
v2

v4

v3

v5

- v2, v3, v4, v2, v1 is a path
- v2, v3, v4, v5 is a path, also
it is a simple path

7

Cycle and simple cycle

• A cycle is a path that begins and ends at the same node

• A simple cycle is a cycle if every node appears at most

once, except for the first and the last nodes

v1

v2

v4

v3

v5

- v2, v3, v4, v5 , v3, v2 is a cycle
- v2, v3, v4, v2 is a cycle, it is
also a simple cycle

8

Connected graph

• A graph G is connected if there exists path

between every pair of distinct nodes; otherwise,

it is disconnected

v1

v4

v3

v5

v2

This is a connected graph because there exists path
between every pair of nodes

9

Example of disconnected graph

v1

v4

v3

v5

v2

This is a disconnected graph because there does not
exist path between some pair of nodes, says, v1 and v7

v7

v6

v8

v9

10

Connected component

• If a graph is disconnected, it can be partitioned

into a number of graphs such that each of them

is connected. Each such graph is called a

connected component.

v1

v4

v3

v5

v2 v7

v6

v8

v9

11

Complete graph

• A graph is complete if each pair of

distinct nodes has an edge

Complete graph
with 3 nodes

Complete graph
with 4 nodes

12

Subgraph

• A subgraph of a graph G =(V, E) is a graph

H = (U, F) such that U  V and F  E.

v1

v4

v3

v5

v2

G

v4

v3

v5

v2

H

13

Weighted graph

• If each edge in G is assigned a weight, it is

called a weighted graph.

Houston

Chicago
1000

2000
3500

New York

14

Directed graph (digraph)

• All previous graphs are undirected graph.

• If each edge in E has a direction, it is called a

directed edge.

• A directed graph is a graph where every edges

is a directed edge.

Directed edge

Houston

Chicago
1000

2000
3500

New York

15

More on directed graph

• If (x, y) is a directed edge, we say
– y is adjacent to x

– y is successor of x

– x is predecessor of y

• In a directed graph, directed path, directed cycle
can be defined similarly

yx

16

Property of graph

• An undirected graph that is connected and

has no cycle is a tree.

• A tree with n nodes have exactly n-1

edges.

• A connected undirected graph with n

nodes must have at least n-1 edges.

17

Implementing Graph

• Adjacency matrix

– Represent a graph using a two-dimensional

array

• Adjacency list

– Represent a graph using n linked lists where

n is the number of vertices

18

Adjacency matrix for directed graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 0 1 0 0 0

2 v2 0 0 0 1 0

3 v3 0 1 0 1 0

4 v4 0 0 0 0 0

5 v5 0 0 1 1 0

Matrix[i][j] = 1 if (vi, vj)E
0 if (vi, vj)E

19

Adjacency matrix for weighted

undirected graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 ∞ 5 ∞ ∞ ∞

2 v2 5 ∞ 2 4 ∞

3 v3 0 2 ∞ 3 7

4 v4 ∞ 4 3 ∞ 8

5 v5 ∞ ∞ 7 8 ∞

Matrix[i][j] = w(vi, vj) if (vi, vj)E or (vj, vi)E
∞ otherwise

5
2

3 7
8

4

20

Adjacency list for directed graph

v1

v4

v3

v5

v2

G

1 v1  v2

2 v2  v4

3 v3  v2  v4

4 v4

5 v5  v3  v4

21

Adjacency list for weighted

undirected graph

v1

v4

v3

v5

v2

G

5
2

3 7
8

4

1 v1  v2(5)

2 v2  v1(5)  v3(2)  v4(4)

3 v3  v2(2)  v4(3)  v5(7)

4 v4  v2(4)  v3(3)  v5(8)

5 v5  v3(7)  v4(8)

22

Pros and Cons

• Adjacency matrix

– Allows us to determine whether there is an edge from

node i to node j in O(1) time

• Adjacency list

– Allows us to find all nodes adjacent to a given node j

efficiently

– If the graph is sparse, adjacency list requires less

space

23

Directed Graph using Adjacency Matrix

#include <stdio.h>

#define MAX 100 // maximum number of vertices allowed

int main() {

int n, e; // n = number of vertices, e = number of edges

int adj[MAX][MAX]; // adjacency matrix

int i, j, src, dest;

printf("Enter number of vertices: ");

scanf("%d", &n);

// Step 1: Initialize adjacency matrix with 0 (no edges yet)

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

adj[i][j] = 0;

}

}

printf("Enter number of edges: ");

scanf("%d", &e);

24

Directed Graph using Adjacency Matrix

// Step 2: Input edges

printf("Enter edges (src dest):\n");

for (i = 0; i < e; i++) {

scanf("%d%d", &src, &dest);

adj[src][dest] = 1; // directed edge from src to dest

}

// Step 3: Print adjacency matrix

printf("\nAdjacency Matrix:\n");

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

printf("%d ", adj[i][j]);

}

printf("\n");

}

return 0;

}

25

Directed Graph using Adjacency List

#include <stdio.h>

#include <stdlib.h>

// Node structure for adjacency list

struct Node {

int vertex; // stores the destination vertex

struct Node* next; // pointer to the next node

};

int main() {

int n, e, i, src, dest;

printf("Enter number of vertices: ");

scanf("%d", &n);

// ----------------- Adjacency Matrix -----------------

int adjMat[n][n]; // adjacency matrix representation

// Step 1: Initialize matrix with 0 (no edges yet)

for (i = 0; i < n; i++)

for (int j = 0; j < n; j++)

adjMat[i][j] = 0;

26

Directed Graph using Adjacency List

// ----------------- Adjacency List -----------------

struct Node* adjList[n]; // array of pointers (one per vertex)

for (i = 0; i < n; i++)

adjList[i] = NULL; // initially no edges

printf("Enter number of edges: ");

scanf("%d", &e);

// Step 2: Input edges

printf("Enter edges (src dest):\n");

for (i = 0; i < e; i++) {

scanf("%d%d", &src, &dest);

// Matrix representation update

adjMat[src][dest] = 1;

// List representation update

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->vertex = dest;

newNode->next = adjList[src]; // insert at beginning

adjList[src] = newNode;

}

27

Directed Graph using Adjacency List

// Step 3: Print adjacency matrix

printf("\nAdjacency Matrix:\n");

for (i = 0; i < n; i++) {

for (int j = 0; j < n; j++)

printf("%d ", adjMat[i][j]);

printf("\n");

}

// Step 4: Print adjacency list

printf("\nAdjacency List:\n");

for (i = 0; i < n; i++) {

printf("Vertex %d: ", i);

struct Node* temp = adjList[i];

while (temp) {

printf("%d -> ", temp->vertex);

temp = temp->next;

}

printf("NULL\n");

}

return 0;

}

28

Shortest path

• Consider a weighted directed graph

– Each node x represents a city x

– Each edge (x, y) has a number which

represent the cost of traveling from city x to

city y

• Problem: find the minimum cost to travel

from city x to city y

• Solution: find the shortest path from x to y

29

Formal definition of shortest path

• Given a weighted directed graph G.

• Let P be a path of G from x to y.

• cost(P) = ePweight(e)

• The shortest path is a path P which

minimizes cost(P)

v2
v1

v4

v3

v5

5
2

3 4
8

4 Shortest Path

30

Dijkstra’s algorithm

• Consider a graph G, each edge (u, v) has a
weight w(u, v) > 0.

• Suppose we want to find the shortest path
starting from v1 to any node vi

• Let VS be a subset of nodes in G

• Let cost[vi] be the weight of the shortest path
from v1 to vi that passes through nodes in VS
only.

31

Example for Dijkstra’s algorithm

v2v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

32

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

33

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17

34

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17

4 v3 [v1, v2, v4, v3] 0 5 12 9 16

5 v5 [v1, v2, v4, v3, v5] 0 5 12 9 16

35

Dijkstra’s algorithm

Algorithm shortestPath()

n = number of nodes in the graph;

for i = 1 to n

cost[vi] = w(v1, vi);

VS = { v1 };

for step = 2 to n {

find the smallest cost[vi] s.t. vi is not in VS;

include vi to VS;

for (all nodes vj not in VS) {

if (cost[vj] > cost[vi] + w(vi, vj))

cost[vj] = cost[vi] + w(vi, vj);

}

}

