Graph

UNIT II

What is a graph?

- Graph is a non-linear data structure. Graphs represent the relationships among data items.
- A graph G consists of
 - a set V of nodes (vertices)
 - a set E of edges: each edge connects two nodes
- Each node represents an item
- Each edge represents the relationship between two items

node

Examples of graphs

Molecular Structure

Computer Network

Other examples: electrical and communication networks, airline routes, flow chart, graphs for planning projects

Formal Definition of graph

- The set of nodes is denoted as V
- For any nodes u and v, if u and v are connected by an edge, such edge is denoted as (u, v)

- The set of edges is denoted as E
- A graph G is defined as a pair (V, E)

Adjacent

 Two nodes u and v are said to be adjacent if (u, v) ∈ E

Path and simple path

- A path from v₁ to v_k is a sequence of nodes v₁, v₂, ..., v_k that are connected by edges (v₁, v₂), (v₂, v₃), ..., (v_{k-1}, v_k)
- A path is called a simple path if every node appears at most once.

v₂, v₃, v₄, v₂, v₁ is a path
v₂, v₃, v₄, v₅ is a path, also it is a simple path

Cycle and simple cycle

- A cycle is a path that begins and ends at the same node
- A simple cycle is a cycle if every node appears at most once, except for the first and the last nodes

 $- v_{2}, v_{3}, v_{4}, v_{5}, v_{3}, v_{2}$ is a cycle

- v_{2} , v_{3} , v_{4} , v_{2} is a cycle, it is also a simple cycle

Connected graph

 A graph G is connected if there exists path between every pair of distinct nodes; otherwise, it is disconnected

This is a connected graph because there exists path between every pair of nodes

Example of disconnected graph

This is a disconnected graph because there does not exist path between some pair of nodes, says, v_1 and v_7

Connected component

 If a graph is disconnected, it can be partitioned into a number of graphs such that each of them is connected. Each such graph is called a connected component.

Complete graph

 A graph is complete if each pair of distinct nodes has an edge

Complete graph with 4 nodes

Subgraph

• A subgraph of a graph G = (V, E) is a graph H = (U, F) such that $U \subseteq V$ and $F \subseteq E$.

Weighted graph

 If each edge in G is assigned a weight, it is called a weighted graph.

Directed graph (digraph)

- All previous graphs are undirected graph.
- If each edge in E has a direction, it is called a directed edge.
- A directed graph is a graph where every edges is a directed edge.

More on directed graph

- If (x, y) is a directed edge, we say
 - y is adjacent to x
 - y is successor of x
 - x is predecessor of y
- In a directed graph, directed path, directed cycle can be defined similarly

Property of graph

- An undirected graph that is connected and has no cycle is a tree.
- A tree with n nodes have exactly n-1 edges.
- A connected undirected graph with n nodes must have at least n-1 edges.

Implementing Graph

Adjacency matrix

Represent a graph using a two-dimensional array

Adjacency list

 Represent a graph using n linked lists where n is the number of vertices

Adjacency matrix for directed graph

1 2 3 4 5

 V_1 V_2 V_3 V_4 V_5

Adjacency matrix for weighted undirected graph

 $\begin{aligned} \text{Matrix[i][j]} &= w(v_i, \ v_j) & \text{if } (v_i, \ v_j) \in E \text{ or } (v_j, \ v_i) \in E \\ & \text{otherwise} \end{aligned}$

		V_1	V_2	V_3	V_4	V_5
1	V_1	8		8		8
2	V_2	5	8	2	4	8
3	V_3		2	8	3	7
4	V_4	8	4	3	8	8
5	V_5	8	8	7	8	8

Adjacency list for directed graph

Adjacency list for weighted undirected graph

Pros and Cons

Adjacency matrix

 Allows us to determine whether there is an edge from node i to node j in O(1) time

Adjacency list

- Allows us to find all nodes adjacent to a given node j efficiently
- If the graph is sparse, adjacency list requires less space

Directed Graph using Adjacency Matrix

```
#include <stdio.h>
#define MAX 100 // maximum number of vertices allowed
int main() {
                     // n = number of vertices, e = number of edges
  int n. e:
  int adj[MAX][MAX];
                            // adjacency matrix
  int i, j, src, dest;
  printf("Enter number of vertices: ");
  scanf("%d", &n);
  // Step 1: Initialize adjacency matrix with 0 (no edges yet)
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++)
       adi[i][i] = 0;
  printf("Enter number of edges: ");
  scanf("%d", &e);
```

Directed Graph using Adjacency Matrix

```
// Step 2: Input edges
   printf("Enter edges (src dest):\n");
   for (i = 0; i < e; i++) {
     scanf("%d%d", &src, &dest);
     adj[src][dest] = 1; // directed edge from src to dest
   // Step 3: Print adjacency matrix
   printf("\nAdjacency Matrix:\n");
   for (i = 0; i < n; i++)
     for (j = 0; j < n; j++) {
        printf("%d ", adj[i][j]);
     printf("\n");
  return 0;
```

Directed Graph using Adjacency List

```
#include <stdio.h>
#include <stdlib.h>
// Node structure for adjacency list
struct Node {
               // stores the destination vertex
  int vertex:
  struct Node* next; // pointer to the next node
};
int main() {
  int n, e, i, src, dest;
  printf("Enter number of vertices: ");
  scanf("%d", &n);
  // ----- Adjacency Matrix -----
  int adjMat[n][n]; // adjacency matrix representation
  // Step 1: Initialize matrix with 0 (no edges yet)
  for (i = 0; i < n; i++)
     for (int i = 0; i < n; i++)
       adjMat[i][i] = 0;
```

Directed Graph using Adjacency List

```
// ----- Adjacency List -----
  struct Node* adjList[n]; // array of pointers (one per vertex)
  for (i = 0; i < n; i++)
     adjList[i] = NULL; // initially no edges
  printf("Enter number of edges: ");
  scanf("%d", &e);
  // Step 2: Input edges
  printf("Enter edges (src dest):\n");
  for (i = 0; i < e; i++) {
     scanf("%d%d", &src, &dest);
     // Matrix representation update
     adjMat[src][dest] = 1;
     // List representation update
     struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
     newNode->vertex = dest;
     newNode->next = adjList[src]; // insert at beginning
     adjList[src] = newNode;
```

Directed Graph using Adjacency List

```
// Step 3: Print adjacency matrix
  printf("\nAdjacency Matrix:\n");
  for (i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
       printf("%d ", adjMat[i][j]);
    printf("\n");
  // Step 4: Print adjacency list
  printf("\nAdjacency List:\n");
  for (i = 0; i < n; i++) {
    printf("Vertex %d: ", i);
    struct Node* temp = adjList[i];
    while (temp) {
       printf("%d -> ", temp->vertex);
       temp = temp->next;
    printf("NULL\n");
  return 0:
```

Shortest path

- Consider a weighted directed graph
 - Each node x represents a city x
 - Each edge (x, y) has a number which represent the cost of traveling from city x to city y
- Problem: find the minimum cost to travel from city x to city y
- Solution: find the shortest path from x to y

Formal definition of shortest path

- Given a weighted directed graph G.
- Let P be a path of G from x to y.
- $cost(P) = \sum_{e \in P} weight(e)$
- The shortest path is a path P which minimizes cost(P)

Dijkstra's algorithm

- Consider a graph G, each edge (u, v) has a weight w(u, v) > 0.
- Suppose we want to find the shortest path starting from v₁ to any node v_i
- Let VS be a subset of nodes in G
- Let cost[v_i] be the weight of the shortest path from v₁ to v_i that passes through nodes in VS only.

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	8	∞

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	∞
2	V_2	[V ₁ , V ₂]	0	5	∞	9	∞

	٧	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[v ₁]	0	5	∞	∞	∞
2	V_2	[v ₁ , v ₂]	0	5	∞	9	∞
3	V ₄	[v ₁ , v ₂ , v ₄]	0	5	12	9	17

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	∞
2	V_2	$[v_1, v_2]$	0	5	∞	9	∞
3	V ₄	$[V_1, V_2, V_4]$	0	5	12	9	17
4	V ₃	$[v_1, v_2, v_4, v_3]$	0	5	12	9	16
5	V ₅	$[v_1, v_2, v_4, v_3, v_5]$	0	5	12	9	16

Dijkstra's algorithm

Algorithm shortestPath()

```
n = number of nodes in the graph;
for i = 1 to n
    cost[v_i] = w(v_1, v_i);
VS = \{ v_1 \};
for step = 2 to n {
    find the smallest cost[v<sub>i</sub>] s.t. v<sub>i</sub> is not in VS;
    include v<sub>i</sub> to VS;
    for (all nodes v<sub>i</sub> not in VS) {
           if (cost[v_i] > cost[v_i] + w(v_i, v_i))
                      cost[v_i] = cost[v_i] + w(v_i, v_i);
```