Graph Traversal

* Depth-First Search
— Goes deep first
— Stack / Recursion
- Pathfinding, topological sort

* Breadth-First Search
— Explores level by level
— Queue
— Shortest path in unweighted graphs

Overview

e Goal
- To systematically visit the nodes of a
graph
e A tree is a directed, acyclic, graph
(DAG)
o If the graph is a tree,

- DFS is exhibited by preorder, postorder,
and (for binary trees) inorder traversals

- BFS is exhibited by level-order traversal

Depth-First Search

Initialize all vertices in the graph as unvisited.

Start from the given source vertex v.

Mark the current vertex as visited.

Process the current vertex (e.g., print it).

For each adjacent vertex u of the current vertex v:

If u Is unvisited, then recursively apply DFS on u.
Repeat until all vertices reachable from the source have
been visited.

If the graph Is disconnected, repeat DFS for the
remaining unvisited vertices.

Example

Policy: Visit adjacent nodes in increasing index order

Preorder DFS: Start with
Node 5

“ e

51032764

Preorder DFS: Start with
Node 5

“ e

Push 5

Preorder DFS: Start with
Node 5

“ e

Pop/Visit/Mark 5

Preorder DFS: Start with
Node 5

1
2

“ e

Push 2, Push 1

Preorder DFS: Start with
Node 5

2

“ e

51

Pop/Visit/Mark 1

Preorder DFS: Start with
Node 5

0
2
A

2

“ e

51

Push 4, Push 2,
Push O

Preorder DFS: Start with
Node 5

2
‘ 4
2

“ e

510

Pop/Visit/Mark 0

Preorder DFS: Start with
Node 5

A~ DD N W

2

“ e

510

Push 7, Push 3

Preorder DFS: Start with
Node 5

.
2
A

2

“ e

5103

Pop/Visit/Mark 3

Preorder DFS: Start with

Node 5

“ e

5103

A DD NN

Push 2

Preorder DFS: Start with
Node 5

.
2
A

2

“ e

51032

Pop/Mark/Visit 2

Preorder DFS: Start with
Node 5

2
‘ 4
2

* e

510327

Pop/Mark/Visit 7

Preorder DFS: Start with

Node 5

* e

510327

A~ N O

Push 6

Preorder DFS: Start with
Node 5

2
‘ 4
2

* e

5103276

Pop/Mark/Visit 6

Preorder DFS: Start with
Node 5

« ®
2
6 3
Pop (don’t visit) 2

5103276

Preorder DFS: Start with
Node 5

2

* e

51032764

Pop/Mark/Visit 4

Preorder DFS: Start with
Node 5

* e

51032764

Pop (don’t visit) 2

Preorder DFS: Start with
Node 5

* e

Done
510327614

Note: edge (0,3) removed

=

51076243

Depth-First Search

Graph.h
#iftndef GRAPH_H
#define GRAPH_H

/I Define maximum number of vertices
#define MAX _V 20

// Function declarations

void addEdge(int graph[MAX_V][MAX_V], int src, int dest);
void DFS(int graph[MAX_V][MAX V], int visited[MAX_ V], int
vertex, int vertices);

#endif

Depth-First Search

Graph.c | |

#include <stdio.h> Adjacency Matrix

#include "graph.h" 01234

[* 0:01100

* Function: addEdge 1:00010

IR e 2:00010

* Adds a directed edge fromsrctodest. 3:00001
4:00100

* In adjacency matrix representation:
* graph[src][dest] = 1

* (No reverse edge is added because it is a directed graph)
*/

void addEdge(int graph[MAX_V][MAX_V], int src, int dest)

{

graph[src][dest] = 1; // Directed edge from src — dest

}

Depth-First Search

Graph.c
/*
* Function: DFS

* Performs Depth First Search starting from a given vertex.
*

* Parameters:

- graph : adjacency matrix representation of the graph

- visited : keeps track of visited vertices

- vertex : the current vertex being explored

- vertices: total number of vertices in the graph

I

*

* Working:
* 1. Mark current vertex as visited.
* 2. Print current vertex.

* 3. Recursively visit all unvisited adjacent vertices.
*/

Depth-First Search

Graph.c
void DFS(int graph[MAX_V][MAX V], int visited[MAX_V], Int

vertex, int vertices)

{

printf("%d ", vertex); // Print current vertex
visited|[vertex] = 1; // Mark as visited

/I Explore all adjacent vertices
for (int1 = 0; 1 <vertices; I++) {
If (graph[vertex][i] == 1 && !visited[i]) {
DFS(graph, visited, I, vertices);
}

}
}

Depth-First Search

main.c

iInt main() {
Int vertices, edges, src, dest, startVertex;
int graph[MAX_V][MAX_V] ={0}; // Initialize adjacency matrix
Int visited[MAX V] = {0}, Il Track visited vertices

Example Directed Graph
Number of vertices: 5 (0-4)
Number of edges: 6

printf("Enter number of vertices: ");
scanf("%d", &vertices);

printf("Enter number of edges: ");

Edges

scanf("%d", &edges); 0 1

/l Input edges (1) - g
for (inti = 0; i < edges; i++) { -

printf("Enter edge (src dest): "); 23

scanf("%d %d", &src, &dest); 34

addEdge(graph, src, dest); // Directed edge 4 — 2

}

Depth-First Search

main.c
printf("Enter starting vertex for DFS: ");
scanf("%d", &startVertex);

printf("DFS Traversal starting from vertex %d:\n", startVertex);
DFS(graph, visited, startVertex, vertices);

return O: DFS Traversal Starting from Vertex 0

] we call DFS(graph, visited, 0, 5)

Edges
0-1
02
1 —- 3
2 — 3
3 -4
4 — 2

W DNNPEFEO

Depth-First Search

Adjacency Matrix

01234

01100
00010
00010
00001
00100

DFS Traversal Starting from Vertex O

we call DFS(graph, visited, 0, 5)

Step 1:
*Visit 0 — print 0

*Mark visited[0] =

1

*Adjacent to 0 — {1, 2}

Step 2 (explore 1):
«Call DFS(1)

*Visit 1 — print 1
*Mark visited[1] = 1
*Adjacent to 1 — {3}

Step 3 (explore 3 from 1):
*Call DFS(3)

*Visit 3 — print 3

*Mark visited[3] = 1
*Adjacent to 3 — {4}

Step 4 (explore 4 from 3); Step 5 (explore 2 from

«Call DFS(4)

*Visit 4 — print 4
*Mark visited[4] = 1
*Adjacent to 4 — {2}

DFS Traversal Order
01342

4).

«Call DFS(2)

*Visit 2 — print 2
*Mark visited[2] = 1
*Adjacent to 2 — {3}
*but 3 is already visited
— stop.

Breadth-first Search

e Ripples in a pond

o \Visit designated node

e Then visited unvisited nodes a
distance / away, where /i = 1, 2, 3,
etc.

e For nodes the same distance away,

visit nodes in systematic manner
(eg. increasing index order)

Breadth-First Search

Input: Graph G=(V,E)G = (V, E)G=(V,E), starting vertex s
Output: BFS traversal of the graph
Steps:
1.Initialize all vertices as unvisited.
2.Engueue the starting vertex s and mark it visited.
3.While the queue is not empty:

Dequeue a vertex v.

*Process v (print it).

*For each adjacent vertex u of v:

*If U Is unvisited, mark it visited and enqueue |it.

BFS: Start with Node 5

* e

51204376

BFS: Start with Node 5

* e

BFS: Node one-away

BFS: Visit 1 and 2

* e

512

BFS: Nodes two-away

512

BFS: Visit 0 and 4

* e

51204

BFS: Nodes three-away

BFS: Visit nodes 3 and 7

* e

5120437

BFS: Node four-away

“ .

5120437

BFS: Visit 6

* e

51204376

Breadth-First Search

Graph.h
#iftndef GRAPH_H
#define GRAPH_H

#define MAX _V 20 // Maximum number of vertices

// Function declarations

void addEdge(int graph[MAX_ V][MAX_V], int src, int dest);
void BFS(int graph[MAX_V][MAX_V], int visited[MAX_V], int
startVertex, int vertices);

#endif

Breadth-First Search

Graph.c

#include <stdio.h> Adjacency Matrix

#include "graph.h" 01234
0:01100

/* 1:00010

* Function: addEdge 2:00010

et 3:00001
4:00100

* Adds a directed edge from src to dest.
* For an undirected graph, also add graph[dest][src] = 1.
*/
void addEdge(int graph[MAX_V][MAX_ V], int src, int dest) {
graph[src][dest] = 1; // Directed edge src — dest
/[For undirected graph, uncomment the next line:
/[graph[dest][src] = 1,
}

Breadth-First Search

Graph.c
/*
* Function: BFS

* Performs Breadth First Search starting from startVertex.
*

* Parameters:

* - graph : adjacency matrix of the graph

* - visited : array to track visited vertices

* - startVertex : vertex to start BFS from

* - vertices: total number of vertices

*

* Working:

* 1. Create a queue.

* 2. Enqueue startVertex and mark it visited.

* 3. While queue is not empty:

* - Dequeue a vertex and print it.

* - Enqueue all its unvisited adjacent vertices.
*/

Breadth-First Search

Graph.c
void BFS(int graph[MAX_V][MAX_ V], int visited[MAX_ V], int
startVertex, int vertices) {

Int queue[MAX V], front = 0, rear = 0;

/[Enqueue start vertex
gueue[rear++] = startVertex;
visited[startVertex] = 1,

Breadth-First Search

Graph.c

while (front < rear) {
Int currentVertex = queue[front++]; // Dequeue
printf("%d ", currentVertex);

// Check all adjacent vertices
for (inti=0; i <vertices; i++) {
If (graph[currentVertex][i] == 1 && !visited]i]) {
gueuelrear++] =1; // Enqueue
visited[i] =1; // Mark visited
}
}
}
}

Breadth-First Search

main.c

iInt main() {
Int vertices, edges, src, dest, startVertex;
int graph[MAX_V][MAX_V] ={0}; // Initialize adjacency matrix
Int visited[MAX V] = {0}, Il Track visited vertices

Example Directed Graph
Number of vertices: 5 (0-4)
Number of edges: 6

printf("Enter number of vertices: ");
scanf("%d", &vertices);

printf("Enter number of edges: ");

Edges

scanf("%d", &edges); 0 1

/l Input edges (1) - g
for (inti = 0; i < edges; i++) { -

printf("Enter edge (src dest): "); 23

scanf("%d %d", &src, &dest); 34

addEdge(graph, src, dest); 42

}

Breadth-First Search

main.c

printf("Enter starting vertex for BFS: ");
scanf("%d", &startVertex);

printf("BFS Traversal starting from vertex %d:\n", startVertex);
BFS(graph, visited, startVertex, vertices);

return O;

Breadth-First Search

BFS(graph, visited, 0, 5)

Step 1: Initialization
«StartVertex =0
*Mark visited[0] = 1
*Enqueue 0

Queue: [0O]

Output: —

Step 2: Process O
*Dequeue 0 — print O

Step 4: Process 2
*Dequeue 2 — print 2
*Adjacent to 2 — {3} but
already visited — sKkip

Step 5: Process 3
*Dequeue 3 — print 3
*Adjacent to 3 — {4}
*Enqueue 4, mark visited
Queue: [4]

Output: 0123

Step 3: Process 1
*Dequeue 1 — print 1
*Adjacent to 1 — {3}
*Enqueue 3, mark visited
Queue: [2, 3]

Output: 0 1

Step 6: Process 4
*Dequeue 4 — print 4
*Adjacent to 4 — {} (none)

Queue: [] (empty)

*Adjacent to 0 — {1, 2} Queue: [3] Output: 01234
*Enqueue 1, Enqueue 2, Output: 01 2
mark visited Queue Evolution at Each Step
Queue: [1, 2] Start: [0]
Output: 0 After 0: [1, 2]
Final BFS Traversal Order: After 1. [2, 3]
After 2: [3]
01234 After 3: [4]
After 4. []

