
Graph Traversal

• Depth-First Search

– Goes deep first

– Stack / Recursion

– Pathfinding, topological sort

• Breadth-First Search

– Explores level by level

– Queue

– Shortest path in unweighted graphs

Overview

• Goal

–To systematically visit the nodes of a
graph

• A tree is a directed, acyclic, graph
(DAG)

• If the graph is a tree,

–DFS is exhibited by preorder, postorder,
and (for binary trees) inorder traversals

–BFS is exhibited by level-order traversal

Depth-First Search

• Initialize all vertices in the graph as unvisited.

• Start from the given source vertex v.

• Mark the current vertex as visited.

• Process the current vertex (e.g., print it).

• For each adjacent vertex u of the current vertex v:

• If u is unvisited, then recursively apply DFS on u.

• Repeat until all vertices reachable from the source have

been visited.

• If the graph is disconnected, repeat DFS for the

remaining unvisited vertices.

Example

0

7

1

5

4

3

2

6

Policy: Visit adjacent nodes in increasing index order

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6 4

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6
5

Push 5

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5

Pop/Visit/Mark 5

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5

1

2

Push 2, Push 1

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1

2

Pop/Visit/Mark 1

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1

0

2

4

2

Push 4, Push 2,

Push 0

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0

2

4

2

Pop/Visit/Mark 0

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0

3

7

2

4

2

Push 7, Push 3

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3

7

2

4

2

Pop/Visit/Mark 3

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3

2

7

2

4

2

Push 2

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2

7

2

4

2

Pop/Mark/Visit 2

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7

2

4

2

Pop/Mark/Visit 7

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7

6

2

4

2

Push 6

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6

2

4

2

Pop/Mark/Visit 6

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6

4

2

Pop (don’t visit) 2

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6 4

2

Pop/Mark/Visit 4

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6 4

Pop (don’t visit) 2

Preorder DFS: Start with
Node 5

0

7

1

5

4

3

2

6

5 1 0 3 2 7 6 4

Done

Note: edge (0,3) removed

0

7

1

5

4

3

2

6

5 1 0 7 6 2 4 3

Depth-First Search

Graph.h

#ifndef GRAPH_H

#define GRAPH_H

// Define maximum number of vertices

#define MAX_V 20

// Function declarations

void addEdge(int graph[MAX_V][MAX_V], int src, int dest);

void DFS(int graph[MAX_V][MAX_V], int visited[MAX_V], int

vertex, int vertices);

#endif

Depth-First Search

Graph.c

#include <stdio.h>

#include "graph.h"

/*

* Function: addEdge

* ------------------

* Adds a directed edge from src to dest.

* In adjacency matrix representation:

* graph[src][dest] = 1

* (No reverse edge is added because it is a directed graph)

*/

void addEdge(int graph[MAX_V][MAX_V], int src, int dest)

{

graph[src][dest] = 1; // Directed edge from src → dest

}

Adjacency Matrix

0 1 2 3 4

0 : 0 1 1 0 0

1 : 0 0 0 1 0

2 : 0 0 0 1 0

3 : 0 0 0 0 1

4 : 0 0 1 0 0

Depth-First Search
Graph.c

/*

* Function: DFS

* --------------

* Performs Depth First Search starting from a given vertex.

*

* Parameters:

* - graph : adjacency matrix representation of the graph

* - visited : keeps track of visited vertices

* - vertex : the current vertex being explored

* - vertices: total number of vertices in the graph

*

* Working:

* 1. Mark current vertex as visited.

* 2. Print current vertex.

* 3. Recursively visit all unvisited adjacent vertices.

*/

Depth-First Search

Graph.c

void DFS(int graph[MAX_V][MAX_V], int visited[MAX_V], int

vertex, int vertices)

{

printf("%d ", vertex); // Print current vertex

visited[vertex] = 1; // Mark as visited

// Explore all adjacent vertices

for (int i = 0; i < vertices; i++) {

if (graph[vertex][i] == 1 && !visited[i]) {

DFS(graph, visited, i, vertices);

}

}

}

Depth-First Search
main.c

int main() {

int vertices, edges, src, dest, startVertex;

int graph[MAX_V][MAX_V] = {0}; // Initialize adjacency matrix

int visited[MAX_V] = {0}; // Track visited vertices

printf("Enter number of vertices: ");

scanf("%d", &vertices);

printf("Enter number of edges: ");

scanf("%d", &edges);

// Input edges

for (int i = 0; i < edges; i++) {

printf("Enter edge (src dest): ");

scanf("%d %d", &src, &dest);

addEdge(graph, src, dest); // Directed edge

}

Example Directed Graph

Number of vertices: 5 (0–4)

Number of edges: 6

Edges

0 → 1

0 → 2

1 → 3

2 → 3

3 → 4

4 → 2

Depth-First Search

main.c

printf("Enter starting vertex for DFS: ");

scanf("%d", &startVertex);

printf("DFS Traversal starting from vertex %d:\n", startVertex);

DFS(graph, visited, startVertex, vertices);

return 0;

}

DFS Traversal Starting from Vertex 0

We call DFS(graph, visited, 0, 5)

Depth-First Search

Edges

0 → 1

0 → 2

1 → 3

2 → 3

3 → 4

4 → 2

Adjacency Matrix

0 1 2 3 4

0 : 0 1 1 0 0

1 : 0 0 0 1 0

2 : 0 0 0 1 0

3 : 0 0 0 0 1

4 : 0 0 1 0 0

DFS Traversal Starting from Vertex 0

We call DFS(graph, visited, 0, 5)

Step 1:

•Visit 0 → print 0

•Mark visited[0] = 1

•Adjacent to 0 → {1, 2}

Step 2 (explore 1):

•Call DFS(1)

•Visit 1 → print 1

•Mark visited[1] = 1

•Adjacent to 1 → {3}

Step 3 (explore 3 from 1):

•Call DFS(3)

•Visit 3 → print 3

•Mark visited[3] = 1

•Adjacent to 3 → {4}

Step 4 (explore 4 from 3):

•Call DFS(4)

•Visit 4 → print 4

•Mark visited[4] = 1

•Adjacent to 4 → {2}

Step 5 (explore 2 from

4):

•Call DFS(2)

•Visit 2 → print 2

•Mark visited[2] = 1

•Adjacent to 2 → {3}

•but 3 is already visited

→ stop.

DFS Traversal Order

0 1 3 4 2

Breadth-first Search

• Ripples in a pond

• Visit designated node

• Then visited unvisited nodes a
distance i away, where i = 1, 2, 3,
etc.

• For nodes the same distance away,
visit nodes in systematic manner
(eg. increasing index order)

Breadth-First Search

Input: Graph G=(V,E)G = (V, E)G=(V,E), starting vertex s

Output: BFS traversal of the graph

Steps:

1.Initialize all vertices as unvisited.

2.Enqueue the starting vertex s and mark it visited.

3.While the queue is not empty:

•Dequeue a vertex v.

•Process v (print it).

•For each adjacent vertex u of v:

•If u is unvisited, mark it visited and enqueue it.

BFS: Start with Node 5

7

1

5

4

3

2

6

5 1 2 0 4 3 7 6

0

BFS: Start with Node 5

7

1

5

4

3

2

6

5

0

BFS: Node one-away

7

1

5

4

3

2

6

5

0

BFS: Visit 1 and 2

7

1

5

4

3

2

6

5 1 2

0

BFS: Nodes two-away

7

1

5

4

3

2

6

5 1 2

0

BFS: Visit 0 and 4

7

1

5

4

3

2

6

5 1 2 0 4

0

BFS: Nodes three-away

7

1

5

4

3

2

6

5 1 2 0 4

0

BFS: Visit nodes 3 and 7

7

1

5

4

3

2

6

5 1 2 0 4 3 7

0

BFS: Node four-away

7

1

5

4

3

2

6

5 1 2 0 4 3 7

0

BFS: Visit 6

7

1

5

4

3

2

6

5 1 2 0 4 3 7 6

0

Breadth-First Search

Graph.h

#ifndef GRAPH_H

#define GRAPH_H

#define MAX_V 20 // Maximum number of vertices

// Function declarations

void addEdge(int graph[MAX_V][MAX_V], int src, int dest);

void BFS(int graph[MAX_V][MAX_V], int visited[MAX_V], int

startVertex, int vertices);

#endif

Breadth-First Search

Graph.c

#include <stdio.h>

#include "graph.h"

/*

* Function: addEdge

* -----------------

* Adds a directed edge from src to dest.

* For an undirected graph, also add graph[dest][src] = 1.

*/

void addEdge(int graph[MAX_V][MAX_V], int src, int dest) {

graph[src][dest] = 1; // Directed edge src → dest

// For undirected graph, uncomment the next line:

// graph[dest][src] = 1;

}

Adjacency Matrix

0 1 2 3 4

0 : 0 1 1 0 0

1 : 0 0 0 1 0

2 : 0 0 0 1 0

3 : 0 0 0 0 1

4 : 0 0 1 0 0

Breadth-First Search
Graph.c

/*

* Function: BFS

* -------------

* Performs Breadth First Search starting from startVertex.

*

* Parameters:

* - graph : adjacency matrix of the graph

* - visited : array to track visited vertices

* - startVertex : vertex to start BFS from

* - vertices: total number of vertices

*

* Working:

* 1. Create a queue.

* 2. Enqueue startVertex and mark it visited.

* 3. While queue is not empty:

* - Dequeue a vertex and print it.

* - Enqueue all its unvisited adjacent vertices.

*/

Breadth-First Search

Graph.c

void BFS(int graph[MAX_V][MAX_V], int visited[MAX_V], int

startVertex, int vertices) {

int queue[MAX_V], front = 0, rear = 0;

// Enqueue start vertex

queue[rear++] = startVertex;

visited[startVertex] = 1;

Breadth-First Search

Graph.c

while (front < rear) {

int currentVertex = queue[front++]; // Dequeue

printf("%d ", currentVertex);

// Check all adjacent vertices

for (int i = 0; i < vertices; i++) {

if (graph[currentVertex][i] == 1 && !visited[i]) {

queue[rear++] = i; // Enqueue

visited[i] = 1; // Mark visited

}

}

}

}

Breadth-First Search
main.c

int main() {

int vertices, edges, src, dest, startVertex;

int graph[MAX_V][MAX_V] = {0}; // Initialize adjacency matrix

int visited[MAX_V] = {0}; // Track visited vertices

printf("Enter number of vertices: ");

scanf("%d", &vertices);

printf("Enter number of edges: ");

scanf("%d", &edges);

// Input edges

for (int i = 0; i < edges; i++) {

printf("Enter edge (src dest): ");

scanf("%d %d", &src, &dest);

addEdge(graph, src, dest);

}

Example Directed Graph

Number of vertices: 5 (0–4)

Number of edges: 6

Edges

0 → 1

0 → 2

1 → 3

2 → 3

3 → 4

4 → 2

Breadth-First Search

main.c

printf("Enter starting vertex for BFS: ");

scanf("%d", &startVertex);

printf("BFS Traversal starting from vertex %d:\n", startVertex);

BFS(graph, visited, startVertex, vertices);

return 0;

}

Breadth-First Search

BFS(graph, visited, 0, 5)

Step 1: Initialization

•StartVertex = 0

•Mark visited[0] = 1

•Enqueue 0

Queue: [0]

Output: —

Step 2: Process 0

•Dequeue 0 → print 0

•Adjacent to 0 → {1, 2}

•Enqueue 1, Enqueue 2,

mark visited

Queue: [1, 2]

Output: 0

Step 3: Process 1

•Dequeue 1 → print 1

•Adjacent to 1 → {3}

•Enqueue 3, mark visited

Queue: [2, 3]

Output: 0 1

Step 4: Process 2

•Dequeue 2 → print 2

•Adjacent to 2 → {3} but

already visited → skip

Queue: [3]

Output: 0 1 2

Step 5: Process 3

•Dequeue 3 → print 3

•Adjacent to 3 → {4}

•Enqueue 4, mark visited

Queue: [4]

Output: 0 1 2 3

Step 6: Process 4

•Dequeue 4 → print 4

•Adjacent to 4 → {} (none)

Queue: [] (empty)

Output: 0 1 2 3 4

Final BFS Traversal Order:

0 1 2 3 4

Queue Evolution at Each Step

Start: [0]

After 0: [1, 2]

After 1: [2, 3]

After 2: [3]

After 3: [4]

After 4: []

