
CS23302 - Data Structures

 Lab -5

Date: 07.08.25

Observation Questions

1. Difference between Binary Tree and Binary Search Tree
Question: Given the following binary tree structure:
 10

 / \

 5 15

 / \ \

 2 7 20

2. In-order Traversal

Question: For the above binary search tree, what is the output of in-order traversal?

3. Time Complexity of BST Operations

Question: If a binary search tree is balanced, what is the time complexity of search, insert,

and delete operations? What if the tree is skewed?

4. Given a binary tree:

 A

 / \

 B C

 / \

 D E

What are the outputs of pre-order, in-order, and post-order traversals?

5. What are the Disadvantages of Unbalanced BST?

Execution Questions

1. In-order Traversal Implementation

Input: A binary tree with nodes inserted as: 10, 5, 15, 3, 7

Write code to perform in-order traversal.

2. BST Insertion Demonstration

Input: Starting with an empty BST, insert elements in order: 50, 30, 70, 20, 40, 60,

80. Show the structure of BST after insertion.

3. BST Deletion Scenario

Input: Given BST with nodes 50, 30, 70, 20, 40, 60, 80. Demonstrate deletion of

nodes with different cases:
 Leaf node (20)

 Node with one child (30)

 Node with two children (70)

4. Pre-order and Post-order Traversal Implementation
Input: Using the BST from above, perform pre-order and post-order traversals.
Expected Output:

 Pre-order: 50 30 20 40 70 60 80

 Post-order: 20 40 30 60 80 70 50

5. Handling Duplicate Values in BST

Input: Insert values 25, 15, 25, 10, 20, 25 into an empty BST.

Task: Show how duplicates are handled (e.g., ignoring, counting, or allowing duplicates on
a specific side).

Spot Questions

1. Convert a given Binary Search Tree (BST) into a sorted doubly linked list in-place.
The left pointer should act as the previous pointer, and the right pointer as the next
pointer.

 4
 / \

 2 5
 / \

 1 3

Output 1 <-> 2 <-> 3 <-> 4 <-> 5

2. Given a binary tree, find the size of the largest subtree that is a valid Binary Search
Tree (BST).

 10

 / \

 15 8

 / \ / \

 12 20 5 9

