Data structures Lab

Lab 8

Date: 28.08.25

Observation Questions

- 1. Differentiate between **directed** and **undirected** weighted graphs with real-world examples.
- 2. Explain **Dijkstra's Algorithm** and its limitations when negative weights are present.
- 3. Compare **Prim's Algorithm** and **Kruskal's Algorithm** for finding MST. Which is better for dense graphs?
- 4. Why is the **shortest path problem** important in real-time systems like GPS navigation?
- 5. Write the adjacency matrix representation of the following directed weighted graph:

```
Vertices = \{A, B, C, D\}
Edges = A \rightarrow B (3), A \rightarrow C (2), B \rightarrow D (4), C \rightarrow D (1).
```

Execution Questions

1. An airline wants to find the cheapest route between cities. Implement Dijkstra's algorithm to find the minimum cost from a source city to all others.

Number of cities: 5

Edges:

0 1 10

023

121

2 1 4

232

132

3 4 7

2. In a computer network, routers may have negative delay due to data compression. Use Bellman-Ford to find shortest paths.

Vertices: 5, Edges: 8

Edges:

0 1 -1

024

123

132

142

3 2 5

3 1 1

43-3

3.	A power company wants to lay wires connecting cities with minimum cost. Implement
	Kruskal's algorithm.

Number of cities: 4
Edges:
0 1 10
0 2 6
0 3 5
1 3 15

4. A cable TV company wants to connect houses with the minimum cable length. Implement Prim's algorithm.

Number of houses: 5

Cost adjacency matrix:

02060

234

20385

03007

68009

05790

5. A delivery company wants to calculate the shortest travel time between **every pair of warehouses**. Implement Floyd-Warshall algorithm.

Number of warehouses: 4

Adjacency matrix:

0 5 INF 10

INF 0 3 INF

INF INF 0 1

INF INF INF 0