CS 6301 - Machine Learning Lab - Week 6

Date: 08.09.2023

TITLE

IMPLEMENTATION OF LINEAR REGRESSION (SINGLE AND MULTIPLE LINEAR MODEL)

TASKS

 A simple linear regression model to express drain current I_d (in milli Ampere) as a function of ground-to-source voltage Vgs (in Volts) for a MOS transistor is hypothesized. The drain current and the ground-to-source voltage data were measured and is shown in the following table.

Drain Current I _d (mA)	Gate-to-Source Voltage (V)	
0.734	1.1	
0.886	1.2	
1.04	1.3	
1.19	1.4	
1.35	1.5	
1.50	1.6	
1.66	1.7	
1.81	1.8	
1.97	1.9	
2.12	2.0	

- (a) Draw a Scatter diagram for these data. Does a straight-line relationship seem plausible?
- (b) Fit a simple linear regression model to these data.
- Use <u>Coronary Heart Disease</u> (CHD) problem available at (https://axon.cs.byu.edu/Dan/478/assignments/CHD.txt)
 - (a) First, use simple linear regression to build a linear model of the data.
 - (b) Report the parameters of the model (w_0 , w_1 and R^2).
 - (c) Plot the original (probability) data and graph the linear model your program produced.
 - (d) What does the model predict for the probability of someone 41 years old suffering of CHD?

3) A mechanical engineering study indicates that fluid flow through a pipe is related to pipe diameter and slope, and the relationship is power equation Q=a₀D^a₁S^a₂. Use multiple linear regression to analyse this data. Then use the resulting model to predict the flow for a pipe with diameter of 2.5ft and a slope of 0.025 ft/ft.

Experiment	Diameter, D (ft)	Slope, S (ft/ft)	Flow, Q (ft ³ /s)
1	1	0.001	1.4
2	2	0.001	8.3
3	3	0.001	24.2
4	1	0.01	4.7
5	2	0.01	28.9
6	3	0.01	84.0
7	1	0.05	11.1
8	2	0.05	69.0
9	3	0.05	200.0

(a) Indicate the results of constants a₀, a₁, a₂ and the predicted flow for the given values of diameter and slope.