
Scratch is one of the modern programming languages that include turtle graphics options, introduced for the first time in the 
Logo enabled the control of a turtle device, a type of robot, which was connected to the 
computer. The turtle could move on a horizontal surface back and forth and change its direction and orientation. If a piece of paper was placed under the turtle, it could 
mark, thus forming graphics called the 
This way of setting an image as a collection of figures, together with their data (parameters), which define how the figure will be drawn and where it will be placed is called 
graphics. 
Unlike the vector graphics, in the 
of pixels - bitmaps. Bitmaps are technically characterized by the width and height of the 
image in pixels, and the number of bits needed to store the color of the
if there are only 16 colors, you need 4 bits per pixel to store the color. Raster graphics are 
resolution- dependent. They cannot be enlarged without the loss of quality of the image.
In Scratch, every sprite has the option to behave 
position, direction and orientation of movement, and they can leave a mark when they move. 
The size, the shape and the color of the sprite do not affect the mark they leave, because the sprites are drawing with a pen. The sprite can also be invisible or composed of only one 
dot, and this does not affect its drawing.
Functions of the Pen blocks 
The Pen group of blocks, which enable the sprites to leave a mark when they move, i.e. to 
support the turtle graphics are located among the extensions.
In order to use blocks from this group, you need to:

1. Click on the icon in the bottom left corner of the blocks palette.2. Select the Pen extension from the opened gallery.
3. The icon and the blocks will appear in the blocks pal

Turtle Graphics 
Scratch is one of the modern programming languages that include turtle graphics options, introduced for the first time in the Logo language some fifty years ago. 

enabled the control of a turtle device, a type of robot, which was connected to the 
computer. The turtle could move on a horizontal surface back and forth and change its direction and orientation. If a piece of paper was placed under the turtle, it could 
mark, thus forming graphics called the turtle graphics. 
This way of setting an image as a collection of figures, together with their data (parameters), which define how the figure will be drawn and where it will be placed is called vector 

Unlike the vector graphics, in the raster graphics the image is stored as a rectangular grid 
bitmaps. Bitmaps are technically characterized by the width and height of the 

image in pixels, and the number of bits needed to store the color of the pixels. For example, 
if there are only 16 colors, you need 4 bits per pixel to store the color. Raster graphics are 

dependent. They cannot be enlarged without the loss of quality of the image.
In Scratch, every sprite has the option to behave like the Logo turtle: you can determine their 
position, direction and orientation of movement, and they can leave a mark when they move. 
The size, the shape and the color of the sprite do not affect the mark they leave, because a pen. The sprite can also be invisible or composed of only one 
dot, and this does not affect its drawing. 

group of blocks, which enable the sprites to leave a mark when they move, i.e. to 
e located among the extensions. 

In order to use blocks from this group, you need to: 

icon in the bottom left corner of the blocks palette. extension from the opened gallery. 
The icon and the blocks will appear in the blocks palette. 

Scratch is one of the modern programming languages that include turtle graphics options, 

enabled the control of a turtle device, a type of robot, which was connected to the 
computer. The turtle could move on a horizontal surface back and forth and change its direction and orientation. If a piece of paper was placed under the turtle, it could leave a 

This way of setting an image as a collection of figures, together with their data (parameters), vector 

the image is stored as a rectangular grid 
bitmaps. Bitmaps are technically characterized by the width and height of the 

pixels. For example, 
if there are only 16 colors, you need 4 bits per pixel to store the color. Raster graphics are 

dependent. They cannot be enlarged without the loss of quality of the image. 
like the Logo turtle: you can determine their 

position, direction and orientation of movement, and they can leave a mark when they move. 
The size, the shape and the color of the sprite do not affect the mark they leave, because a pen. The sprite can also be invisible or composed of only one 

group of blocks, which enable the sprites to leave a mark when they move, i.e. to 



The Pen group includes the following blocks:

 - erases all marks 
made by the pen 

 - stamps the image 
of the sprite on the stage

 - lifts the pen up

 - puts the pen 
down 

 - 
color of the pen 

If you add the block to your sprite, from then on, the sprite will leave a mark 

on the stage whenever it moves. When you add the 

group includes the following blocks: 

erases all marks 

stamps the image 
of the sprite on the stage 

lifts the pen up 

puts the pen 

 sets the 

 - 
drawing parameters 

 the drawing parameters 

 - sets the size 
(thickness) of the pen mark 

 - changes the 
size (thickness) of the pen mark

block to your sprite, from then on, the sprite will leave a mark 

on the stage whenever it moves. When you add the block, it will stop leaving 

 

 sets the 

- changes 

sets the size 

changes the 
size (thickness) of the pen mark 

block to your sprite, from then on, the sprite will leave a mark 

ll stop leaving 



the mark until you add the 
the drawing parameters. The drawing parameters include the size (thickness), color, 
saturation, brightness and transparency of the mark left by the pen.

Note. . The first block refers to drawings and the second to the sprites. 
Using messages for synchronization
The behavior is always triggered by an event, which can be an action or receipt of a 
message. We will now show how the actions of the sprites (and the s
coordinated, depending on whether a broadcast message event has occurred. You noticed 
that we didn’t say that we send a message, but that we 
Scratch, the message is directed to all objects, and not just one. B

messages in Scratch is achieved with the following blocks 

and 
Some examples 
Example 1 - “Drawing a Line” 
We will now draw a line that is 10 pixels wide and 300 pixels long. We will choose the Pencil 
sprite from the sprites library, and we will delete the cat sprite. Since we want the mark to be 
positioned along the tip of the Pencil sprite, we will move the center of thetop. We can do this by opening the 
side of the drawing display; in our case, these will be vector tools because we chose a 
vector sprite (1). Use the to select the whole sprite (2), 
the tip of the pencil is above the sign 

First, you need to erase everything that was previously drawn by using the block, place the pencil in the starting position from which it will start drawing, set the color, 
and the size of the pen, and then use the 
mark when it moves. You need to add the 

block again. The look of the mark is determined by 
the drawing parameters. The drawing parameters include the size (thickness), color, 
saturation, brightness and transparency of the mark left by the pen. 

. The first block refers to drawings and the second to the 

Using messages for synchronization 
The behavior is always triggered by an event, which can be an action or receipt of a 
message. We will now show how the actions of the sprites (and the stage) can be 
coordinated, depending on whether a broadcast message event has occurred. You noticed 

a message, but that we broadcast it. This is because, in 
Scratch, the message is directed to all objects, and not just one. Broadcasting and receiving 

messages in Scratch is achieved with the following blocks 

and from the Events group.

 
draw a line that is 10 pixels wide and 300 pixels long. We will choose the Pencil 

sprite from the sprites library, and we will delete the cat sprite. Since we want the mark to be 
positioned along the tip of the Pencil sprite, we will move the center of the costume to the top. We can do this by opening the Costume tab. The available tools will appear on the left 
side of the drawing display; in our case, these will be vector tools because we chose a 

to select the whole sprite (2), and then drag the sprite so that 
the tip of the pencil is above the sign which indicates the center of the screen (3).

First, you need to erase everything that was previously drawn by using the block, place the pencil in the starting position from which it will start drawing, set the color, 
and the size of the pen, and then use the pen down block to allow the pencil sprite to leave a 
mark when it moves. You need to add the pen up block at the end to stop the sprite from 

block again. The look of the mark is determined by 
the drawing parameters. The drawing parameters include the size (thickness), color, 

. The first block refers to drawings and the second to the 

The behavior is always triggered by an event, which can be an action or receipt of a 
tage) can be 

coordinated, depending on whether a broadcast message event has occurred. You noticed 
it. This is because, in 

roadcasting and receiving 

, 

group. 

draw a line that is 10 pixels wide and 300 pixels long. We will choose the Pencil 
sprite from the sprites library, and we will delete the cat sprite. Since we want the mark to be 

costume to the tab. The available tools will appear on the left 
side of the drawing display; in our case, these will be vector tools because we chose a 

and then drag the sprite so that 
which indicates the center of the screen (3). 

 

block, place the pencil in the starting position from which it will start drawing, set the color, 
block to allow the pencil sprite to leave a 

to stop the sprite from 



leaving a mark in the process of returning to the starting position, each time the program runs. 
There are two ways to set the color of the pen:

 by using the 
on the input field 

 by using the 
inserting a number into the second input field.

In this example, we will use the first option.

Clicking on the input field of the block for setting the pen color, we open the drop
where we will find sliders with color components: number attached to the color, saturation 
and brightness, and at the bottom we will see a tool 
(1). The desired color can be set by moving the sliders or by clicking on the pipette. 
click on the pipette, a stage with a magnifier on it that has a circle in the center will light up (2). To choose a color, we need to place the center of the circle above the part of the stage 
where that color is located and then click on it. We wil
Figure. 
The result of the running of the script and the script itself are pre

leaving a mark in the process of returning to the starting position, each time the program 

There are two ways to set the color of the pen: 

block, where you can select a color by clicking 

block, where you can select a color by 
inserting a number into the second input field. 

, we will use the first option. 

Clicking on the input field of the block for setting the pen color, we open the drop
nd sliders with color components: number attached to the color, saturation 

and brightness, and at the bottom we will see a tool - a pipette for collecting color samples 
(1). The desired color can be set by moving the sliders or by clicking on the pipette. 
click on the pipette, a stage with a magnifier on it that has a circle in the center will light up (2). To choose a color, we need to place the center of the circle above the part of the stage 
where that color is located and then click on it. We will get the same result, as shown 

The result of the running of the script and the script itself are presented in the Figure below.

leaving a mark in the process of returning to the starting position, each time the program 

block, where you can select a color by clicking 

block, where you can select a color by 

 
Clicking on the input field of the block for setting the pen color, we open the drop-down menu 

nd sliders with color components: number attached to the color, saturation 
a pipette for collecting color samples 

(1). The desired color can be set by moving the sliders or by clicking on the pipette. If you 
click on the pipette, a stage with a magnifier on it that has a circle in the center will light up (2). To choose a color, we need to place the center of the circle above the part of the stage 

e result, as shown in 

sented in the Figure below. 



Example 2 - “Free-hand Drawing”
This example should illustrate how we use drawing commands and show that the mark does 
not depend on the size of the sprite, nor on whether the sprite is visible or hidden. The pen is 
doing the drawing, so it does not matter which sprite is holding it. Thi
the Ladybug 1 sprite from the sprites library.
The script, which is activated by clicking on the green flag, allows the ladybug to follow the mouse-pointer for the duration of the running. At the beginning of the script, all drawings 
from previous running of the exampleraised. The pen down command will be added to the block, and the pen up command will be added to the 
This way we will make sure that the sprite will not leave any marks when it moves until we press the down arrow key. The sprite will stop leaving marks when we press the 
key. 
The scripts added to the ladybug are presented in the Figure below. 
performed the same way even if the block 
Figure is pointing, but then the sprite wouldn’t be visible, and it would appear that the 
drawing is being done by the mouse

hand Drawing” 
should illustrate how we use drawing commands and show that the mark does 

not depend on the size of the sprite, nor on whether the sprite is visible or hidden. The pen is 
doing the drawing, so it does not matter which sprite is holding it. This time we will choose 

sprite from the sprites library. 
The script, which is activated by clicking on the green flag, allows the ladybug to follow the pointer for the duration of the running. At the beginning of the script, all drawings 

example will be erased from the stage, and the pen will be command will be added to the when down arrow is pressedcommand will be added to the when up arrow is pressed 
This way we will make sure that the sprite will not leave any marks when it moves until we key. The sprite will stop leaving marks when we press the 

The scripts added to the ladybug are presented in the Figure below. The drawing would be 
performed the same way even if the block was inserted where the red arrow in the 
Figure is pointing, but then the sprite wouldn’t be visible, and it would appear that the 
drawing is being done by the mouse-pointer. 

  

should illustrate how we use drawing commands and show that the mark does 
not depend on the size of the sprite, nor on whether the sprite is visible or hidden. The pen is 

s time we will choose 

The script, which is activated by clicking on the green flag, allows the ladybug to follow the pointer for the duration of the running. At the beginning of the script, all drawings 
will be erased from the stage, and the pen will be when down arrow is pressed event  event block. 

This way we will make sure that the sprite will not leave any marks when it moves until we key. The sprite will stop leaving marks when we press the up arrow 

The drawing would be 
was inserted where the red arrow in the 

Figure is pointing, but then the sprite wouldn’t be visible, and it would appear that the 



Of course, it would be more natural if we didn’t have to press the keys of the keyboard to 
lower and lift the pen, but just draw while holding the mouse button pressed, and then stop 
drawing by lifting the finger. This type of drawing is achieved by the following script.

 
The effects of the if then else command 

script in this E-block will either execute the 

 
ld be more natural if we didn’t have to press the keys of the keyboard to 

lower and lift the pen, but just draw while holding the mouse button pressed, and then stop 
drawing by lifting the finger. This type of drawing is achieved by the following script.

command can be understood. For now, let’s just say that the 

block will either execute the and pen down

ld be more natural if we didn’t have to press the keys of the keyboard to 
lower and lift the pen, but just draw while holding the mouse button pressed, and then stop 
drawing by lifting the finger. This type of drawing is achieved by the following script. 

For now, let’s just say that the 

pen down command 



from the upper slot, or the pen updepend on whether the mouse button is pressed or not, which is determined by the value set 
in the block. This block belongs to the 
the value is true or false. Hexagonal function b
are called Boolean blocks. 

Example 3 - “Follow my Trace”
In this example, the movement of the 
mark left by the ladybug is a broken line made of horizontal and 
Figure includes the scripts and the look of the stage after one 

Example 4 - “Lines” 
In the Lines example we will draw a purple line, 400 pixels long and 2 pixels wide, starting 
from the point (-200,0) in five different styles.

pen up from the lower slot. Which command is being executed will depend on whether the mouse button is pressed or not, which is determined by the value set 
block. This block belongs to the Sensing group, and it reports whether 

the value is true or false. Hexagonal function blocks that report only the values true

“Follow my Trace” 
, the movement of the ladybug sprite is guided by the use of arrow keys

mark left by the ladybug is a broken line made of horizontal and vertical lines. The following 
Figure includes the scripts and the look of the stage after one example execution.

 

we will draw a purple line, 400 pixels long and 2 pixels wide, starting 
ive different styles. 

Which command is being executed will depend on whether the mouse button is pressed or not, which is determined by the value set 
group, and it reports whether 

true or false 

 

is guided by the use of arrow keys. The 
vertical lines. The following 

execution. 

we will draw a purple line, 400 pixels long and 2 pixels wide, starting 



 
The sprite drawing the line is invisible. It will appear in the upper left corner of the stage, only 
when it finishes drawing the line, and it will say how the line was drawn. The drawing is 

activated by the 
by pressing number 1 on the keyboard, the second style by pressing 2, and so on.
Clicking on the green flag erases everything that was previously on the stage, sets values 
the color and size of the pen, sprite appear
example. 
Each of the scripts associated with keys 1
previously drawn on the stage, hides the sprite, draws the line in the given style, and then shows the sprite in the upper left corner of the stage, which tells us how the line was drawn.
The first style is a continuous straight line. This can be done immediately, by giving just one 
command “go 400 steps”, but to make this last almost as long as other scripts we
repeat command, so the sprite would move 10 steps 40 times.
The second style - the sprite repeats the same pattern 100 times: it moves 1 step with the 
pen down, and 3 with the pen up.
The third style - the sprite repeats the same pattern 50 timedown and, and 5 with the pen up.
The fourth style - the sprite repeats the same pattern 40 times: it moves 6 steps with the pen 
down and, and 4 with the pen up.
The fifth style - the sprite repeats the same pattern 25 times
down and, and 4 with the pen up, 2 steps with the pen down, and 4 with the pen up.
In the Figure below you will find the scripts for the events 
when 1 key is pressed, and when 2 key is pressed

The sprite drawing the line is invisible. It will appear in the upper left corner of the stage, only 
when it finishes drawing the line, and it will say how the line was drawn. The drawing is 

event block, the script for the first style is activated 
by pressing number 1 on the keyboard, the second style by pressing 2, and so on.
Clicking on the green flag erases everything that was previously on the stage, sets values 
the color and size of the pen, sprite appears and gives instructions on how to start the 

Each of the scripts associated with keys 1-5 on the keyboard first erases everything that was 
previously drawn on the stage, hides the sprite, draws the line in the given style, and then e in the upper left corner of the stage, which tells us how the line was drawn.
The first style is a continuous straight line. This can be done immediately, by giving just one 
command “go 400 steps”, but to make this last almost as long as other scripts we
repeat command, so the sprite would move 10 steps 40 times. 

the sprite repeats the same pattern 100 times: it moves 1 step with the 
pen down, and 3 with the pen up. 

the sprite repeats the same pattern 50 times: it moves 3 steps with the pen down and, and 5 with the pen up. 
the sprite repeats the same pattern 40 times: it moves 6 steps with the pen 

down and, and 4 with the pen up. 
the sprite repeats the same pattern 25 times: it moves 6 steps with the pen 

down and, and 4 with the pen up, 2 steps with the pen down, and 4 with the pen up.
In the Figure below you will find the scripts for the events when the green flag is clicked

when 2 key is pressed. 

The sprite drawing the line is invisible. It will appear in the upper left corner of the stage, only 
when it finishes drawing the line, and it will say how the line was drawn. The drawing is 

for the first style is activated 
by pressing number 1 on the keyboard, the second style by pressing 2, and so on. 
Clicking on the green flag erases everything that was previously on the stage, sets values for 

s and gives instructions on how to start the 

5 on the keyboard first erases everything that was 
previously drawn on the stage, hides the sprite, draws the line in the given style, and then e in the upper left corner of the stage, which tells us how the line was drawn. 
The first style is a continuous straight line. This can be done immediately, by giving just one 
command “go 400 steps”, but to make this last almost as long as other scripts we added the 

the sprite repeats the same pattern 100 times: it moves 1 step with the 

s: it moves 3 steps with the pen 

the sprite repeats the same pattern 40 times: it moves 6 steps with the pen 

: it moves 6 steps with the pen 
down and, and 4 with the pen up, 2 steps with the pen down, and 4 with the pen up. 

when the green flag is clicked, 



Note that repetition commands do not shorten program running time, but only allow the programmer to write programs more clearly and concisely.
 

 
Note that repetition commands do not shorten program running time, but only allow the programmer to write programs more clearly and concisely. Note that repetition commands do not shorten program running time, but only allow the 


