
1

USING LEX
Introduction
LEX is a tool used to generate a lexical analyzer. This document is a tutorial for the use of LEX for ExpL
Compiler development. Technically, LEX translates a set of regular expression specifications (given as
input in input_file.l) into a C implementation of a corresponding finite state machine (lex.yy.c). This C
program, when compiled, yields an executable lexical analyzer.

The source ExpL program is fed as the input to the the lexical analyzer which produces a sequence of
tokens as output. (Tokens are explained below). Conceptually, a lexical analyzer scans a given source
ExpL program and produces an output of tokens.
Each token is specified by a token name. The token name is an abstract symbol representing the kind of
lexical unit, e.g., a particular keyword, or a sequence of input characters denoting an identifier. The token
names are the input symbols that the parser processes. For instance integer, boolean, begin, end, if, while
etc. are tokens in ExpL.

“integer” {return ID_TYPE_INTEGER;}

This example demonstrates the specification of a rule in LEX. The rule in this example specifies that the
lexical analyzer must return the token named ID_TYPE_INTEGER when the pattern “integer” is found in
the input file. A rule in a LEX program comprises of a 'pattern' part (specified by a regular expression) and
a corresponding (semantic) 'action' part (a sequence of C statements). In the above example, “integer” is
the pattern and {return ID_TYPE_INTEGER;} is the corresponding action. The statements in the action part
will be executed when the pattern is detected in the input.
The structure of LEX programs
A LEX program consists of three sections : Declarations, Rules and Auxiliary functions

DECLARATIONS

%%
RULES
%%

AUXILIARY FUNCTIONS

2.1 Declarations
The declarations section consists of two parts, auxiliary declarations and regular definitions.
The auxiliary declarations are copied as such by LEX to the output lex.yy.c file. This C code consists of
instructions to the C compiler and are not processed by the LEX tool.The auxiliary declarations (which are
optional) are written in C language and are enclosed within ' %{ ' and ' %} ' . It is generally used to declare
functions, include header files, or define global variables and constants.
LEX allows the use of short-hands and extensions to regular expressions for the regular definitions. A
regular definition in LEX is of the form : D R where D is the symbol representing the regular expression
R.

2.2 Rules
Rules in a LEX program consists of two parts :

1. The pattern to be matched
2. The corresponding action to be executed

The pattern to be matched is specified as a regular expression.

2

LEX obtains the regular expressions of the symbols 'number' and 'op' from the declarations section and
generates code into a function yylex() in the lex.yy.c file. This function checks the input stream for the first
match to one of the patterns specified and executes code in the action part corresponding to the pattern.

2.3 Auxiliary functions
LEX generates C code for the rules specified in the Rules section and places this code into a single function
called yylex(). (To be discussed in detail later). In addition to this LEX generated code, the programmer
may wish to add his own code to the lex.yy.c file. The auxiliary functions section allows the programmer to
achieve this.

Example:
/*Declarations section start here*/
/* Auxiliary declarations start here*/
%{
 #include <stdio.h>
 int global_variable;
%}
/*Auxiliary declarations end & Regular definitions start here*/
 number [0-9]+ //Regular definition
 op [-|+|*|/|^|=] //Regular definition
/*Declarations section ends here*/
%% /* Rules */
 {number} {printf(“ number”);}
 {op} {printf(“ operator”);}
%%
/* Auxiliary functions */
int main()
{
 yylex();
 return 1;
}

The pattern to be matched is specified as a regular expression.
Sample Input/Output for the above example:

I: 234
O: number

I: *
O: operator

I: 2+3
O: number operator number

LEX obtains the regular expressions of the symbols 'number' and 'op' from the declarations section and
generates code into a function yylex() in the lex.yy.c file. This function checks the input stream for the first
match to one of the patterns specified and executes code in the action part corresponding to the pattern.

The yyvariables
The following variables are offered by LEX to aid the programmer in designing sophisticated lexical
analyzers. These variables are accessible in the LEX program and are automatically declared by LEX
in lex.yy.c.

 yyin

 yytext

 yyleng

https://silcnitc.github.io/lex.html#navyyin
https://silcnitc.github.io/lex.html#navyytext
https://silcnitc.github.io/lex.html#navyyleng

3

3.1 yyin
yyin is a variable of the type FILE* and points to the input file. yyin is defined by LEX automatically. If the
programmer assigns an input file to yyin in the auxiliary functions section, then yyin is set to point to that
file. Otherwise LEX assigns yyin to stdin(console input).
Example:
 /* Declarations */
 %%
 /* Rules */
 %%
 main(int argc, char* argv[])
 {
 if(argc > 1)
 {
 FILE *fp = fopen(argv[1], "r");
 if(fp)
 yyin = fp;
 }
 yylex();
 return 1;
 }

3.2 yytext
yytext is of type char* and it contains the lexeme currently found. A lexeme is a sequence of characters in
the input stream that matches some pattern in the Rules Section. (In fact, it is the first matching sequence
in the input from the position pointed to by yyin.) Each invocation of the function yylex() results
in yytext carrying a pointer to the lexeme found in the input stream by yylex(). The value of yytext will be
overwritten after the next yylex() invocation.
Example:

%option noyywrap
%{
#include <stdlib.h>
#include <stdio.h>
%}
number [0-9]+

%%
{number} {printf("Found : %d\n",atoi(yytext));}
%%

int main()
{
 yylex();
 return 1;
}
In this case when yylex() is called, the input is read from the location given by yyin and a string “25” is found
as a match to 'number'. This location of this string in the memory is pointed to by yytext. The corresponding
action in the above rule uses a built-in function atoi() to convert the string “25” (of type char*) to the integer
25 (of the type int) and then prints the result on the screen. Note that the header file “stdlib.h” is called in
the auxiliary declarations section in order to invoke atoi() in the actions part of the rule.

NOTE: The lexeme found by LEX is stored in some memory allocated by LEX which can be accessed
through the character pointer yytext.
NOTE: The %option noyywrap is used to inform the compiler that the function yywrap() has not been
defined. We will see what this function does later on.

Sample Input/Output:
I: 25
O: Found : 25

4

3.3 yyleng
yyleng is a variable of the type int and it stores the length of the lexeme pointed to by yytext.
Example:

/* Declarations */
%%
/* Rules */
%%
{number} printf("Number of digits = %d",yyleng);
%%

The yyfunctions
 yylex()

 yywrap()

4.1 yylex()
yylex() is a function of return type int. LEX automatically defines yylex() in lex.yy.c but does not call it. The
programmer must call yylex() in the Auxiliary functions section of the LEX program. LEX generates code
for the definition of yylex() according to the rules specified in the Rules section.
NOTE: That yylex() need not necessarily be invoked in the Auxiliary Functions Section of LEX program
when used with YACC.

Example:

/* Declarations */
%%
{number} {return atoi(yytext);}
%%
int main()
{
 int num = yylex();
 printf("Found: %d",num);
 return 1;
}

4.2 yywrap()
LEX declares the function yywrap() of return-type int in the file lex.yy.c . LEX does not provide any definition
for yywrap(). yylex() makes a call to yywrap() when it encounters the end of input. If yywrap() returns zero
(indicating false) yylex() assumes there is more input and it continues scanning from the location pointed
to by yyin. If yywrap() returns a non-zero value (indicating true), yylex() terminates the scanning process
and returns 0 (i.e. “wraps up”). If the programmer wishes to scan more than one input file using the
generated lexical analyzer, it can be simply done by setting yyin to a new input file in yywrap() and return
0.
As LEX does not define yywrap() in lex.yy.c file but makes a call to it under yylex(), the programmer must
define it in the Auxiliary functions section or provide %option noyywrap in the declarations section. This
options removes the call to yywrap() in the lex.yy.c file. Note that, it is mandatory to either define yywrap()
or indicate the absence using the %option feature. If not, LEX will flag an error

http://silcnitc.github.io/yacc.html

