
NS-2 Tutorial

Kameswari Chebrolu
Dept. of Electrical Engineering, IIT Kanpur

Motivation for Simulations
� Cheap -- does not require costly equipment
� Complex scenarios can be easily tested
� Results can be quickly obtained – more ideas can

be tested in a smaller timeframe
� The real thing isn't yet available
� Controlled experimental conditions

� Repeatability helps aid debugging
� Disadvantages: Real systems too complex to

model

Features of NS-2
� Protocols: TCP, UDP, HTTP, Routing algorithms etc
� Traffic Models: CBR, VBR, Web etc
� Error Models: Uniform, bursty etc
� Radio propagation, Mobility models
� Energy Models
� Topology Generation tools
� Visualization tools
� Extensibility

NS Structure
� NS is an object oriented simulator
� Back end is C++ event scheduler

� Protocols mostly
� Front end is oTCL

� Creating scenarios, extensions to C++ protocols
� Objects created in oTCL have a corresponding object

in C++

TCL tutorial

� Variables:
� Arrays:
� Printing:
� Arithmetic Expression:
� Control Structures:

� Procedures:

set x 1
set y $x

set a(0) 1

puts “$a(0) \n”

set z = [expr $y + 5]

if {$z == 6} then { puts “Correct!”}
for {set i =0} {$i < 5} {incr i }{

puts “$i * $i equals [expr $i * $i]”
}

proc sum {a b} {
return [expr $a + $b]

}

How to Start?
� Create simulator object: set ns [new simulator]
� Open a file for writing data for input to nam

(network animator)

� Finish procedure:

set nf [open out.nam w]
$ns namtrace-all $nf

proc finish {} {
global ns nf
close $nf
exec nam out.nam &
exit 0

}

How to Start?

� Tell simulator object when to finish

� Start the simulation

$ns at 5.0 “finish”

$ns run

Creating topology
� Two nodes connected by a link
� Creating nodes

� Creating link between nodes

set n0 [$ns node]
set n1 [$ns node]

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

Sending data
� Create UDP agent

� Create CBR traffic source for feeding into UDP agent

� Create traffic sink

set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

Sending data
� Connect two agents

� Start and stop of data

$ns connect $udp0 $null0

$ns at 0.5 “$cbr0 start”
$ns at 4.5 “$cbr0 stop”

Creating TCP Connections

� Create TCP agent and attach it to the node

� Create a Null Agent and attach it to the node

� Connect the agents

set tcp0 [new Agent/TCP]
$ns attach-agent $n0 $tcp0

set null0 [new Agent/TCPSink]
$ns attach-agent $n1 $null0

$ns connect $tcp0 $null0

Traffic on top of TCP
� FTP

� Telnet

set ftp [new Application/FTP]
$ftp attach-agent $tcp0

set telnet [new Application/Telnet]
$telnet attach-agent $tcp0

Introducing Errors
� Creating Error Module

� Inserting Error Module

set err [new ErrorModel]
$err unit pkt_
$err set rate_ 0.01
$err ranvar [new RandomVariable/Uniform]
$err drop-target [new Agent/Null]

$ns lossmodel $err $n0 $n1

Tracing
� All packet trace

� Variable trace

$ns trace-all [open out.tr w]
<event> <time> <from> <to> <pkt> <size>

<flowid> <src> <dst> <seqno> <aseqno>

+ 0.51 0 1 cbr 500 ------- 0 0.0 1.0 0 2
- 0.51 0 1 cbr 500 ------- 0 0.0 1.0 0 2
r 0.514 0 1 cbr 500 ------- 0 0.0 1.0 0 0

set par [open output/param.tr w]
$tcp attach $par
$tcp trace cwnd_
$tcp trace maxseq_
$tcp trace rtt_

Summary
� Simulators help in easy verification of protocols

in less time, money
� NS offers support for simulating a variety of

protocol suites and scenarios
� Front end is oTCL, back end is C++
� NS is an on-going effort of research and

development

