
Lab 7 – TCP Simulation

Consider a scenario where a sender (S) has ‘n’ bytes of data to be sent to a receiver (R) which
maintains a buffer of size ‘m’ from which the data is read at a rate of 1 byte for every ‘k’ bytes
received successfully. S sends the data as multiple packets, as the amount of data that can be sent
at a time is limited by the maximum segment size (MSS). S uses sliding window protocol to
determine the number of packets that can be sent at a time before receiving an acknowledgement
from R. The size of the window is determined based on the advertised window sent by R and the
congestion window maintained by S as follows:

maximum_window = minimum(congestion window, advertised window)

effective_window = maximum_window – {last_byte_sent – last_byte_acknowledged}

Initially, the congestion window starts with 1 MSS and doubles for every successful receipt of
acknowledgement for a window of packets transmitted. In the case of non-receipt of
acknowledgement, the congestion window is halved and later increases linearly on successful
receipt of acknowledgement with the following increment:

 increment = MSS * MSS / congestion window

Also, when the connection is initiated, the entire buffer in R is assumed to be free and hence the
initial advertised window would be equal to ‘m’. Eventually, as R receives more data from S, the
size of the buffer decreases and hence the advertised window.

The ith packet received by R is erroneous and hence acknowledgement is not sent by R for the
packet.

Simulate this scenario using socket programming with S sending messages carrying the sequence
number (starting with an initial sequence number (ISN) for the first packet transmitted) and the
byte range of data to be sent in the packet. In return, R sends acknowledgements carrying the next
expected byte and the advertised window for each received packet. On receiving an erroneous
packet, R acknowledges the subsequent packets with the next expected byte as that sent for the
previous packet. These duplicate acknowledgements can be taken as a hint to end the simulation.
Print the messages received on either side. In addition, print the congestion window and effective
window every time they are updated in S.

As a follow-up, simulate fast retransmission on receiving 3 duplicate acknowledgements and
complete the simulation till the advertised window becomes 0 or till the entire data is transmitted,
whichever occurs earlier.

Sample:

Input on S: n = 2500, MSS = 100, ISN = 0

Input on R: m = 2000, k = 500, i = 10

Simulation:

 R sends ACK = -1, AW = 2000
1. S calculates effective_window = 100 and sends SEQ = 0, DATA = 0-99
1. R sends ACK = 100, AW = 1900
2. S calculates effective_window = 200 and sends SEQ = 100, DATA = 100-199

8

3. S sends SEQ = 200, DATA = 200-299
2. R sends ACK = 200, AW = 1800
3. R sends ACK = 300, AW = 1700
4. S calculates effective_window = 400 and sends SEQ = 300, DATA = 300-399
5. S sends SEQ = 400, DATA = 400-499
6. S sends SEQ = 500, DATA = 500-599
7. S sends SEQ = 600, DATA = 600-699
4. R sends ACK = 400, AW = 1600
5. R sends ACK = 500, AW = 1501
6. R sends ACK = 600, AW = 1401
7. R sends ACK = 700, AW = 1301
8. S calculates effective_window = 800 and sends SEQ = 700, DATA = 700-799
9. S sends SEQ = 800, DATA = 800-899
10. S sends SEQ = 900, DATA = 900-999
11. S sends SEQ = 1000, DATA = 1000-1099
12. S sends SEQ = 1100, DATA = 1100-1199
13. S sends SEQ = 1200, DATA = 1200-1299
14. S sends SEQ = 1300, DATA = 1300-1399
15. S sends SEQ = 1400, DATA = 1400-1499
8. R sends ACK = 800, AW = 1201
9. R sends ACK = 900, AW = 1101
11. R sends ACK = 900, AW = 1102
12. R sends ACK = 900, AW = 1102
13. R sends ACK = 900, AW = 1102
14. R sends ACK = 900, AW = 1102
15. R sends ACK = 900, AW = 1102

