i Introduction to Socket Programming

i Why Socket Programming?

= 10 build any network application

= Web browser
= FTP

i Client — Server model

= Server — provider of information
= Client — seeker of information
= Eg. Apache server — web browser

Socket functions for
connection-oriented
communication

TCP Client

socket()

TCP Server

socket()

accept()

|

blocks until connection

Connection from client
establishment |

*<

data (request)

A 4

write()

process request

|

write()
'

data (reply)

i Data structures

Defined by including the <netinet/in.h>
header

struct sockaddr

{

unsigned short sa_family;
// address family, AF_xxx

char sa_data[14];
// 14 bytes of protocol
address

|5

// IPv4 AF_INET sockets:

struct sockaddr_in
{
short sin_family;

// e.g. AF_INET, AF_INET6
unsigned short sin_port;

// e.g. htons(3490)

struct in_addr sin_addr;

// see struct in_addr, below
char sin_zero[8];

// zero this if you want to

|5

struct in_addr

{

unsigned long s_addr;
// load with inet_pton()
7

i Choice of Port number

= Choose a port number that is registered
for general use, from 1024 to 49151

= Do not use ports 1 to 1023. These ports
are reserved for use by the Internet
Assigned Numbers Authority (IANA)

= Avoid using ports 49152 through 65535.
These are dynamic ports that operating
systems use randomly. If you choose one

of these ports, you risk a potential port
conflict

Byte ordering

Byte ordering or Endianess is the attribute of a system which
|nd'i1cate'se '\tvhether integers are stored / represented left to right or
rght to left.

Example 1: short int x = OxAABB (hex)

This can be stored in memory as 2 adjacent bytes as either (Oxaa
Oxbb) or as (Oxbb, Oxaa).

Big Endian:

Byte Value : &OxAAi IOxBBi
Memory L? 1
Little Endian:

ay;t:‘ (\)Ifa;(lue : &0)688] IOx1AAf

All Network data is sent in Big Endian format.

In the networking world we call this representation as Network Byte
Order and native representation on the host as Host Byte Order.,

We convert all data into Network Byte Order before transmission. - -

* Other functions

« Byte Ordering:

Host Byte Order to Network Byte Order:
htons() , htonl()
Network Byte Order to Host Byte Order:
ntohs() , ntohl()

« |P Address format:

Ascii dotted to Binary: inet_aton()
Binary to Ascii dotted: inet_ntoal()

i Socket()

= ints = socket(domain, type, protocol);

where
= S: socket descriptor, an integer (like a file-handle)

=« domain: integer, communication domain
= e.g., AF_INET (IPv4 protocol)
= Note. We'll use AF_INET
= type: communication type
= SOCK_STREAM: reliable, 2-way, connection-based service
= SOCK_DGRAM: unreliable, connectionless
= Note. We'll use SOCK_STREAM

= protocol: We'll set to 0

Bind()

= The protocol address is the combination of either a 32-bit
IPV4 address or a 128-bit IPV6 address, along with a 16-bit
port number

#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *address, int addr_len)

= sockfd: a socket descriptor returned by the socket()
= *address: a pointer to a protocol-specific address.

= addrlen: the size of the socket address structure

= Returns on success: 0, on error: -1

The bind function assigns a local protocol address to a socket.

10

i Listen()

= [he listen function is called only by a TCP server to
converts an unconnected socket into a passive socket.

#include <sys/socket.h>
int listen (int sockfd, int backlog);

= sockfd: a socket descriptor

= backlog: maximum number of connections that the
kernel should queue for this socket

= Returns on success: 0, on error: -1

11

Accept()

= The accept function is called by the TCP server to return
the next completed connection

#include<sys/socket.h>
int accept (int sockfd, struct sockaddr *cliaddr, int *addrlen);

= sockfd: socket descriptor

= *cliaddr: used to return the protocol address of the
connected peer process

= *addrlen: length of the address

= Returns on success: a new (connected)socket descriptor,
on error:-1

12

Connect()

= The connect function is used by a TCP client to establish a
connection with a TCP server

#include<sys/socket.h>

int connect(int sockfd, struct sockaddr *servaddr, int
addrlen);

= sockfd: a socket descriptor
= *servaddr: a pointer to a socket address structure
= addrlen: the size of the socket address structure

= Returns on success: 0, on error: -1
13

i Read()

= The read function is used to receive data from the
specified socket

#include <unistd.h>
int read(int sockfd, const void * buf, int nbytes);

= sockfd: a socket descriptor
= buf; buffer to store the data.
= hbytes: size of the buffer

= Returns: number of bytes read if OK,0 on EOF, -1 on error

14

i Write()

= The write function is used to send the data through the
specified socket

#include <unistd.h>
int write(int sockfd, const void * buf, int nbytes);

= sockfd: a socket descriptor
= buf; buffer to store the data.
= hbytes: size of the buffer

= Returns: number of bytes written if OK,0 on EOF, -1 on
error

15

i Close()

= The close function is used to close a socket and
terminate a connection

#include <unistd.h>
int close (int sockfd);

= sockfd: This socket descriptor is no longer useable

= Returns on success: 0, on error: -1

16

