Naive Bayes Classifier using Gaussian Naiive Bayes Model

1. Aim of the Experiment:

Implement and demonstrate the working of Naive Bayesian classifier using a sample data set.

Build the model to classify a test sample.

Listing 1:
Sample Dataset Used: Table 5.1

Table 5.1 Training Dataset

1. >9 Yes Very good Good Yes
2. >8 No Good Moderate Yes
3. >9 No Average Poor No
4. <8 No Average Good No
5. >8 Yes Good Moderate Yes
6. >9 Yes Good Moderate Yes
7. <8 Yes Good Poor No
8. >9 No Very good Good Yes
9. >8 Yes Good Good Yes
10. >8 Yes Average Good Yes

3. Python Program with Explanation:
1. Import LabelEncoder to normalize labels.

from sklearn.preprocessing import LabelEncoder

2. Import train_test_split function.

from sklearn.model_selection import train_test_split

3. Import Gaussian Classifier from sklearn.naive_bayes.

from sklearn.naive_bayes import GaussianNB

4. Import preprocessing package to use transformer classes.

from sklearn import preprocessing

5. Import classification_report and confusion_matrix from sklearn.metrics to measure the
quality of predictions.

from sklearn.metrics import classification_report, confusion_matrix

6. Create lists, CGPA, Inter, PK, CS and Job.
CGPA=['g9','g8','g9','18','g8",'g9",'18",'g9",'g8','g8']
Inter = ['Y",'N",'N",'N", 'Y 'Y 'Y NG Y'Y
PK = ['+++',"+",'==""==""+""+","+","+++','+','=="]
cs=['6,'™M','P,'G",'M",'M",'P",'G",'G",'G"]
Job = ['Y','Y,NYINYYL Y ING'YL Y, Y]

7. Create labelEncoder le to encode labels with value between 0 and no_of_classes-1.

le = preprocessing.LabelEncoder()

8. Convert non-numeric labels of all features into numbers. Then print and see the encoded
labels.

CGPA_encoded = le.fit_transform(CGPA)

print("CGPA:", CGPA_encoded)

Inter_encoded = le.fit_transform(Inter)

PK_encoded = le.fit_transform(PK)

CS_encoded = le.fit_transform(CS)

label = le.fit_transform(Job)

print("Inter:",Inter_encoded)
print ("PK:",PK_encoded)
print ("CS:",CS_encoded)
print("Job:",label)

9. Create a list/dynamic array called ‘features’.

features =[]

10. Append all the encoded features to the list created.
foriin range(len(CGPA_encoded)):
features.append([CGPA_encoded(i], Inter_encoded[i], PK_encoded][i],
CS_encoded]i]])

11. Split the dataset into training dataset and test dataset by using the function
train_test_split().
X_train,X_test,y_train,y_test=train_test_split(features,label,test_size=0.30,random_

state=2)

12. Create a Gaussian Classifier.

model = GaussianNB()

13. Train the model using the training sets.

model.fit(features, label)

14. After training, use the fitted model to predict a new instance.

y_pred = model.predict(X_test)

15. Generate classification report & confusion matrix to measure the quality of predictions.

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

16. Predict Output.

The non-numerical equivalent of the new instance [2, 0, 2, 0] given is [2:°18, 0:°N”,
2:'==",0:'G’]
print([2,0,2,0])
if model.predict([[2,0,2,0]])==1:
print("Predicted Value:Got JOB",predicted)
else:

print("Didnt get JOB")

The non-numerical equivalent of the new instance [0, 1, 0, 1] given is [0:°g8’, 1:°Y”,
0:4+°, 1:‘M’]
print([0,1,0,1])
if model.predict([[0,1,0,1]])==1:
print("Predicted Value:Got JOB",predicted)
else:

print("Didnt get JOB")

Complete Program:

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB

from sklearn import preprocessing

from sklearn.metrics import classification_report, confusion_matrix

CGPA=['g9','g8','g9",'8','g8",'g9","18','g9'",'g8",'g8']
Inter = ['Y",'N','N","N",'Y","Y",'Y",'N",'Y", 'Y

PK = ["+++","+" ==""==" """ e =]
c¢s=['G''™m,'P,'G,'M",'M",'P",'G",'G",'G']

Job =["Y"'Y,'N','N''Y" 'Y, 'NY 'Y, Y'Y

#creating labelEncoder

le = preprocessing.LabelEncoder()

Converting string labels into numbers.
CGPA_encoded = le.fit_transform(CGPA)
print("CGPA:", CGPA_encoded)

Inter_encoded = le.fit_transform(Inter)
PK_encoded = le.fit_transform(PK)
CS_encoded = le.fit_transform(CS)
label = le.fit_transform(Job)
print("Inter:",Inter_encoded)

print ("PK:",PK_encoded)

print ("CS:",CS_encoded)
print("Job:",label)

features =]
foriin range(len(CGPA_encoded)):
features.append([CGPA_encoded(i], Inter_encoded|i], PK_encoded]i], CS_encoded|il])

X_train,X_test,y_train,y_test=train_test_split(features,label,test_size=0.30,random_state=2)
#Create a Gaussian Classifier

model = GaussianNB()

Train the model using the training sets

model.fit(features,label)

#Predict Output

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

print([2,0,2,0])
if model.predict([[2,0,2,0]])==1:
print("Predicted Value:Got JOB")

else:

print("Predicted Value:Didn't get JOB")

print([0,1,0,1])

if model.predict([[0,1,0,1]])==1:
print("Predicted Value:Got JOB")

else:

print("Predicted Value:Didn't get JOB")

Output:
Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:37:02) [MSC v.1924 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

=== RESTART: C:\Users\ADMIN\pythonpgms\final\jnf naive bayes sklearn test.py ===
CGPA:[1012012100]

Inter:[1000111011]

PK:[1022000102]

CS:[0120112000]

Job:[1100110111]

precision recall fl-score support

1 1.00 1.00 1.00 3

accuracy 1.00 3
macro avg 1.00 1.00 1.00 3
weightedavg 1.00 1.00 1.00 3

(311

[2,0,2,0]

Predicted Value:Didn't get JOB
[0,1,0,1]

Predicted Value:Got JOB

>>>

Screenshot of the Output:

{'| File Edit Format Run Options Window Help
sklearn import preprocessing
sklearn.metrics i

preprocessing.LabelEncoder (
{# Converting string labels into numbers.
= le.fit_transform(CGPA

1", CGPA_encoded

Inter_encoded = le.fit_transform(Inter

PH_encoded
C5_encoded

le.fit_transform(BK
le.fit_transform(CS

q
label = le.fit_transform(Job)

,Inter_sncodsd)

PK_sncoded)
,CS_encoded;

\princt ", label
features n
for 1 in range (len(CGPR_encoded)) :

q features.append ([CGPR_encoded[i), Inter_encoded[i], PK encoded[i], CS5_en

{X _train,X test,y train,v test=train test_split(features,label,test_size=0.30,ran

classification report, confusion matrix

'ype "help", "copyright”, "credits" or "license()" for more information

RESTART: C:\Users\ADMIN\pythonpgms\final\jnf naive bayes sklearn test.py ===
E [Lo12012100]
muer: [10060111611]

[L022000102]
[01201120600]
fob: [1100110111]

precision recall fl-score support

1 1.00 1.00 1.00 3

accuracy 1.00 3

macro avg 1.00 1.00 1.00 3

jeighted avg 1.00 1.00 1.00 3

311

2, 0,2, 01

‘redicted Value:Didn't get JOB
9 1,0, 11

edicted Value:Got JOB

Ln:54 Co ™~

Listing 2:
Program Code:
from sklearn import datasets

from sklearn import metrics

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.model_selection import

Load the Iris dataset

dataset = datasets.load_iris()

Fit a Naive Bayes model to the data

train_test_split

model = GaussianNB()

X_train,X_test,y_train,y_test=train_test_split(dataset.data,dataset.target,test_size=0.30,random_sta
te=2)

model.fit(X_train, y_train)

print(model)

Make predictions
y_expected =y_test

y_predicted = model.predict(X_test)

Evaluate the model and print the classification report, Confusion Matrix
print(metrics.classification_report(y_expected, y_predicted))

print(metrics.confusion_matrix(y_expected, y_predicted))

Screen Shot of the Program:

File Edit Format Run Options Window Help

sklearn datasets
sklearn metrics
sklearn.naive bayes GaussianNB
sklearn.metrics classification report, confusion Matrix
sklearn.model_selection train_test_split

load the iris datassts

dataset = datassts.load iris(

fit a Naive Bayes model to the data

model = GaussianNB()

X_train,X_test,y train,y test=train_test_split(dataset.data,dataset.target,test_size=0.30,random state=2)
model.fit (X_tzain, y_train]

print (model)

make predictions

y_expected = y_test

¥_predicted = model.predict (X_test

summarize the fit of the model
print(metrics.classification_report(y_expected, y predicted))
print (metrics.confusion matrix(y_expected, y_predicted)

GaussianNB()

precision recall fl-score support

0 100 1.00 1.00 17

1 1.00 093 0.97 15

2 093 1.00 0.96 13

accuracy 0.98 45
macroavg 098 0.98 0.98 45

weightedavg 0.98 098 0.98 45

[[17 0 0]
[014 1]
[0 013]]

>>>

Screen Shot of the Output:

Type "help", "copyright", "credits" or "license()" for more information.

======= RESTART: C:/Users/ADMIN/pythonpgms/final/jnf naive bayes iris.py =——====
GaussianNB ()

precision recall fl-score support

o 1.00 1.00 1.00 17

1 1.00 0.93 0.97 15

2 0.93 1.00 0.%6 13

accuracy 0.%8 45

macro avg 0.38 0.98 0.38 45

weighted avg 0.38 0.98 0.38 45
(17 o ol
[014 11

[0 01311

