

Naive Bayes Classifier using Gaussian Naiive Bayes Model

1. Aim of the Experiment:

Implement and demonstrate the working of Naive Bayesian classifier using a sample data set.

Build the model to classify a test sample.

Listing 1:

Sample Dataset Used: Table 5.1

Table 5.1 Training Dataset

S.No

.

CGPA Interactiveness Practical

Knowledge

Communication

Skills

Job Offer

1. ≥9 Yes Very good Good Yes

2. ≥8 No Good Moderate Yes

3. ≥9 No Average Poor No

4. <8 No Average Good No

5. ≥8 Yes Good Moderate Yes

6. ≥9 Yes Good Moderate Yes

7. <8 Yes Good Poor No

8. ≥9 No Very good Good Yes

9. ≥8 Yes Good Good Yes

10. ≥8 Yes Average Good Yes

3. Python Program with Explanation:

1. Import LabelEncoder to normalize labels.

from sklearn.preprocessing import LabelEncoder

2. Import train_test_split function.

from sklearn.model_selection import train_test_split

3. Import Gaussian Classifier from sklearn.naive_bayes.

from sklearn.naive_bayes import GaussianNB

4. Import preprocessing package to use transformer classes.

from sklearn import preprocessing

5. Import classification_report and confusion_matrix from sklearn.metrics to measure the

 quality of predictions.

from sklearn.metrics import classification_report, confusion_matrix

6. Create lists, CGPA, Inter, PK, CS and Job.

CGPA = ['g9','g8','g9','l8','g8','g9','l8','g9','g8','g8']

Inter = ['Y','N','N','N','Y','Y','Y','N','Y','Y']

PK = ['+++','+','==','==','+','+','+','+++','+','==']

CS = ['G','M','P','G','M','M','P','G','G','G']

Job = ['Y','Y','N','N','Y','Y','N','Y','Y','Y']

7. Create labelEncoder le to encode labels with value between 0 and no_of_classes-1.

le = preprocessing.LabelEncoder()

8. Convert non-numeric labels of all features into numbers. Then print and see the encoded

labels.

CGPA_encoded = le.fit_transform(CGPA)

print("CGPA:", CGPA_encoded)

Inter_encoded = le.fit_transform(Inter)

PK_encoded = le.fit_transform(PK)

CS_encoded = le.fit_transform(CS)

label = le.fit_transform(Job)

print("Inter:",Inter_encoded)

 print ("PK:",PK_encoded)

print ("CS:",CS_encoded)

print("Job:",label)

9. Create a list/dynamic array called ‘features’.

features = []

10. Append all the encoded features to the list created.

for i in range(len(CGPA_encoded)):

features.append([CGPA_encoded[i], Inter_encoded[i], PK_encoded[i],

CS_encoded[i]])

11. Split the dataset into training dataset and test dataset by using the function

train_test_split().

X_train,X_test,y_train,y_test=train_test_split(features,label,test_size=0.30,random_

state=2)

12. Create a Gaussian Classifier.

model = GaussianNB()

13. Train the model using the training sets.

model.fit(features, label)

14. After training, use the fitted model to predict a new instance.

y_pred = model.predict(X_test)

15. Generate classification report & confusion matrix to measure the quality of predictions.

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

16. Predict Output.

The non-numerical equivalent of the new instance [2, 0, 2, 0] given is [2:‘l8’, 0:‘N’,

2:‘==’, 0:‘G’]

print([2,0,2,0])

if model.predict([[2,0,2,0]])==1:

 print("Predicted Value:Got JOB",predicted)

else:

 print("Didnt get JOB")

 # The non-numerical equivalent of the new instance [0, 1, 0, 1] given is [0:‘g8’, 1:‘Y’,

0:‘+’, 1:‘M’]

print([0,1,0,1])

if model.predict([[0,1,0,1]])==1:

 print("Predicted Value:Got JOB",predicted)

else:

 print("Didnt get JOB")

Complete Program:

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn import preprocessing

from sklearn.metrics import classification_report, confusion_matrix

CGPA = ['g9','g8','g9','l8','g8','g9','l8','g9','g8','g8']

Inter = ['Y','N','N','N','Y','Y','Y','N','Y','Y']

PK = ['+++','+','==','==','+','+','+','+++','+','==']

CS = ['G','M','P','G','M','M','P','G','G','G']

Job = ['Y','Y','N','N','Y','Y','N','Y','Y','Y']

#creating labelEncoder

le = preprocessing.LabelEncoder()

Converting string labels into numbers.

CGPA_encoded = le.fit_transform(CGPA)

print("CGPA:", CGPA_encoded)

Inter_encoded = le.fit_transform(Inter)

PK_encoded = le.fit_transform(PK)

CS_encoded = le.fit_transform(CS)

label = le.fit_transform(Job)

print("Inter:",Inter_encoded)

print ("PK:",PK_encoded)

print ("CS:",CS_encoded)

print("Job:",label)

features = []

for i in range(len(CGPA_encoded)):

 features.append([CGPA_encoded[i], Inter_encoded[i], PK_encoded[i], CS_encoded[i]])

X_train,X_test,y_train,y_test=train_test_split(features,label,test_size=0.30,random_state=2)

#Create a Gaussian Classifier

model = GaussianNB()

Train the model using the training sets

model.fit(features,label)

#Predict Output

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

print([2,0,2,0])

if model.predict([[2,0,2,0]])==1:

 print("Predicted Value:Got JOB")

else:

 print("Predicted Value:Didn't get JOB")

print([0,1,0,1])

if model.predict([[0,1,0,1]])==1:

 print("Predicted Value:Got JOB")

else:

 print("Predicted Value:Didn't get JOB")

Output:

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:37:02) [MSC v.1924 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

=== RESTART: C:\Users\ADMIN\pythonpgms\final\jnf naive bayes sklearn test.py ===

CGPA: [1 0 1 2 0 1 2 1 0 0]

Inter: [1 0 0 0 1 1 1 0 1 1]

PK: [1 0 2 2 0 0 0 1 0 2]

CS: [0 1 2 0 1 1 2 0 0 0]

Job: [1 1 0 0 1 1 0 1 1 1]

 precision recall f1-score support

 1 1.00 1.00 1.00 3

 accuracy 1.00 3

 macro avg 1.00 1.00 1.00 3

weighted avg 1.00 1.00 1.00 3

[[3]]

[2, 0, 2, 0]

Predicted Value:Didn't get JOB

[0, 1, 0, 1]

Predicted Value:Got JOB

>>>

Screenshot of the Output:

Listing 2:

Program Code:

from sklearn import datasets

from sklearn import metrics

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.model_selection import train_test_split

Load the Iris dataset

dataset = datasets.load_iris()

Fit a Naive Bayes model to the data

model = GaussianNB()

X_train,X_test,y_train,y_test=train_test_split(dataset.data,dataset.target,test_size=0.30,random_sta

te=2)

model.fit(X_train, y_train)

print(model)

Make predictions

y_expected = y_test

y_predicted = model.predict(X_test)

Evaluate the model and print the classification report, Confusion Matrix

print(metrics.classification_report(y_expected, y_predicted))

print(metrics.confusion_matrix(y_expected, y_predicted))

Screen Shot of the Program:

Output:

======= RESTART: naive bayes iris.py ======

GaussianNB()

 precision recall f1-score support

 0 1.00 1.00 1.00 17

 1 1.00 0.93 0.97 15

 2 0.93 1.00 0.96 13

 accuracy 0.98 45

 macro avg 0.98 0.98 0.98 45

weighted avg 0.98 0.98 0.98 45

[[17 0 0]

 [0 14 1]

 [0 0 13]]

>>>

Screen Shot of the Output:

