
Chapter 11

Simple Linear Regression Tutorial

Linear regression is a very simple method but has proven to be very useful for a large number
of situations. In this chapter you will discover exactly how linear regression works step-by-step.
After reading this chapter you will know:

How to calculate a simple linear regression step-by-step.

How to make predictions on new data using your model.

A shortcut that greatly simplies the calculation.

Let’s get started.

11.1 Tutorial Data Set

The data set we are using is completely made up. Below is the raw data.

x y

1 1

2 3

4 3

3 2

5 5

Listing 11.1: Tutorial Data Set.

The attribute x is the input variable and y is the output variable that we are trying to
predict. If we got more data, we would only have x values and we would be interested in
predicting y values. Below is a simple scatter plot of x versus y.

40



11.2. Simple Linear Regression 41

Figure 11.1: Simple Linear Regression Dataset.

We can see the relationship between x and y looks kind-of linear. As in, we could probably
draw a line somewhere diagonally from the bottom left of the plot to the top right to generally
describe the relationship between the data. This is a good indication that using linear regression
might be appropriate for this little dataset.

11.2 Simple Linear Regression

When we have a single input attribute (x) and we want to use linear regression, this is called
simple linear regression. If we had multiple input attributes (e.g. X1, X2, X3, etc.) This would
be called multiple linear regression. The procedure for linear regression is dierent and simpler
than that for multiple linear regression, so it is a good place to start. In this section we are
going to create a simple linear regression model from our training data, then make predictions
for our training data to get an idea of how well the model learned the relationship in the data.
With simple linear regression we want to model our data as follows:

y = B0 + B1× x (11.1)

This is a line where y is the output variable we want to predict, x is the input variable
we know and B0 and B1 are coecients that we need to estimate that move the line around.
Technically, B0 is called the intercept because it determines where the line intercepts the y-axis.
In machine learning we can call this the bias, because it is added to oset all predictions that
we make. The B1 term is called the slope because it denes the slope of the line or how x
translates into a y value before we add our bias.

The goal is to nd the best estimates for the coecients to minimize the errors in predicting
y from x. Simple regression is great, because rather than having to search for values by trial
and error or calculate them analytically using more advanced linear algebra, we can estimate



11.2. Simple Linear Regression 42

them directly from our data. We can start o by estimating the value for B1 as:

B1 =

n
i=1(xi −mean(x))× (yi −mean(y))n

i=1(xi −mean(x))2
(11.2)

Where mean() is the average value for the variable in our dataset. The xi and yi refer to
the fact that we need to repeat these calculations across all values in our dataset and i refers to
the i’th value of x or y. We can calculate B0 using B1 and some statistics from our dataset, as
follows:

B0 = mean(y)− B1×mean(x) (11.3)

Not that bad right? We can calculate these right in our spreadsheet.

11.2.1 Estimating The Slope (B1)

Let’s start with the top part of the equation, the numerator. First we need to calculate the
mean value of x and y. The mean is calculated as:

1

n
×

n∑

i=1

xi (11.4)

Where n is the number of values (5 in this case). You can use the AVERAGE() function in
your spreadsheet. Let’s calculate the mean value of our x and y variables:

mean(x) = 3

mean(y) = 2.8
(11.5)

Now we need to calculate the error of each variable from the mean. Let’s do this with x rst:

x mean(x) x - mean(x)

1 3 -2

2 -1

4 1

3 0

5 2

Listing 11.2: Residual of each x value from the mean.

Now let’s do that for the y variable.

y mean(y) y - mean(y)

1 2.8 -1.8

3 0.2

3 0.2

2 -0.8

5 2.2

Listing 11.3: Residual of each y value from the mean.

We now have the parts for calculating the numerator. All we need to do is multiple the error
for each x with the error for each y and calculate the sum of these multiplications.



11.3. Making Predictions 43

x - mean(x) y - mean(y) Multiplication

-2 -1.8 3.6

-1 0.2 -0.2

1 0.2 0.2

0 -0.8 0

2 2.2 4.4

Listing 11.4: Multiplication of the x and y residuals from their means.

Summing the nal column we have calculated our numerator as 8. Now we need to calculate
the bottom part of the equation for calculating B1, or the denominator. This is calculated as
the sum of the squared dierences of each x value from the mean. We have already calculated
the dierence of each x value from the mean, all we need to do is square each value and calculate
the sum.

x - mean(x) squared

-2 4

-1 1

1 1

0 0

2 4

Listing 11.5: Squared residual of each x value from the mean.

Calculating the sum of these squared values gives us a denominator of 10. Now we can
calculate the value of our slope.

B1 =
8

10
B1 = 0.8

(11.6)

11.2.2 Estimating The Intercept (B0)

This is much easier as we already know the values of all of the terms involved.

B0 = mean(y)− B1×mean(x)

B0 = 2.8− 0.8× 3

B0 = 0.4

(11.7)

11.3 Making Predictions

We now have the coecients for our simple linear regression equation.

y = B0 + B1× x

y = 0.4 + 0.8× x
(11.8)

Let’s try out the model by making predictions for our training data.

x Predicted Y

1 1.2

2 2

4 3.6



11.4. Estimating Error 44

3 2.8

5 4.4

Listing 11.6: Predicted y value for each x input value.

We can plot these predictions as a line with our data. This gives us a visual idea of how
well the line models our data.

Figure 11.2: Simple Linear Regression Predictions.

11.4 Estimating Error

We can calculate an error score for our predictions called the Root Mean Squared Error or
RMSE.

RMSE =

n
i=1(pi − yi)2

n
(11.9)

Where you can use SQRT() function in your spreadsheet to calculate the square root, p is the
predicted value and y is the actual value, i is the index for a specic instance, because we must
calculate the error across all predicted values. First we must calculate the dierence between
each model prediction and the actual y values.

Predicted y Predicted - y

1.2 1 0.2

2 3 -1

3.6 3 0.6

2.8 2 0.8

4.4 5 -0.6

Listing 11.7: Error for predicted values.

We can easily calculate the square of each of these error values (error × error or error2).



11.5. Shortcut 45

Predicted - y squared error

0.2 0.04

-1 1

0.6 0.36

0.8 0.64

-0.6 0.36

Listing 11.8: Squared error for predicted values.

The sum of these errors is 2.4 units, dividing by 5 and taking the square root gives us:

RMSE = 0.692820323 (11.10)

Or, each prediction is on average wrong by about 0.692 units.

11.5 Shortcut

Before we wrap up I want to show you a quick shortcut for calculating the coecients. Simple
linear regression is the simplest form of regression and the most studied. There is a shortcut
that you can use to quickly estimate the values for B0 and B1. Really it is a shortcut for
calculating B1. The calculation of B1 can be re-written as:

B1 = corr(x, y)× stdev(y)

stdev(x)
(11.11)

Where corr(x, y) is the correlation between x and y an stdev() is the calculation of the
standard deviation for a variable. Correlation (also known as Pearson’s correlation coecient)
is a measure of how related two variables are in the range of -1 to 1. A value of 1 indicates that
the two variables are perfectly positively correlated, they both move in the same direction and
a value of -1 indicates that they are perfectly negatively correlated, when one moves the other
moves in the other direction.

Standard deviation is a measure of how much on average the data is spread out from the
mean. You can use the function PEARSON() in your spreadsheet to calculate the correlation of x
and y as 0.852 (highly correlated) and the function STDEV() to calculate the standard deviation
of x as 1.5811 and y as 1.4832. Plugging these values in we have:

B1 = 0.852802865× 1.483239697

1.58113883
B1 = 0.8

(11.12)

11.6 Summary

In this chapter you discovered how to implement simple linear regression step-by-step in a
spreadsheet. You learned:

How to estimate the coecients for a simple linear regression model from your training
data.

How to make predictions using your learned model.



11.6. Summary 46

You now know how to implement the simple linear regression algorithm from scratch. In
the next section, you will discover how you can implement linear regression from scratch using
stochastic gradient descent.



Chapter 12

Linear Regression Tutorial Using
Gradient Descent

Stochastic Gradient Descent is an important and widely used algorithm in machine learning. In
this chapter you will discover how to use Stochastic Gradient Descent to learn the coecients
for a simple linear regression model by minimizing the error on a training dataset. After reading
this chapter you will know:

How stochastic gradient descent can be used to search for the coecients of a regression
model.

How repeated iterations of gradient descent can create an accurate regression model.

Let’s get started.

12.1 Tutorial Data Set

The dataset is the same as that used in the previous chapter on Simple Linear Regression. It is
listed again for completeness.

x y

1 1

2 3

4 3

3 2

5 5

Listing 12.1: Tutorial Data Set.

12.2 Stochastic Gradient Descent

Gradient Descent is the process of minimizing a function by following the gradients of the cost
function. This involves knowing the form of the cost as well as the derivative so that from a
given point you know the gradient and can move in that direction, e.g. downhill towards the
minimum value. In machine learning we can use a technique that evaluates and update the

47



12.3. Simple Linear Regression with Stochastic Gradient Descent 48

coecients every iteration called stochastic gradient descent to minimize the error of a model
on our training data.

The way this optimization algorithm works is that each training instance is shown to the
model one at a time. The model makes a prediction for a training instance, the error is calculated
and the model is updated in order to reduce the error for the next prediction. This procedure
can be used to nd the set of coecients in a model that result in the smallest error for the
model on the training data. Each iteration, the coecients called weights (w) in machine
learning language are updated using the equation:

w = w − alpha× delta (12.1)

Where w is the coecient or weight being optimized, alpha is a learning rate that you must
congure (e.g. 0.1) and delta is the error for the model on the training data attributed to the
weight.

12.3 Simple Linear Regression with Stochastic Gradient

Descent

The coecients used in simple linear regression can be found using stochastic gradient descent.
Stochastic gradient descent is not used to calculate the coecients for linear regression in
practice unless the dataset prevents traditional Ordinary Least Squares being used (e.g. a
very large dataset). Nevertheless, linear regression does provide a useful exercise for practicing
stochastic gradient descent which is an important algorithm used for minimizing cost functions
by machine learning algorithms. As stated in the previous chapter, our linear regression model
is dened as follows:

y = B0 + B1× x (12.2)

12.3.1 Gradient Descent Iteration #1

Let’s start with values of 0.0 for both coecients.

B0 = 0.0

B1 = 0.0

y = 0.0 + 0.0× x

(12.3)

We can calculate the error for a prediction as follows:

error = p(i)− y(i) (12.4)

Where p(i) is the prediction for the i’th instance in our dataset and y(i) is the i’th output
variable for the instance in the dataset. We can now calculate the predicted value for y using
our starting point coecients for the rst training instance: x = 1, y = 1.

p(i) = 0.0 + 0.0× 1

p(i) = 0
(12.5)



12.3. Simple Linear Regression with Stochastic Gradient Descent 49

Using the predicted output, we can calculate our error:

error = (0− 1)

error = −1
(12.6)

We can now use this error in our equation for gradient descent to update the weights. We will
start with updating the intercept rst, because it is easier. We can say that B0 is accountable
for all of the error. This is to say that updating the weight will use just the error as the gradient.
We can calculate the update for the B0 coecient as follows:

B0(t+ 1) = B0(t)− alpha× error (12.7)

Where B0(t+ 1) is the updated version of the coecient we will use on the next training
instance, B0(t) is the current value for B0, alpha is our learning rate and error is the error we
calculate for the training instance. Let’s use a small learning rate of 0.01 and plug the values
into the equation to work out what the new and slightly optimized value of B0 will be:

B0(t+ 1) = 0.0− 0.01×−1.0

B0(t+ 1) = 0.01
(12.8)

Now, let’s look at updating the value for B1. We use the same equation with one small
change. The error is ltered by the input that caused it. We can update B1 using the equation:

B1(t+ 1) = B1(t)− alpha× error × x (12.9)

Where B1(t + 1) is the update coecient, B1(t) is the current version of the coecient,
alpha is the same learning rate described above, error is the same error calculated above and x
is the input value. We can plug in our numbers into the equation and calculate the updated
value for B1:

B1(t+ 1) = 0.0− 0.01×−1× 1

B1(t+ 1) = 0.01
(12.10)

We have just nished the rst iteration of gradient descent and we have updated our weights
to be B0 = 0.01 and B1 = 0.01. This process must be repeated for the remaining 4 instances
from our dataset. One pass through the training dataset is called an epoch.

12.3.2 Gradient Descent Iteration #20

Let’s jump ahead. You can repeat this process another 19 times. This is 4 complete epochs of
the training data being exposed to the model and updating the coecients. Here is a list of all
of the values for the coecients over the 20 iterations that you should see:

B0 B1

0.01 0.01

0.0397 0.0694

0.066527 0.176708

0.08056049 0.21880847

0.118814462 0.410078328

0.123525534 0.4147894

0.14399449 0.455727313

0.154325453 0.497051164



12.3. Simple Linear Regression with Stochastic Gradient Descent 50

0.157870663 0.507686795

0.180907617 0.622871563

0.182869825 0.624833772

0.198544452 0.656183024

0.200311686 0.663251962

0.19841101 0.657549935

0.213549404 0.733241901

0.21408149 0.733773988

0.227265196 0.760141398

0.224586888 0.749428167

0.219858174 0.735242025

0.230897491 0.79043861

Listing 12.2: Simple linear regression coecients after 20 iterations.

I think that 20 iterations or 4 epochs is a nice round number and a good place to stop.
You could keep going if you wanted. Your values should match closely, but may have minor
dierences due to dierent spreadsheet programs and dierent precisions. You can plug each
pair of coecients back into the simple linear regression equation. This is useful because we can
calculate a prediction for each training instance and in turn calculate the error.

Below is a plot of the error for each set of coecients as the learning process unfolded. This
is a useful graph as it shows us that error was decreasing with each iteration and starting to
bounce around a bit towards the end.

Figure 12.1: Simple Linear Regression Performance Versus Iteration.

You can see that our nal coecients have the values B0 = 0.230897491 and B1 = 0.79043861.
Let’s plug them into our simple linear Regression model and make a prediction for each point
in our training dataset.

x Prediction

1 1.021336101

2 1.811774711

4 3.392651932

3 2.602213322



12.4. Summary 51

5 4.183090542

Listing 12.3: Simple linear regression predictions for the training dataset.

We can plot our dataset again with these predictions overlaid (x vs y and x vs prediction).
Drawing a line through the 5 predictions gives us an idea of how well the model ts the training
data.

Figure 12.2: Simple Linear Regression Predictions.

We can calculate the RMSE for these predictions as we did in the previous chapter. The
result comes out to be RMSE = 0.720626401. This is very close to the RMSE achieved in
the previous section, but not the same. This is because RMSE is an optimization procedure
and must discover a good solution which may not be the same set of coecients calculated
analytically. Gradient descent should only be used when analytical methods cannot be used,
such as having very large amounts of data.

12.4 Summary

In this chapter you discovered the simple linear regression model and how to train it using
stochastic gradient descent. You learned:

How to work through the application of the update rule for gradient descent.

How to make predictions using a learned linear regression model.

You now know how to implement linear regression using stochastic gradient descent. In the
next chapter you will discover the logistic regression algorithm for binary classication.



Chapter 14

Logistic Regression Tutorial

Logistic regression is one of the most popular machine learning algorithms for binary classication.
This is because it is a simple algorithm that performs very well on a wide range of problems. In
this chapter you are going to discover the logistic regression algorithm for binary classication,
step-by-step. After reading this chapter you will know:

How to calculate the logistic function.

How to learn the coecients for a logistic regression model using stochastic gradient
descent.

How to make predictions using a logistic regression model.

Let’s get started.

14.1 Tutorial Dataset

In this tutorial we will use a contrived dataset. This dataset has two input variables (X1 and
X2) and one output variable (Y ). The input variables are real-valued random numbers drawn
from a Gaussian distribution. The output variable has two values, making the problem a binary
classication problem. The raw data is listed below.

X1 X2 Y

2.7810836 2.550537003 0

1.465489372 2.362125076 0

3.396561688 4.400293529 0

1.38807019 1.850220317 0

3.06407232 3.005305973 0

7.627531214 2.759262235 1

5.332441248 2.088626775 1

6.922596716 1.77106367 1

8.675418651 -0.242068655 1

7.673756466 3.508563011 1

Listing 14.1: Tutorial Data Set.

Below is a plot of the dataset. You can see that it is completely contrived and that we can
easily draw a line to separate the classes. This is exactly what we are going to do with the
logistic regression model.

57



14.2. Logistic Regression Model 58

Figure 14.1: Logistic Regression Dataset.

14.2 Logistic Regression Model

The logistic regression model takes real-valued inputs and makes a prediction as to the probability
of the input belonging to the default class (class 0). If the probability is greater than 0.5 we can
take the output as a prediction for the default class (class 0), otherwise the prediction is for
the other class (class 1). For this dataset, the logistic regression has three coecients just like
linear regression, for example:

output = B0 + B1×X1 + B2×X2 (14.1)

The job of the learning algorithm will be to discover the best values for the coecients (B0,
B1 and B2) based on the training data. Unlike linear regression, the output is transformed into
a probability using the logistic function:

p(class = 0) =
1

1 + e−output
(14.2)

In your spreadsheet this would be written as:

p(class = 0) =
1

1 + EXP (−output)
(14.3)

14.3 Logistic Regression by Stochastic Gradient Descent

We can estimate the values of the coecients using stochastic gradient descent. We can apply
stochastic gradient descent to the problem of nding the coecients for the logistic regression
model.



14.3. Logistic Regression by Stochastic Gradient Descent 59

14.3.1 Calculate Prediction

Let’s start o by assigning 0.0 to each coecient and calculating the probability of the rst
training instance that belongs to class 0.

B0 = 0.0

B1 = 0.0

B2 = 0.0

(14.4)

The rst training instance is: X1 = 2.7810836, X2 = 2.550537003, Y = 0. Using the above
equation we can plug in all of these numbers and calculate a prediction:

prediction =
1

1 + e−(B0+B1×X1+B2×X2)

prediction =
1

1 + e−(0.0+0.0×2.7810836+0.0×2.550537003)

prediction = 0.5

(14.5)

14.3.2 Calculate New Coecients

We can calculate the new coecient values using a simple update equation.

b = b+ alpha× (y − prediction)× prediction× (1− prediction)× x (14.6)

Where b is the coecient we are updating and prediction is the output of making a prediction
using the model. Alpha is a parameter that you must specify at the beginning of the training
run. This is the learning rate and controls how much the coecients (and therefore the model)
changes or learns each time it is updated. Larger learning rates are used in online learning
(when we update the model for each training instance). Good values might be in the range 0.1
to 0.3. Let’s use a value of 0.3.

You will notice that the last term in the equation is x, this is the input value for the
coecient. You will notice that the B0 does not have an input. This coecient is often called
the bias or the intercept and we can assume it always has an input value of 1.0. This assumption
can help when implementing the algorithm using vectors or arrays. Let’s update the coecients
using the prediction (0.5) and coecient values (0.0) from the previous section.

B0 = B0 + 0.3× (0− 0.5)× 0.5× (1− 0.5)× 1.0

B1 = B1 + 0.3× (0− 0.5)× 0.5× (1− 0.5)× 2.7810836

B2 = B2 + 0.3× (0− 0.5)× 0.5× (1− 0.5)× 2.550537003

(14.7)

or

B0 = −0.0375

B1 = −0.104290635

B2 = −0.095645138

(14.8)



14.3. Logistic Regression by Stochastic Gradient Descent 60

14.3.3 Repeat the Process

We can repeat this process and update the model for each training instance in the dataset. A
single iteration through the training dataset is called an epoch. It is common to repeat the
stochastic gradient descent procedure for a xed number of epochs. At the end of epoch you
can calculate error values for the model. Because this is a classication problem, it would be
nice to get an idea of how accurate the model is at each iteration. The graph below show a plot
of accuracy of the model over 10 epochs.

Figure 14.2: Logistic Regression with Gradient Descent Accuracy versus Iteration.

You can see that the model very quickly achieves 100% accuracy on the training dataset.
The coecients calculated after 10 epochs of stochastic gradient descent are:

B0 = −0.406605464

B1 = 0.852573316

B2 = −1.104746259

(14.9)

14.3.4 Make Predictions

Now that we have trained the model, we can use it to make predictions. We can make predictions
on the training dataset, but this could just as easily be new data. Using the coecients above
learned after 10 epochs, we can calculate output values for each training instance:

X1 X2 Prediction

2.7810836 2.550537003 0.298756986

1.465489372 2.362125076 0.145951056

3.396561688 4.400293529 0.085333265

1.38807019 1.850220317 0.219737314

3.06407232 3.005305973 0.247059

7.627531214 2.759262235 0.954702135

5.332441248 2.088626775 0.862034191

6.922596716 1.77106367 0.971772905



14.4. Summary 61

8.675418651 -0.242068655 0.999295452

7.673756466 3.508563011 0.905489323

Listing 14.2: Raw Logistic Regression Predictions.

These are the probabilities of each instance belonging to Y = 0. We can convert these into
crisp class values using:

prediction = IF (output < 0.5) Then 0 Else 1 (14.10)

With this simple procedure we can convert all of the outputs to class values:

Prediction Crisp

0.298756986 0

0.145951056 0

0.085333265 0

0.219737314 0

0.247059 0

0.954702135 1

0.862034191 1

0.971772905 1

0.999295452 1

0.905489323 1

Listing 14.3: Crisp Logistic Regression Predictions.

Finally, we can calculate the accuracy for the model on the training dataset:

accuracy =
CorrectPredictions

TotalPredictions
× 100

accuracy =
10

10
× 100

accuracy = 100%

(14.11)

14.4 Summary

In this chapter you discovered how you can implement logistic regression from scratch, step-by-
step. You learned:

How to calculate the logistic function.

How to learn the coecients for a logistic regression model using stochastic gradient
descent.

How to make predictions using a logistic regression model.

You now know how to implement logistic regression from scratch using stochastic gradient
descent. In the next chapter you will discover the linear discriminant analysis algorithm for
classication.


