Introduction

If a dataset do not have any labels associated with it, then unsupervised algorithms are used to
find some structure in it. These structures can be different types of data pattern or group of data.
K-Means clustering is most commonly used unsupervised learning algorithm to find groups in
unlabeled data. Here K represents the number of groups or clusters and the process of creating
these groups is known as ‘clustering’, that why the name K-means clustering.

Uses

« Search engine: Search engine, groups results together using clustering algorithm

o Customer segmentation: K-mean clustering can be used to create customer clusters
based on demographic information, geographical information and behavioral data.

e Social network analysis: To find groups of people with specific interest to direct the
personalized ads.

« Data center: To organize the computer clusters in data center.

« Inventory management: Create inventory clusters based on sales number and
manufacturing capacity

Inner Working of K-Means Clustering

K-means is often referred to as Lloyd’s algorithm. It is one of the most popular clustering
algorithm. Refer below plot where there are two clusters (K=2) one is of red data points and
another one of green data points.

A
X2
[
I
eaoo @ ©
o o o © o
Qoﬂaa 00 00
@ (% o O
00.0‘3 °.o
000 0 O 0
© 0 o © 00
00 o 9o
[x)
»

x1

So how does K-Means algorithm find the clusters of the data points without any label? Below
steps will explain the inner working of K-Means algorithm.

o First step is to finalize the number of clusters you want to identify in your data. This is
the "K" in K-means clustering.

« Now randomly initialize the points equal to the number of clusters K. 'Cluster Centroid' is
the terminology used to refer these points.

« Note that centroid means center point of given dataset, but initially these points are at
random location, but at the end when K-Means algorithm will converge they will be at
the center of their respective cluster.

e Once cluster centroids are defined, K-means algorithm will go through each data point
from given data and depending on that points closeness to cluster centroid, it will assign
the data point to the cluster centroid. This is called as 'Assignment Step'.

e Inorder to move the cluster centroids from random location to their respective group, K-
means algorithm will find the mean of each data point assigned to the cluster centroid and
move the respective centroid to the mean value location. This is called as 'Move Centroid
Step'

« Note that during 'Move Centroid Step' data points can get reassigned from one cluster to
another as centroid position change.

o Now repeat the assignment and move centroid steps till cluster centroid position don't
change. K-means algorithm will converge when we get the unchanged position of cluster
centroids.

e Once K-means algorithm is converged, data point assigned to respective centroid will
represent the respective cluster.

« During cluster assignment step if we found a centroid who has no data point associated
with it, then it's better to remove it.

Choose No of
clusters K

!

Randomly initialize
cluster centroids

!

Assignment step |---eeeee-

v

Repeat until convergence

AR

---------- Move centroid step je---------:

Convergence

Final cluster and
cluster centroid

Since we have to randomly pick the cluster centroids, it's initialization may affect the final
outcome of the clustering. In case our initialization is not correct, then K-Means algorithm may
form a cluster with few points only. Such situation is referred as 'centroid random initialization
trap' and it may cause algorithm to get stuck at local optima.

Check below plots, where for same dataset, we end up getting different clusters depending on
initial position of cluster centroids. Gray color squares represent the initial positions of centroids
and red, green and blue squares represent the final position of centroids.

. © o
o 09% o 90
o °H o o o
0%, 0 o o 200
o.‘—r.
oo °o°
.‘\-0 ooo
o o
X’1}
A
‘o © o
[x] [o
(]
agg oea .‘\.
P ©
099 o
" o o o
°° ©,° o 00
o © o ©0 ¢ 9
O 00 [Q Q
X’1}

Random Initialization Guidelines

To avoid random initialization trap, follow below guidelines for random initialization.

o Number of cluster centroids should be less than number of training examples
e To avoid local optima issue, try to do multiple random initialization of centroids.

e Multiple random initialization technique is more effective when we have a small number
of clusters.
o Similarly for large number of clusters, few random initialization are sufficient

Choosing The Number of Clusters

So using random initialization we can avoid the local optima issue, but to choose how many
clusters to look for in a given data we can use below methods.

Visualization

To find the number of clusters manually by data visualization is one of the most common
method. Domain knowledge and proper understanding of given data also help to make more
informed decisions. Since its manual exercise there is always a scope for ambiguous
observations, in such cases we can also use 'Elbow Method'

Elbow Method

In EIbow method we run the K-Means algorithm multiple times over a loop, with an increasing
number of cluster choice(say from 1 to 10) and then plotting a clustering score as a function of
the number of clusters. Clustering score is nothing but sum of squared distances of samples to
their closest cluster center. Elbow is the point on the plot where clustering score (distortion)
slows down, and the value of cluster at that point gives us the optimum number of clusters to
have. But sometimes we don't get clear elbow point on the plot, in such cases its very hard to
finalize the number of clusters.

[

»
[
»

Clustering score
Clustering score

No clear elbow point

Clear elbow point

Y

v

1 2 3 4 5 B 7 2 1 2 3 4 5 6 7 8
Number of clsuters Number of clsuters

Advantages

e One of the simplest algorithm to understand
« Since it uses simple computations it is relatively efficient
o Gives better results when there is less data overlapping

Disadvantages

o Number of clusters need to be defined by user
o Doesn't work well in case of overlapping data
« Unable to handle the noisy data and outliers

e Algorithm fails for non-linear data set

Python Example

Now we will use k-means clustering algorithm on mall customer unlabeled data to create groups
of the customer based on annual spending and spending score assigned by the mall. We are
going to use sklearns library for it.

Import The Library

e pandas: Used for data manipulation and analysis

« numpy : Numpy is the core library for scientific computing in Python. It is used for
working with arrays and matrices.

o matplotlib : It’s plotting library, and we are going to use it for data visualization

o KMeans: Sklearn library for K-Means clustering

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

Load Data

e We are going to use ‘Mall_Customers.csv’ CSV file
« Dataset contains 5 columns CustomerlID, Gender, Age, Annual Income (k$), Spending
Score (1-100)

#df =

pd.read csv('https://raw.githubusercontent.com/satishgunjal/datasets/master/M
all Customers.csv')

df = pd.read csv('/kaggle/input/customer-segmentation-tutorial-in-
python/Mall Customers.csv')

print ("Shape of the data= ", df.shape)

df .head ()

Shape of the data= (200, 5)

https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python

CustomerID |Gender Age Annual Income (k$) Spending Score (1-100)

01 Male |19 |15 39
12 Male 21 |15 81
23 Female 20 |16 6
34 Female 23 |16 77
45 Female 31 |17 40

Understanding The Data

o There are total 200 training example without any label to indicate which customer belong
which group

e We are going to use annual income and spending score to find the clusters in data. Note
that spending score is from 1 to 100 which is assigned by the mall based on customer
behavior and spending nature

plt.figure(figsize=(10,6))

plt.scatter (df['Annual Income (k$)'],df['Spending Score (1-100)"'])
plt.xlabel ('Annual Income')

plt.ylabel ('Spending Score')

plt.title('Unlabelled Mall Customer Data')

Text (0.5, 1.0, 'Unlabelled Mall Customer Data')

Since we are going to use Annual Income and Spending Score columns only,
lets create 2D array of these columns for further use

X = df.iloc[:, [3,4]].values

X[:5] # Show first 5 records only

array ([, 391,

[15
[15
[16, 6
[16
[17

Choosing The Number of Clusters

By visual inspection of above scatter plot, we can identify 5 possible clusters. But since there is
no other information available its very difficult say it with 100% confidence. So lets try to verify
this with EIbow method technique.

Elbow Method

e Using the elbow method to find the optimal number of clusters. Let's use 1 to 11 as range
of clusters.

o We will use 'random’ initialization method for this study.

e Note that Sklearn K-Means algorithm also have ‘k-means++’ initialization method. It
selects initial cluster centers for k-mean clustering in a smart way to speed up
convergence.

clustering score = []
for i in range (1, 11):

kmeans = KMeans (n clusters = i, init = 'random', random state = 42)
kmeans.fit (X)
clustering score.append(kmeans.inertia) # inertia = Sum of squared

distances of samples to their closest cluster center.

plt.figure(figsize=(10,6))

plt.plot(range(l, 11), clustering score)

plt.scatter(5,clustering score[4], s = 200, ¢ = 'red', marker='*")
plt.title('The Elbow Method')

plt.xlabel ('No. of Clusters')

plt.ylabel ('Clustering Score')

plt.show ()

From above elbow plot its clear that clustering scores slows down after 5 number of clusters. So
we can use K= 5 for further analysis.

Compute K-Means Clustering

Compute cluster centers and predict cluster index for each sample. Since K=5 we will get the
cluster index from 0 to 4 for every data point in our dataset.

kmeans= KMeans (n_clusters = 5, random state = 42)

Compute k-means clustering
kmeans.fit (X)

Compute cluster centers and predict cluster index for each sample.
pred = kmeans.predict (X)

pred

array((3, o, 3, o, 3, o, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, O,
3, 0, 3, 0, 38, 0, 3, 0, 3, O, 3, O, 3, O, 3, O, 3, O, 3, 0, 3, 1,
3[OI ll
1, 1, 1,1, 1,1, 11,1, 1, 1,1, 1,1, 11, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 11,1, 1,1, 11,1, 1, 1,1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1,1, 1,1, 1, 1,1, 11, 1, 1, 1, 2, 4, 2, 1, 2, 4, 2, 4, 2,
1, 2, 4, 2, 4, 2, 4, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2,
4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[
4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[4[2[
4, 21, dtype=int32)

'pred’ contains the values index(0 to 4) cluster for every training example. Let's add it to original
dataset for better understanding.

df['Cluster'] = pd.DataFrame (pred, columns=['cluster'])
print ("Number of data points in each cluster= \n',

df ['Cluster'].value counts())

df

Number of data points in each cluster=

1 81

2 39
4 35
3 23
0 22
Name: Cluster, dtype: int64

CustomerlID Gender Age Annual Income (k$) Spending Score (1-100) |Cluster

0 Male |19 |15 39 3
1 2 Male 21 |15 81 0
2 3 Female 20 |16 6 3
3 4 Female 23 |16 77 0
4 5 Female 31 |17 40 3
195 196 Female 35 120 79 2
196 197 Female 45 126 28 4
197 /198 Male 32 |126 74 2
198 199 Male |32 (137 18 4
199 200 Male |30 (137 83 2

200 rows x 6 columns

Visualization

Let's plot the centroid and cluster with different colors to visualize, how K-Means algorithm has
grouped the data.

plt.figure(figsize=(10,6))

plt.scatter (X[pred == 0, 0], X[pred == 0, 1], c¢c = 'brown', label = 'Cluster
o")

plt.scatter (X[pred == 1, 0], X[pred == 1, 1], c = 'green', label = 'Cluster
")

plt.scatter (X[pred == 2, 0], X[pred == 2, 1], c = 'blue', label = 'Cluster
2")

plt.scatter (X[pred == 3, 0], X[pred == 3, 1], c = 'purple', label = 'Cluster
3")

plt.scatter (X[pred == 4, 0], X[pred == 4, 1], c = 'orange', label = 'Cluster
4")

plt.scatter (kmeans.cluster centers [:,0], kmeans.cluster centers [:, 1],s =
300, ¢ = 'red', label = 'Centroid', marker='*")

plt.xlabel ('Annual Income')
plt.ylabel ('Spending Score')
plt.legend()

plt.title('Customer Clusters')

Text (0.5, 1.0, 'Customer Clusters')

Inner Working

Using below code we can visualize the inner working of K-Means algorithm.

o To start with we will define the random centroids. You can see in below plot that initial
centroids with original data without any clusters.

e Instep 1 we will run the K-Means algorithm only for one iteration and plot the new
position of centroid. Notice how centroid position changes and clusters started to form
around it.

e Instep 2, we will run the K-Means algorithm for two iterations. Notice how data points
are reassigned from one cluster to another as centroid position change

« Similarly at the end we run the K-Means algorithm for six iterations, where we get the
final location of centroids and associated clusters.

def plot k means progress (centroid history,n clusters, centroid sets,
cluster color):

This function will plot the path taken by the centroids

I/P:
* centroid history: 2D array of centroids. Each element represent the
centroid coordinate.
If there are 5 clusters then first set contains initial cluster
cordinates
(i.e. first 5 elements) and then k means loop will keep appending new
cluster coordinates for each iteration
* n clusters: Total number of clusters to find
* centroid sets: At the start we set random values as our first centroid
set. K-Means loop will keep adding
new centroid sets to centroid history. Since we are ploting the path of
centroid locations, centroid set value
will be K-Means loop iteration number plus 1 for initial centroid set.
So its value will be from 2 to K-Means loops max iter plus 1
* cluster color: Just to have same line and cluster color

O/P: Plot the centroid path
c x = [] # To store centroid X coordinated
c y=1I[1] # To store the centroid Y coordinates
for i in range (0, n clusters):
cluster index = 0
for j in range (0, centroid sets):
C X np.append(c_x, centroid history[:,0][i + cluster index])
c y = np.append(c_y, centroid history[:,1][i + cluster index])
cluster index = cluster index + n_clusters
if there are 5 clusters then first set contains initial cluster
cordinates and then k means loop will keep appending new cluster coordinates
for each iteration

plt.plot(c _x, c y, c= cluster color['c ' + str(i)], linestyle='--")

Reset coordinate arrays to avoid continuous lines
c_x = []
c_y=I[l]

plt.figure(figsize=(10,6))

Random Initialization of Centroids

plt.scatter (df ['Annual Income (k$)'],df['Spending Score (1-100)"'])
initial centroid = np.array([[10, 2], [50,100], [130,20], [50,15],
[140,100]1)

plt.scatter(initial centroid[:,0], initial centroid[:, 1],s = 200, c = 'red',
label = 'Random Centroid', marker='*")

plt.xlabel ('Annual Income')

plt.ylabel ('Spending Score')

plt.legend()

plt.title('Random Initialization of Centroids')

K-Means loop of assignment and move centroid steps
centroid history = []
centroid history = initial centroid
#
cluster color=
{'c 0':'brown','c 1':'green','c 2':'blue','c 3':'purple','c 4':'orange'}
n _clusters = 5
for i in range(l,6):
kmeans= KMeans (n_clusters, init= initial centroid, n _init= 1, max iter=
i, random state = 42) #n init= 1 since our init parameter is array

Compute cluster centers and predict cluster index for each sample
pred = kmeans.fit predict (X)

plt.figure(figsize=(10,6))

plt.scatter (X[pred == 0, 0], X[pred == 0, 1], c¢c = 'brown', label =
'Cluster 0')

plt.scatter (X[pred == 1, 0], X[pred == 1, 1], c¢c = 'green', label =
'Cluster 1"')

plt.scatter (X[pred == 2, 0], X[pred == 2, 1], c = 'blue', label =
'Cluster 2"')

plt.scatter (X[pred == 3, 0], X[pred == 3, 1], c = 'purple', label =
'Cluster 3'")

plt.scatter (X[pred == 4, 0], X[pred == 4, 1], c = 'orange', label =
'Cluster 4"')

plt.scatter (centroid historyl[:,0], centroid historyl[:, 1],s = 50, c =
'gray', label = 'Last Centroid', marker='x")

plt.scatter (kmeans.cluster centers [:,0], kmeans.cluster centers [:, 1],s
= 200, ¢ = 'red', label = 'Centroid', marker='*")

centroid history = np.append(centroid history, kmeans.cluster centers ,
axis=0)

plt.xlabel ('Annual Income')
plt.ylabel ('Spending Score')
plt.legend()

|l

plt.title('Iteration:' + str(i) + ' Assignment and Move Centroid Step')

centroid sets = i + 1 # Adding one for initial set of centroids
plot k means progress(centroid history,n clusters, centroid sets,
cluster color)

Inner Working:
K-Means clustering visualization

Random Initialization of Centroids

. :. . 8 * .'.' ‘. *
L & L]
® ool . T .
a0 - . * . ¢ .
e & . .
] o®
] - .

Spending Score
e @
Hi v
* s %
A
.Ez

-

[]

40 4 ¥ e w: [] *
LY 5 % .
20 - $ ¢ *
g o . * o g e ® ¢ .
ge* * .
. * ... ® a9 ‘.-.
20 a0 60 80 100 120

Annual Income

