
Learning with Trees  261

The information measure can be changed in another way, which is to add a weight to
the misclassications. The idea is to consider the cost of misclassifying an instance of class
i as class j (which we will call the risk in Section 2.3.1) and add a weight that says how
important each datapoint is. It is typically labelled as λij and is presented as a matrix, with
element λij representing the cost of misclassifying i as j. Using it is simple, modifying the
Gini impurity (Equation (12.8)) to be:

Gi =
∑

j ”=i

λijN(i)N(j). (12.10)

We will see in Section 13.1 that there is another benet to using these weights, which
is to successively improve the classication ability by putting higher weight on datapoints
that the algorithm is getting wrong.

12.3.2 Regression in Trees
The new part about CART is its application in regression. While it might seem strange to
use trees for regression, it turns out to require only a simple modication to the algorithm.
Suppose that the outputs are continuous, so that a regression model is appropriate. None
of the node impurity measures that we have considered so far will work. Instead, we’ll go
back to our old favourite—the sum-of-squares error. To evaluate the choice of which feature
to use next, we also need to nd the value at which to split the dataset according to that
feature. Remember that the output is a value at each leaf. In general, this is just a constant
value for the output, computed as the mean average of all the datapoints that are situated
in that leaf. This is the optimal choice in order to minimise the sum-of-squares error, but
it also means that we can choose the split point quickly for a given feature, by choosing
it to minimise the sum-of-squares error. We can then pick the feature that has the split
point that provides the best sum-of-squares error, and continue to use the algorithm as for
classication.

12.4 CLASSIFICATION EXAMPLE
We’ll work through an example using ID3 in this section. The data that we’ll use will be a
continuation of the one we started the chapter with, about what to do in the evening.

When we want to construct the decision tree to decide what to do in the evening, we
start by listing everything that we’ve done for the past few days to get a suitable dataset
(here, the last ten days):

Deadline? Is there a party? Lazy? Activity
Urgent Yes Yes Party
Urgent No Yes Study
Near Yes Yes Party
None Yes No Party
None No Yes Pub
None Yes No Party
Near No No Study
Near No Yes TV
Near Yes Yes Party
Urgent No No Study

262  Machine Learning: An Algorithmic Perspective

To produce a decision tree for this problem, the rst thing that we need to do is work
out which feature to use as the root node. We start by computing the entropy of S:

Entropy(S) = −pparty log2 pparty − pstudy log2 pstudy
− ppub log2 ppub − pTV log2 pTV

= − 5
10 log2

5
10 − 3

10 log2
3
10 − 1

10 log2
1
10 − 1

10 log2
1
10

= 0.5 + 0.5211 + 0.3322 + 0.3322 = 1.6855 (12.11)

and then nd which feature has the maximal information gain:

Gain(S,Deadline) = 1.6855− |Surgent|
10 Entropy(Surgent)

− |Snear|
10 Entropy(Snear)−

|Snone|
10 Entropy(Snone)

= 1.6855− 3
10


−2
3 log2

2
3 − 1

3 log2
1
3



− 4
10


−2
4 log2

2
4 − 1

4 log2
1
4 − 1

4 log2
1
4



− 3
10


−1
3 log2

1
3 − 2

3 log2
2
3



= 1.6855− 0.2755− 0.6− 0.2755
= 0.5345 (12.12)

Gain(S,Party) = 1.6855− 5
10


−5
5 log2

5
5



− 5
10


−3
5 log2

3
5 − 1

5 log2
1
5 − 1

5 log2
1
5



= 1.6855− 0− 0.6855
= 1.0 (12.13)

Gain(S,Lazy) = 1.6855− 6
10


−3
6 log2

3
6 − 1

6 log2
1
6 − 1

6 log2
1
6 − 1

6 log2
1
6



− 4
10


−2
4 log2

2
4 − 2

4 log2
2
4



= 1.6855− 1.0755− 0.4
= 0.21 (12.14)

Therefore, the root node will be the party feature, which has two feature values (‘yes’
and ‘no’), so it will have two branches coming out of it (see Figure 12.6). When we look at
the ‘yes’ branch, we see that in all ve cases where there was a party we went to it, so we
just put a leaf node there, saying ‘party’. For the ‘no’ branch, out of the ve cases there are
three dierent outcomes, so now we need to choose another feature. The ve cases we are
looking at are:

Learning with Trees  263

FIGURE 12.6 The decision tree after one
step of the algorithm.

FIGURE 12.7 The tree after another
step.

Deadline? Is there a party? Lazy? Activity
Urgent No Yes Study
None No Yes Pub
Near No No Study
Near No Yes TV
Urgent No Yes Study

We’ve used the party feature, so we just need to calculate the information gain of the
other two over these ve examples:

Gain(S,Deadline) = 1.371− 2
5


−2
2 log2

2
2



− 2
5


−1
2 log2

1
2 − 1

2 log2
1
2


− 1

5


−1
1 log2

1
1



= 1.371− 0− 0.4− 0
= 0.971 (12.15)

Gain(S,Lazy) = 1.371− 4
5


−2
4 log2

2
4 − 1

4 log2
1
4 − 1

4 log2
1
4



− 1
5


−1
1 log2

1
1



= 1.371− 1.2− 0
= 0.1710 (12.16)

This leads to the tree shown in Figure 12.7. From this point it is relatively simple to
complete the tree, leading to the one that was shown in Figure 12.1.

FURTHER READING
For more information about decision trees, the following two books are of interest:

• J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco, CA, USA, 1993.

• L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classication and Regression
Trees. Chapman & Hall, New York, USA, 1993.

264  Machine Learning: An Algorithmic Perspective

If you want to know more about information theory, then there are lots of books on the
topic, including:

• T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, USA, 1991.

• F.M. Reza. An Introduction to Information Theory. McGraw-Hill, New York, USA,
1961.

The original paper that started the eld is:

• C.E. Shannon. A mathematical theory of information. The Bell System Technical
Journal, 27(3):379–423 and 623–656, 1948.

A book that covers information theory and machine learning is:

• D.J.C. MacKay. Information Thoery, Inference and Learning Algorithms. Cambridge
University Press, Cambridge, UK, 2003.

Other machine learning textbooks that cover decision trees include:

• Sections 8.2–8.4 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classication, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 7 of B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK, 1996.

• Chapter 3 of T. Mitchell. Machine Learning. McGraw-Hill, New York, USA, 1997.

PRACTICE QUESTIONS
Problem 12.1 Suppose that the probability of ve events are P(rst) = 0.5, and P(second)

= P(third) = P(fourth) = P(fth) = 0.125. Calculate the entropy. Write down in words
what this means.

Problem 12.2 Make a decision tree that computes the logical AND function. How does it
compare to the Perceptron solution?

Problem 12.3 Turn this politically incorrect data from Quinlan into a decision tree to
classify which attributes make a person attractive, and then extract the rules.

Height Hair Eyes Attractive?
Small Blonde Brown No
Tall Dark Brown No
Tall Blonde Blue Yes
Tall Dark Blue No
Small Dark Blue No
Tall Red Blue Yes
Tall Blonde Brown No
Small Blonde Blue Yes

Learning with Trees  265

Problem 12.4 When you arrive at the pub, your ve friends already have their drinks on
the table. Jim has a job and buys the round half of the time. Jane buys the round a
quarter of the time, and Sarah and Simon buy a round one eighth of the time. John
hasn’t got his wallet out since you met him three years ago.
Compute the entropy of each of them buying the round and work out how many
questions you need to ask (on average) to nd out who bought the round.
Two more friends now arrive and everybody spontaneously decides that it is your turn
to buy a round (for all eight of you). Your friends set you the challenge of deciding
who is drinking beer and who is drinking vodka according to their gender, whether or
not they are students, and whether they went to the pub last night. Use ID3 to work
it out, and then see if you can prune the tree.

Drink Gender Student Pub last night
Beer T T T
Beer T F T
Vodka T F F
Vodka T F F
Vodka F T T
Vodka F F F
Vodka F T T
Vodka F T T

Problem 12.5 Use the naïve Bayes classier from Section 2.3.2 on the datasets that you
used for the decision tree (this will involve some eort in turning the textual data into
probabilities) and compare the results.

Problem 12.6 The CPU dataset in the UCI repository is a very good regression problem
for a decision tree. You will need to modify the decision tree code so that it does
regression, as discussed in Section 12.3.2. You will also have to work out the Gini
impurity for multiple classes.

Problem 12.7 Modify the implementation to deal with continuous variables, as discussed
in Section 12.2.5.

Problem 12.8 The misclassication impurity is:

N(i) = 1−max
j

P (wj). (12.17)

Add this into the code and test the new version on some of the datasets above.

C H A P T E R 13

Decision by Committee:
Ensemble Learning

The old saying has it that two heads are better than one. Which naturally leads to the idea
that even more heads are better than that, and ends up with decision by committee, which
is famously useless for human activities (as in the old joke that a camel is a horse designed
by a committee). For machine learning methods the results are rather more impressive, as
we’ll see in this chapter.

The basic idea is that by having lots of learners that each get slightly dierent results
on a dataset—some learning certain things well and some learning others—and putting
them together, the results that are generated will be signicantly better than any one of
them on its own (provided that you put them together well... otherwise the results could be
signicantly worse). One analogy that might prove useful is to think about how your doctor
goes about performing a diagnosis of some complaint that you visit her with. If she cannot
nd the problem directly, then she will ask for a variety of tests to be performed, e.g., scans,
blood tests, consultations with experts. She will then aggregate all of these opinions in order
to perform a diagnosis. Each of the individual tests will suggest a diagnosis, but only by
putting them together can an informed decision be reached.

Figure 13.1 shows the basic idea of ensemble learning, as these methods are collectively
called. Given a relatively simple binary classication problem and some learner that puts
an ellipse around a subset of the data, combining the ellipses can provide a considerably
more complex decision boundary.

There are then only a couple of questions to ask: which learners should we use, how
should we ensure that they learn dierent things, and how should we combine their results?
The methods that we are investigating in this chapter can use any classier at all. Although
in general they only use one type of classier at a time, they do not have to. A common
choice of classier is the decision tree (see Chapter 12).

Ensuring that the learners see dierent things can be performed in dierent ways, and
it is the primary dierence between the algorithms that we shall see. However, it can also
come about naturally depending upon the application area. Suppose that you have lots and
lots of data. In that case you could simply randomly partition the data and give dierent
sets of data to dierent classiers. Even here there are choices: do you make the partitions
separate, or include overlaps? If there is no overlap, then it could be dicult to work out
how to combine the classiers, or it might be very simple: if your doctor always asks for
opinions from two colleagues, one specialising in heart problems and one in sports injuries,

267

268  Machine Learning: An Algorithmic Perspective

FIGURE 13.1 By combining lots of simple classiers (here that simply put an elliptical
decision boundary onto the data), the decision boundary can be made much more com-
plicated, enabling the dicult separation of the pluses from the circles.

then upon discovering that your leg started hurting after you went for a run she would likely
accord more weight to the diagnosis of the sports injury expert.

Interestingly, ensemble methods do very well when there is very little data as well as
when there is too much. To see why, think cross-validation (Section 2.2.2). We used cross-
validation when there was not enough data to go around, and trained lots of neural networks
on dierent subsets of the data. Then we threw away most of them. With an ensemble
method we keep them all, and combine their results in some way. One very simple way to
combine the results is to use majority voting — if it’s good enough for electing governments
in elections, it’s good enough for machine learning. Majority voting has the interesting
property that for binary classication, the combined classier will only get the answer
wrong if more than half of the classiers were wrong. Hopefully, this isn’t going to happen
too often (although you might be able to think of government elections where this has been
the case in your view). There are alternative ways to combine the results, as we’ll discuss.
These things will become clearer as we look at the algorithms, so let’s get started.

13.1 BOOSTING
At rst sight the claim of the most popular ensemble method, boosting, seems amazing. If
we take a collection of very poor (weak in the jargon) learners, each performing only just
better than chance, then by putting them together it is possible to make an ensemble learner
that can perform arbitrarily well. So we just need lots of low-quality learners, and a way to
put them together usefully, and we can make a learner that will do very well.

The principal algorithm of boosting is named AdaBoost, and is described in Sec-
tion 13.1.1. The algorithm was rst described in the mid-1990s by Freund and Shapiro,
and while it has had many variations derived from it, the principal algorithm is still one
of the most widely used. The algorithm was proposed as an improvement on the original
1990 boosting algorithm, which was rather data hungry. In that algorithm, the training
set was split into three. A classier was trained on the rst third, and then tested on the
second third. All of the data that was misclassied during that testing was used to form a
new dataset, along with an equally sized random selection of the data that was correctly
classied. A second classier was trained on this new dataset, and then both of the classi-
ers were tested on the nal third of the dataset. If they both produced the same output,
then that datapoint was ignored, otherwise the datapoint was added to yet another new

Decision by Committee: Ensemble Learning  269

FIGURE 13.2 As points are misclassied, so their weights increase in boosting (shown by
the datapoint getting larger), which makes the importance of those datapoints increase,
making the classiers pay more attention to them.

dataset, which formed the training set for a third classifer. Rather than looking further at
this version, we will look at the more common algorithm.

13.1.1 AdaBoost
The innovation that AdaBoost (which stands for adaptive boosting) uses is to give weights
to each datapoint according to how dicult previous classiers have found to get it correct.
These weights are given to the classier as part of the input when it is trained.

The AdaBoost algorithm is conceptually very simple. At each iteration a new classier
is trained on the training set, with the weights that are applied to the training set for each
datapoint being modied at each iteration according to how successfully that datapoint has
been classied in the past. The weights are initially all set to the same value, 1/N , where
N is the number of datapoints in the training set. Then, at each iteration, the error (‘) is
computed as the sum of the weights of the misclassied points, and the weights for incorrect
examples are updated by being multiplied by α = (1 − ‘)/‘. Weights for correct examples
are left alone, and then the whole set is normalised so that it sums to 1 (which is eectively
a reduction in the importance of the correctly classied datapoints). Training terminates
after a set number of iterations, or when either all of the datapoints are classied correctly,
or one point contains more than half of the available weight.

Figure 13.2 shows the eect of weighting incorrectly classied examples as training
proceeds, with the size of each datapoint being a measure of its importance. As an algorithm
this looks like (where I(yn ”= ht(xn)) is an indicator function that returns 1 if the target and
output are not equal, and 0 if they are):

