

Random Forest Classifier and Random Forest Regressor

Aim of the Exercise:

Implement and demonstrate the working of Random Forest

classifier and Random Forest Regressor using sample data sets.

Build the model to classify a test sample.

**

Exercise- 1:

Sample Dataset: IRIS or any general dataset.

Program Code:

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

#Load the Iris data set.

dataset = pd.read_csv("Iris.csv")

Split the Iris features into input and output columns

X = dataset.iloc[:, 1:5].values

y = dataset.iloc[:, 5].values

print(" Training Dataset\n")

print("\n", X)

print("\n", y)

Split the data matrix into train and test dataset

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.20)

#Train the model using RandomForestClassifier

model= RandomForestClassifier(n_estimators=20)

#Fit the model

model.fit(X_train,y_train)

#Predict the Output

y_pred = model.predict(X_test)

#Print the model accuracy

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Screen Shot of the program

Exercise 2:

Random Forest Regression Model

II. Regression problems can also be solved by

RandomForestRegressor class of the sklearn.ensemble library.

Training Dataset

CGPA Assessment Project Result

9.2 85 8 95

8 80 7 82

8.5 81 8 86

6 45 5 60

6.5 50 4 55

8.2 72 7 78

5.8 38 5 48

8.9 91 9 80

3. Python Program with Explanation: Random Forest Regressor

1. Import the library ‘pandas’ to read data from a CSV file.

import pandas as pd

2. Import numpy

import numpy as np

3. Import LabelEncoder to normalize labels.

from sklearn.preprocessing import LabelEncoder

4. Import train_test_split function.

from sklearn.model_selection import train_test_split

5. Import RandomForestRegressor from sklearn.ensemble

from sklearn.ensemble import RandomForestRegressor

6. Import StandardScaler to apply scaling transformations.

from sklearn.preprocessing import StandardScaler

7. Import metrics to measure the prediction error.

from sklearn import metrics

8. Load data from a CSV file into a Pandas DataFrame.

dataset = pd.read_csv("randomforest csv.csv")

9. Use iloc property to select by position.

Select the columns until (excluding) the last column. Then

print it.

X = dataset.iloc[:, :-1].values

Select the fourth column and then print it.

y = dataset.iloc[:, 3].values

about:blank

print(" Training Dataset\n")

print("\n", X)

print("\n", y)

10. Split the dataset into training dataset and test dataset by

using the function train_test_split().

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.20)

11. Create a new instance of StandardScaler and then fit and

transform the scaler to X_train and X_test. Standardize X_train

and X_test by computing the mean and standard deviation by the

transform() function on a training set so as to later reapply

the same transformation on the testing set.

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

12. Use RandomForestRegressor model. The most important

parameter used is n_estimators.

o n_estimators is used to denote the number of trees in

the forest.

model= RandomForestRegressor(n_estimators=20,

random_state=0)

13. The model takes as input two arrays: an array

X_train, holding the training instances, and an array y_train

holding the class labels for the training instances. Then train

the classifier using the function fit().

model.fit(X_train,y_train)

14. To make predictions, the predict method of

the RandomForestRegressor class is used.

y_pred = model.predict(X_test)

15. Print Mean Absolute Error and Mean Squared Error.

print('Mean Absolute Error:',

metrics.mean_absolute_error(y_test, y_pred))

print('Mean Squared Error:',

metrics.mean_squared_error(y_test, y_pred))

16. Predict the output for the test sample. [CGPA: 9.1,

Assessment: 85, Project: 8]

print([9.1,85,8])

predicted = model.predict([[9.1,85,8]])

print(predicted)

Complete Program: Random Forest Regressor

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

dataset = pd.read_csv("randomforest csv.csv")

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, 3].values

print(" Training Dataset\n")

print("\n", X)

print("\n", y)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.20)

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

model= RandomForestRegressor(n_estimators=20, random_state=0)

model.fit(X_train,y_train)

y_pred = model.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test,

y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(y_test,

y_pred))

#print('Root Mean Squared Error:',

np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

print([9.1,85,8])

predicted = model.predict([[9.1,85,8]])

print(predicted)

Output: Random Forest Regressor

====== RESTART: randomforest_regressor.py =====

 Training Dataset

 [[9.2 85. 8.]

 [8. 80. 7.]

 [8.5 81. 8.]

 [6. 45. 5.]

 [6.5 50. 4.]

 [8.2 72. 7.]

 [5.8 38. 5.]

 [8.9 91. 9.]]

 [95 82 86 60 55 78 48 80]

Mean Absolute Error: 6.175000000000001

Mean Squared Error: 62.88124999999999

[9.1, 85, 8]

[90.95]

>>>

Screen Shot of the Output: Random Forest Regressor

