Random Forest Classifier and Random Forest Regressor

Aim of the Exercise:

Implement and demonstrate the working of Random Forest
classifier and Random Forest Regressor using sample data sets.
Build the model to classify a test sample.

L b b b b b b b b b b I b i b b b b b i b b i b i I b b b b b b b i b b b i i i i b b b b b b b b b b b b b b b b b b b g
Exercise- 1:

Sample Dataset: IRIS or any general dataset.

Program Code:

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler

from sklearn import metrics

#Load the Iris data set.

dataset = pd.read csv("Iris.csv")

Split the Iris features into input and output columns

X = dataset.iloc[:, 1:5].values
y = dataset.iloc[[:, 5].values
print (" Training Dataset\n")

print ("\n", X)

print ("\n", vy)

Split the data matrix into train and test dataset

X train, X test, y train, y test = train test split(X, vy,
test size=0.20)

#Train the model using RandomForestClassifier

model= RandomForestClassifier (n estimators=20)

#Fit the model

model.fit (X train,y train)

#Predict the Output

y pred model .predict (X test)

#Print the model accuracy

print ("Accuracy:",metrics.accuracy score(y test, y pred))

Screen Shot of the program

© pandas
© numpy

pd
np

sklearn.preprocessing LabelEncoder
sklearn.model_selection © train testc_spli
sklearn.ensemble RandomForestRegressor
sklearn.ensemble RandomForescClassifier
sklearn.preprocessing import StandardScaler
sklearn import metrics

dataset = pd.read_csv ("I Swm)

= dataset.iloc[:, 1:5].values
= dataset.iloc[:, 5].values

aset\n")

b
¥
bl
bl
D

X train, X test, y train, y test = train test_split(X, y, test size=

model= RandomForestClassifier (n estimators=20)
model.fit (X_train,y train)

v_pred = model.predict (X _test)
princ ("Accuracy:”,metrics.accuracy_score(y_test, v pred))

File Edit Shell Debug Options Window Help

Squeezed text (150 lines)

['Iris-secosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
*Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' ‘'Iris-versicolor'
‘Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
‘Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
‘Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
‘Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
‘Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' °Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
*Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
*Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
‘Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
*Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
*Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica']
Accuracy: 1.0

Exercise 2:

Random Forest Regression Model

IT. Regression

RandomForestRegressor class of the sklearn.ensemble library.

problems

can

Training Dataset

also be

CGPA | Assessment | Project | Result
9.2 85 8 95

8 80 7 82
8.5 81 8 86

6 45 5 60
6.5 50 4 55
8.2 72 7 78

solved

by

3. Python Program with Explanation: Random Forest Regressor

1. Import

the library ‘pandas’ to read data from a CSV file.

import pandas as pd

2. Import

numpy

import numpy as np

3. Import

from

4. Import

from

5. Import

from

6. Import

from

7. Import

from

LabelEncoder to normalize labels.

sklearn.preprocessing import LabelEncoder

train test split function.

sklearn.model selection import train test split

RandomForestRegressor from sklearn.ensemble

sklearn.ensemble import RandomForestRegressor

StandardScaler to apply scaling transformations.

sklearn.preprocessing import StandardScaler

metrics to measure the prediction error.

sklearn import metrics

8. Load data from a CSV file into a Pandas DataFrame.

dataset = pd.read csv("randomforest csv.csv")

9. Use iloc property to select by position.

Select the columns until (excluding) the last column.

print it.

X:

dataset.iloc[:, :-1].values

Select the fourth column and then print it.

y:

dataset.iloc[:, 3].values

Then

about:blank

print (" Training Dataset\n")
print ("\n", X)

print ("\n", vy)

10. Split the dataset into training dataset and test dataset by
using the function train test split().
X train, X test, 1y train, vy test = train test split(X, vy,

test size=0.20)

11. Create a new instance of StandardScaler and then fit and
transform the scaler to X train and X test. Standardize X train
and X test by computing the mean and standard deviation by the
transform() function on a training set so as to later reapply
the same transformation on the testing set.

scaler = StandardScaler ()

scaler.fit (X train)

X train = scaler.transform(X train)
X test = scaler.transform(X test)
12. Use RandomForestRegressor model. The most important

parameter used is n_estimators.
0 n _estimators is used to denote the number of trees in
the forest.
model= RandomForestRegressor (n_estimators=20,

random state=0)

13. The model takes as input two arrays: an array
X train, holding the training instances, and an array y train
holding the class labels for the training instances. Then train
the classifier using the function fit().

model.fit (X train,y train)

14. To make predictions, the predict method of

the RandomForestRegressor class is used.

y pred = model.predict (X test)

15. Print Mean Absolute Error and Mean Squared Error.
print ('Mean Absolute Error:',
metrics.mean absolute error(y test, y pred))
print ('Mean Squared Error:',

metrics.mean squared error (y test, y pred))

16. Predict the output for the test sample. [CGPA: 9.1,
Assessment: 85, Project: 8]

print ([9.1,85,8])

predicted = model.predict([[9.1,85,8]1)

print (predicted)

Complete Program: Random Forest Regressor

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler

from sklearn import metrics

dataset = pd.read csv("randomforest csv.csv")

X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
print (" Training Dataset\n")

print ("\n", X)

print ("\n", vy)

X train, X test, y train, y_test = train test split (X, Y
test size=0.20)

scaler = StandardScaler ()

scaler.fit (X train)

X train = scaler.transform(X train)

X test = scaler.transform(X test)

model= RandomForestRegressor (n estimators=20, random state=0)

model.fit (X train,y train)

y_pred = model.predict (X test)

print ('Mean Absolute Error:', metrics.mean absolute error(y test,

y_pred))

print ('Mean Squared Error:', metrics.mean squared error(y test,

y_pred))
#print ('Root Mean Squared

np.sqrt (metrics.mean squared error(y test, y pred)))

print ([9.1,85,81)
predicted = model.predict([[9.1,85,8]])
print (predicted)

Output: Random Forest Regressor
====== RESTART: randomforest regressor.py =====

Training Dataset

[[9.2 85. 8. 1
[80.
.5 81.
45.
50.
2.
38.
91.

Qo U1 O o o o« o
o U1 Jd P> 01 0o I

o o N o

1]

[95 82 86 60 55 78 48 80]
Mean Absolute Error: 6.175000000000001
Mean Squared Error: 62.88124999999999
[9.1, 85, 8]

[90.95]

>>>

Error:',

Screen Shot of the Output: Random Forest Regressor

File Edit Format Run Options Window Help
import pandas as pd
st numpy as np
sklearn.preprocessing LabelEncoder

sklearn.model_selection &
sklearn.ensenble
sklearn.preprocessing
sklearn et metrics

port train vest_split
RandomForestRegressor
StandardScaler

domfo

dataset = pd.read_csv("

X train, X test, vy train, v test = train test_split(X, v,
scaler = Standardscalsr()
scaler.fit(X train)

X train = scaler.transform(X_train)
¥ test = scaler.transform(X_test)

model= RandomForsstRegressor(n_sstimators=20, random state=0)
model.fit (X_train,y_train)
v_pred = model.predict (X_test)

, metrics.mean_absolute_error (y_test,

print([8.1 }
predicted = model.predict ([[9.1,85,8]])
print (predicted)

test_size=

y_pred))
, metrics.mean_squared_error(y_test, y_pred))

Training Dataset

1
1
1
1
1
1
1

1

82 86 60 55
Absolute Error:
Squared Error:
85, 8]

al
€.175000000000001

