ML- WEEK -8

1. Implement Decision Tree Classifier (ID3) on IRIS dataset and tabulate the results.
(reference material for Decision Tree Classifier using ID3 was already shared)
Implement SVM classifier on IRIS dataset and tabulate the results

Compare the performance of Decision Tree with SVM classifiers on IRIS dataset.
Trying different techniques (can try on synthetic data) to avoid overfitting and
improve generalizability of classifier models:

» Applying different Regularization techniques: L1 (Lasso), L2 (Ridge),
Dropout, and Early Stopping etc., (see references including user guide for
scikit learn).

» Visualize the training and test/validation errors using learning_curve,
LearningCurveDisplay of scikit learn library. (see references including user
guide for scikit learn)

kkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkkhkkkkkkhkkkkkkkkkkkkkhkkhkkkkhkkhkkkhkkkkkkkkkkkkhkkkkkkhkkkkkkkkk

hwn

Ex: code snippet for generating synthetic dataset for classification

from sklearn.datasets import make classification

make classification: Complex dataset with noisy features
X class, y class = make classification(
n samples=100, n_ features=2, n informative=2,
n_redundant=0, n clusters per class=1,
class sep=1.0, random state=42
)
#Alternatively
X, y = make classification(n samples=100, n features=15, random state=42)
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random_ state=42)

Note:

There are two ways to generate synthetic data: make classification(),
make blobs () a
» make classification is for testing classifiers; make blobs is for
testzng clustering algorithms like K-Means. B
» make classification allows defining n_informative, n_ redundant, and
n repeated features. make blobs simply generates data around centers.
> make classification can produce non-convex, overlapping, and complex

boundaries, whereas make blobs produces spherical (isotropic) clusters
3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k 3k 3k sk 5k 3k 5k 3k 3k 3k 3k sk sk ok 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk sk sk 5k 3k 3k 3k 3k sk 3k sk 5k 3k 3k 3k sk sk sk 3k sk 5k 3k 3k 3k 3k 3k sk 5k sk 5k 3k sk sk sk sk sk ok %k k %k sk sk k

Some useful code snippets for Exercise.No. 4
from sklearn.model selection import learning_ curve
The learning curve function returns training set sizes, training scores, and
cross-validation scores (requires matplotlib to plot curves)
train sizes, train scores, test scores = learning curve (
estimator,
X,
Yr
cv=5, # 5-fold cross-validation
scoring='accuracy',
n jobs=-1, # Use all available CPU cores

train sizes=np.linspace (0.1, 1.0, 10) # 10 different sizes from 10% to
100% of data

)
#Alternatively using LearningCurveDisplay (avoids the need for matplotlib)

from sklearn.model selection import LearningCurveDisplay
display = LearningCurveDisplay.from estimator (

estimator, X, y, ax=ax, cv=5, n jobs=-1,

train sizes=np.linspace(0.1, 1.0, 5), scoring='accuracy'

)

3k 3k 3k 3k 3k 5k 3k sk sk sk 3k sk 3k sk sk sk 3k sk %k sk 3k 5k 3k sk sk sk 3k 3k 3k 3k sk 3k 3k 3k 3k 3k sk sk 3k 5k 3k 3k sk 3k 3k 3k 3k 3k sk sk >k 5k 5k 5k 3k sk >k 3k 3k 3k 3k >k 3k 3k 3k ok %k >k >k 3k %k k kk ok k

Some reference for Exercise No. 4
Key Indicators of Overfitting:

e High training accuracy but low validation/test accuracy.
e Validation loss increases while training loss decreases

Some common techniques to avoid overfitting:
1. Data-Level Techniques

e Increase Data Size: Gather more data to help the model learn
general patterns rather than memorizing noise.

e Data Augmentation: Artificially increase the training set
size by applying transformations (e.g., rotation, flipping,
or adding noise).

2. Model & Training Techniques

e Regularization (L1/L2): Add a penalty term to the loss
function to penalize large coefficients (weights), with L2
(Ridge) often preferred.

e Early Stopping: Monitor validation performance during
training and halt training when validation error begins to
increase, preventing the model from over-learning.

¢ Reduce Complexity: Simplify the model by reducing the number
of layers or neurons in neural networks, or limiting tree
depth in decision trees.

e Dropout: In neural networks, randomly deactivate neurons
during training, forcing the network to learn more robust
features

3. Evaluation & Feature Techniques
Cross-Validation: Use Use K-fold cross-validation to ensure
the model performs consistently across different data
splits.

e Feature Selection: Remove irrelevant or redundant features
to simplify the data representation.

e Ensemble Methods: Combine predictions from multiple models
(e.g., Random Forest, Bagging) to improve generalization

